
NU-Net: a self-supervised smart filter for enhancing blobs in bioimages

Seongbin Lim

Laboratoire d’Optique et Biosciences, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris
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Abstract

While supervised deep neural networks have become the
dominant method for image analysis tasks in bioimages,
truly versatile methods are not available yet because of the
diversity of modalities and conditions and the cost of re-
training. In practice, day-to-day biological image analysis
still largely relies on ad hoc workflows often using classical
linear filters. We propose NU-Net, a convolutional neural
network filter selectively enhancing cells and nuclei, as a
drop-in replacement of chains of classical linear filters in
bioimage analysis pipelines. Using a style transfer architec-
ture, a novel perceptual loss implicitly learns a soft separa-
tion of background and foreground. We used self-supervised
training using 25 datasets covering diverse modalities of
nuclear and cellular images. We show its ability to selec-
tively improve contrast, remove background and enhance
objects across a wide range of datasets and workflow while
keeping image content. The pre-trained models are light
and practical, and published as free and open-source soft-
ware for the community. NU-Net is also available as a plu-
gin for Napari.

1. Introduction
Machine learning solutions, especially those based on

deep neural networks, have had huge impact on bioimage

analysis. Very successful segmentation models, in particu-

lar, have been introduced, starting with U-Net [32]. Over

the years, semantic segmentation task evolved into instance

segmentation with its ability to address touching boundaries

of nuclei and cells and identify instances, such as StarDist

[34], nucleAIzer [17], Cellpose [37], CDNet [15], and Mes-

mer [14].

These segmentation models were essentially based on

supervised learning, resulting in capable and performant

models once sufficient annotated data were provided. How-

input:raw

output:NU-Net

annotation

output:DoG

Figure 1. Proposed model, NU-Net, is a nuclear and cellular filter

built on convolutional neural network and self-supervised learning

scheme via perceptual losses, to be used in place of linear filters.

This example compares NU-Net to difference of Gaussians (DoG).

Sample image is a histopathology image containing dense cells

and is sourced from [26]. (The sample image was converted into

gray-scaled).

ever, in biological imaging, each experiment is different,

with varied image modality or sample type, condition and

labeling, making the design of a truly generic pre-trained

model conplicated. In practice, it is common in analysis

pipelines to annotate a few local data again, which is a

time-consuming process needing expertise, and to retrain

or fine-tune these models. Alternatively, users resort to less

demanding machine learning software, compromising per-

formance, e.g. ilastik [5] and LABKIT [3], to interactively

acquire a model, usually built on random forest classifier.

One very common way to circumvent this issue, in par-

ticular, since machine learning expertise is not always avail-

able in experimental labs, is to use the same set of classical

linear filters in increasingly complex pipelines. Use cases

include a quick and light way to adjust contrast, a post-

acquisition step to denoise, enhance images, or clean their

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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background or a pre-analysis step to detect/segment/count

objects of interest. Linear filters are reliable and well proven

over time, but most of them are parametric algorithms with

strong assumption, meaning needs of parameter search and

low versatility, respectively.

In this paper, we propose a novel filter, we call NU-Net

(Not a U-Net and read new net), built on convolutional neu-

ral networks (CNNs) and self-supervised learning scheme.

NU-Net enhances contrast of images based on morphologi-

cal traits of nuclei and cells perceived by a large pre-trained

vision model. NU-Net’s behavior is positioned between

a binary semantic segmentation model that classifies fore-

ground and background pixels and an autoencoder that re-

constructs input images as accurately as possible. During

training, it learns morphological perception as well as a gen-

erative loss and does not require paired target labels as in

supervised learning. This self-supervision advantage can

address highly diverse nature of biological images across

many modalities because one can include as many images

as suited regardless of their target label availability. Also, it

makes NU-Net highly adaptable to local images and practi-

cal in real application.

To leverage its training benefit, we gathered 25 nu-

clear and cellular datasets with or without target labels and

trained NU-Net with this meta dataset to promote it as a

generalized filter that can cover a large range of different

modalities of nuclear and cellular images. We kept the ar-

chitecture of NU-Net rather small, so it can be used on a

local CPU without heavy computing power or reliance of

graphical processing units (GPUs). In addition, training

NU-Net from scratch can be done within an hour with a

proper setup, if needed.

Evaluation of NU-Net is complicated by the fact that it is

not directly comparable to other recent work and thus can-

not reuse existing metrics and benchmarks. Since the main

objective of this work is a practical one, adding a new tool

to the bioimage analysis toolbox, we focused on integrating

NU-Net into actual object detection workflow, to show its

usefulness in practice, as well as try it on a wide range of

images to show its versatility.

Contributions of this work can be summarized as fol-

lowed:

• introducing a novel filter built on machine learning and

CNN, which can replace classical linear filters

• using perceptual losses for self-supervised learning to

circumvent supervised learning and avoid costly label-

ing process in biological images

• gathering 25 different nuclear and cellular datasets and

training NU-Net to cover large range of modalities

1.1. Related work

Perceptual losses were used effectively for neural style

transfer application [22]. They take advantage of a pre-

trained large vision model such as VGG [35] and its percep-

tion or feature vectors from certain neural layers. The losses

reconstruct input images given features or details that each

layer keeps. In neural style transfer, there are two losses in

general [11, 10, 19]: content loss and style loss. The con-

tent loss is a generative loss to preserve content and the style

loss is a modified generative loss using Gram’s matrices that

attempts to reconstruct a certain style.

To seek generalizability in machine learning models,

foremost one needs diverse sources of data. Many works fo-

cused on segmentation tasks. In biological images, Cellpose

[37] is an instance segmentation model that transforms tar-

get masks based on diffusion process, and for training they

scraped nuclear and cellular images from multiple sources

including internet to make their models more generic. Nu-

cleAIzer [17] is another instance segmentation model that

defined a set of modalities and combined simulation and

neural style transfer (pix2pix [20]) to augment training data.

TissueNet [14] is a dataset that provides about 2.5M of an-

notations for tissue images across 9 organs and 6 different

modalities to support general-purpose tissue segmentation

models.

For machine learning applications beside segmentation

tasks, image restoration and denoising models turned out

to be practical and effective. CARE [40] is a super-

resolution model that learns how to restore poorly resolved

microscopy images from pairs of high and low quality im-

ages. Noise2Noise [27] demonstrated denoising MRI im-

ages as a supervised model. To avoid the necessity of hav-

ing paired labels, Noise2Void [25] proposed self-learning

model to denoise images. Self-learning approach made it

easy to apply Noise2Void model to any images since it does

not need paired images nor annotations.

As supervised learning approach remains difficult in bi-

ological images in practice, classical filters are still fre-

quently used as off-the-shelf methods in many biomedi-

cal image analysis pipelines. For contrast enhancement,

Gamma and logarithm adjustment methods are the simplest,

yet remain versatile and available in most software tools.

More elaborated approach is to remove background, that is

to identify foreground and background pixels, often with

morphological assumption. DoG (difference of Gaussians)

and LoG (Laplacian of Gaussian) are such filters that con-

sider blobs as objects of interest or foreground pixels given

univariate Gaussian kernels. These linear filters are not de-

pendent on data unlike machine learning approach and thus

universally applicable. However, they are rigidly bound by

their strong assumption and prone to visual artifacts and

errors. Despite being thoroughly characterized mathemat-

ically, their use is still very much empirical and problem
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specific. DoG and LoG are popular choices for object detec-

tion or segmentation task when it comes to bioimage anal-

ysis and widely adopted for their easy implementation to

many applications and software, as in Fiji [33], ilastik [5],

TrackMate [38], BigStitcher [18] and so on.

2. Method
We will describe losses, training scheme and architecture

of NU-Net, a self-supervised nuclear and cellular filter we

propose. In addition, we will introduce 25 datasets that we

used and the concept of meta-dataset with which we trained

NU-Net.

2.1. Losses

NU-Net uses perceptual losses and the work of Johnson

et al. [22] as a starting point. They used a pre-trained VGG

[35] for perception and demonstrated neural style transfer

and super-resolution applications. Neural style transfer ap-

plications usually have two losses: content loss and style

loss [11, 10, 19, 12, 4].

2.1.1 Content loss

The content loss is a generative loss that attempts to repro-

duce input data through a single latent feature vector from

a certain layer of pre-trained deep neural network. The def-

inition of content loss is shown as in equation 1. The con-

tent loss (Lc) optimizes ŷ to reproduce content c (which is

identical to x in our setting) based on features at layer F l

of a pre-trained deep neural network. The loss is defined in-

corporating the mini-batching technique where N denotes a

mini-batch size:

Lc(x, ŷ, l) =
1

N

N∑

n=1

∑

i,j

(F l
ij(x)− F l

l ij(ŷ))
2 (1)

The choice of layer l has great importance in particular

for content loss, because what is considered as content is

determined largely by convolutional layers and the size of

their receptive fields at layer l. In general, the concept of

content is recognized as a high-level feature, thus the re-

quired receptive field should not be too small or too large.

2.1.2 Morphological loss

The morphological loss we propose is an extension of the

style loss from [22]. The plain style loss from literatures

[11, 10, 22] uses Gram matrix to represent styles. Gram

matrix being Gl ∈ RNl×Nl , the vectorized feature map

Fl ∈ RNl×Ml has Nl number of filters and has the size

of Ml, where l indicates l-th block inside a CNN: Gl
ij =∑

k F
l
ikF

l
jk.

In the context of style transfer applications [11, 10, 22],

the morphological loss can be interpreted to generalize a

certain style, which has binary values with a set of targets

having a consistent morphology. In fact, there have been

few attempts to model or generalize one particular style

with multiple images, because supposedly a style usually

meant one from a single painting instead of a group of the

same style of paintings, possibly due to their high complex-

ity. Our idea started from an assumption that generalizing a

simple style from multiple images with the same style, as in

our case, should be easier. In principle, the morphological

loss could generalize any morphologies as long as the given

morphologies are consistent. We focused on round shapes

or blobs, which can represent nuclei or cells. We will call

this morphological prior “blob-mask style”.

Morphological loss is calculated in mini-batch fashion

same as for the content loss in equation 1. The idea is

similar to that of the memory bank [42], to sample mini-

batches from a bank that contains a fixed number of prede-

fined classes. Our bank represents only one style, to be spe-

cific blob-mask style. Morphological loss (Lm) is defined

as below with Ns referring to a mini-batch size of morpho-

logical targets s, ŷ to an image to be optimized, and sn to

n-th target within a mini-batch s:

Lm(s, ŷ) =
1

NsNl

Ns∑

n=1

∑

l

(Gl(sn)−Gl(ŷ))2 (2)

2.1.3 Total loss

Combining equation 1 and 2, total loss (Lt) is defined as

below, where we put linear weights on each loss with wc

and wm, respectively.

Lt = wcLc(x, ŷ, l) + wmLm(s, ŷ)

Lt ∝ Lc +
wm

wc
Lm = Lc + wLm where w =

wm

wc

(3)

The fraction (w) between two coefficients play an important

role to balance two losses and can bring in practical func-

tionality later in inference time as we will show in the result

section.

2.2. Training scheme

Overall training scheme is displayed in figure 2. There

are two separate groups of image sources. One is for the

content loss and the other is for the morphological loss. We

will call the former content images and the later style im-

ages for brevity. The content images are a set of raw images

whose contents need to be preserved. The style images are

also a set of binary images or mask labels that serves two

purposes. The primary purpose of the style images is to de-

fine “contents” to keep, against what its name suggests, or
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NU-N
Input
Image pretrained

VGG19

Content images

"Blob-mask style" images

Figure 2. Diagram describing training losses. Total loss consists of two losses: content loss and morphological loss. Both are perceptual

losses from a pre-trained large vision model, VGG19 [35] in this case. Note that the content images and the “blob-mask style” images

are not paired, neither are the two losses. x denotes input image, ŷ output image. yi
s is a sample target from a mini-batch used for

morphological loss. Find details in equation 1, 2 and 3. l ∈ {1, 2, 3, 4} indicates four feature block in VGG19, described in [22].

to apply “blob-mask style” to the content images in the per-

spective of neural style transfer. The secondary purpose is

to maximize contrast between foreground and background.

Note that the content images and the style images are en-

tirely separate and not paired unlike a typical supervised

learning scheme.

We chose a pre-trained VGG19 [35] as our perception

network and employed the same architecture from the work

of Johnson et al. [22]. The architecture of NU-Net makes

use of residual blocks [16] which are important for the pur-

pose because they are effective to preserve input data. We

followed the recipe from [22] to calculate perceptual losses.

The number of parameter is about 1.7M, which seems small

but capable enough to apply complex styles of paintings.

NU-Net is light and fast benefiting from small architecture.

2.3. Data

2.3.1 Meta dataset

We wanted to make NU-Net as generic and applicable to

many modalities of nuclear and cellular images as possible

and promote it as a superior alternative to classical linear

filters. Whether it is supervised learning or self-supervised

learning, it is imperative to use various sources of data in or-

der to make a generic machine learning model. Massive and

well curated datasets such as ImageNet [23] and MS-COCO

[29] are great examples that paved the road for computer

vision foundation models [6]. It was not until TissueNet

[14] that such large dataset appeared for nuclear or cellu-

lar images. TissueNet sourced images from 6 platforms and

9 organs, which were unprecedented diversity for a dataset

curated for machine learning. However, it cannot cover all

types of images due to highly diverse nature of biomedical

image modalities, such as our local images of mouse cere-

bral cortex acquired via THG (third-harmonic generation)

microscopy as TissueNet simply does not have the same

platform nor the same sample.

To address the issue of lacking diversity of data source

in nuclear and cellular datasets, we gathered 24 datasets

having nuclei, cells or both, plus one additional local THG

dataset. Thus, the total number of gathered datasets was 25

and the total number of images amounted to 12K. They are

listed in table 1. Not all of them provide annotation, nor

they provide the same types of annotation. However, they

are all useful for training NU-Net as long as they contain

nuclei or cells in images.

Dealing with the diversity of datasets, each with its for-

mat and preprocessing step, across many numerical exper-

iments is a non-trivial MLOps task. To handle it, we used

BioImageLoader [28].

2.3.2 Data pre-processing and augmentation

We carried out a set of data pre-processes to have consis-

tent inputs format across different datasets. Due to the na-

ture of microscopy and biological images, in particular of

staining techniques, most datasets offer a single channel

which tagged nuclei or cells. We selected those channels

if we could and converted multichannel images to gray-

scaled ones otherwise. Another process was to ensure con-

sistent contrast of foreground and background pixels across

datasets. While most datasets have object of interests in

higher pixel values than background pixels, a few datasets

have the opposite contrast. Therefore, we inverted contrast

of these few datasets to match the others. This process

turned out to be important since all the target images for

the morphological loss had the same contrast.

Balancing volumes of each dataset was an inevitable

step. Every dataset is different not only in the number of

images, but in resolution of images, size of objects and

density of objects. To account for all the datasets rather

equally, we designed data augmentation protocols, which

consist of random cropping, resizing and flipping for each

dataset with appropriate parameters. Then we sampled im-
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ID Acronym number Annotation Ref. ID Acronym number Annotation Ref.

1 TissueNet 6,990 © [14] 14 S-BSST265 79 © [24]

2 BBBC041 1,328 � (U) [30] 15 FRUNet 72 © [13]

3 BBBC026 864 X (B,C) [30] 16 BBBC016 72 X (B) [30]

4 BBBC006 768 © [30] 17 BBBC018 56 © [30]

5 DSB2018 735 © [1] 18 TNBC 50 © [31]

6 BBBC021 240 X (B) [30] 19 BBBC002 50 X (C) [30]

7 BBBC039 200 © [30] 20 ComPath 30 © [26]

8 BBBC015 144 X (B) [30] 21 UCSB 58 � [9]

9 DigitPath 141 � [21] 22 BBBC020 25 © [30]

10 MurphyLab 100 © [8] 23 BBBC007 16 © [30]

11 Cellpose 100 © [37] 24 BBBC008 12 © [30]

12 BBBC013 96 X (B) [30] 25 LOCAL-THG 14 © -

13 BBBC014 96 X (B) [30] - Total 12,336

Table 1. List of nuclear and cellular datasets used to train NU-Net.

Annotation availability and type are usually the most important

factors when it comes to selecting datasets for machine learning,

but not for NU-Net thanks to a self-supervised learning scheme.

In total, 25 datasets were used, including a local dataset (LOCAL-

THG), and the number of images amounted to 12,336. Symbols

for annotation (©: provide complete segmentation mask targets,

�: partially annotated masks, X: do not provide mask targets;

C: counts, B: biological labels, U: bounding boxes). Note that

BBBC021 originally has massive 132,000 images and only a por-

tion was used because data comes from the same platform and

would have led huge imbalance.

ages to roughly match the relative sizes of nuclei and cells

from one dataset to another. Last but not least, we chose the

minimum number of samples among 25 datasets after con-

sidering data augmentation, and simply set it as a constant

number of samples throughout all the datasets mainly to

avoid big bias towards those having larger number of sam-

ples. Our rationale was that we did not need huge amount

of one modality when our primary goal was to cover many

modalities and the architecture was rather small. In the end,

we randomly sampled 900 images as inputs for every epoch.

2.3.3 Blob-mask style images

As shown in figure 2, so-called blob-mask style images are

merely binary segmentation masks. Therefore, in a sense,

NU-Net is a neural style transfer network that mimics be-

havior of binary segmentation. We selected mask labels of

DSB2018 [1], BBBC039 and BBBC006 datasets [30] and

used them as targets for the morphological loss. DSB2018

dataset was introduced through a competition on online

platform Kaggle and has been used in many computer vi-

sion models for biological images [34, 17, 7]. We selected

DSB2018 because its wide inclusiveness of data sources.

BBBC039 is one of sources of DSB2018 and represents typ-

ical cellular microscopy images. We included BBBC006,

whose annotation was automated, to show that it is possible

to use automated labels to train NU-Net.

3. Numerical experiments
We think of NU-Net as filling a new niche in biological

image analysis and as such it does not belong to a clear ex-

isting class of deep learning models, like segmentation or

image restoration models. Thus, classical metrics and com-

parison are hard to apply. To evaluate it, we will 1) use

a simple contrast enhancement metric and compare with

classical filters, 2) use a realistic biological image analy-

sis quantitative workflow, to show how it can improve day-

to-day bioimage informatics work 3) apply it to a range of

openly available images, to qualitatively show its versatility.

Figure 3. Ideal training loss curves. Total loss is a weighed sum

of a content loss and a morphological loss. The desired trajec-

tory would be to have a constantly decreasing morphological loss

and a content loss to increase after a decent drop. Note that the

curves were from a real case but smoothed out using exponen-

tially weighted moving average (EWMA) to demonstrate the ideal

forms. Transparent lines indicate raw data.

3.1. Training losses

Two main losses, the content loss and the morphologi-

cal loss, are supposed to compete, because the content loss,

being a generative loss, hinders outputs to become blob-

mask style as per the morphological loss, and vice versa.

Thus, balancing two losses was crucial, meaning their mag-

nitudes should match one to the other. Hence, we imple-

mented a dry-run before an actual training, where NU-Net

goes through a few iterations of dry-run to estimate mag-

nitudes of the losses and match them. During the training,

a desired loss behavior is to have a constantly decreasing

morphological loss and a content loss increasing in the mid-

dle of training. The rationale is that, in the beginning, we

want NU-Net to learn images themselves through the con-

tent loss, and to learn how to enhance blobs according to

the morphological loss afterwards. As a result, the ideal

loss curves looks as in figure 3. In general, weight coeffi-

cient w (in equation 3) in range of 5 to 10 yielded good re-

sults. Training took about 1-2 hours on a workstation with

a computational GPU for 20 epochs with batch sizes being

16 and 128 for the content loss and the morphological loss,

respectively.

3.2. Comparison to classical filters

We compared results of NU-Net to existing filtering and

contrast enhancement algorithms in terms of a contrast gain.

Those were logarithmic lookup table (LUT) mapping, me-

dian filter (med), Gaussian filter (gaus), and difference of

Gaussians (DoG) filter. Logarithmic lookup table mapping
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LUT Gauss Med DoG NU-Net

contrast gain avg. 12.9±24.3 4.9±6.7 8±8 90.6±100.4 99.5±121.5

change avg. (times) x2.7±2.2 x2±1.1 x2.4±1.4 x14.6±11.7 x16±16.7

Table 2. Improvement of contrast ratio (CR) over raw images from

several classical algorithms and NU-Net, as the before/after dif-

ference and the fold increase. Average over datasets of average

over test images from each dataset. NU-Net shows slightly better

contrast gains compared with DoG filter across the datasets. See

Fig. 1 and 4 for the much more significant but harder to assess

difference in image quality.

(LUT) is the simplest method among them, which makes

use of logarithm to remap pixel values and to stretch value

intervals. Median and Gaussian filters are both denoising

filters using parameterized kernels. While denoising does

not have a direct impact on contrast, it could enhance con-

trast by smoothing out noisy background signals, combined

with value range stretching strategy based on percentile val-

ues (upper bound to 99.8% and lower bound to 2%).

We defined contrast ratio (CR =
μfg

μbg
) to quantify con-

trast change and to compare NU-Net to other filters, quanti-

tatively. CR is a fraction of a mean value of foreground pix-

els over that of background pixels. Note that contrast gain

depends a lot on the initial contrast of a given image. Note

as well that this metric is blind to resulting image quality.

The result of contrast change can be found in table 2.

In addition, a qualitative result on a sample from LOCAL-

THG dataset can be found in figure 4. Contrast gain was

significant once the algorithm had a notion of foreground

and background. For examples, LUT mapping is a merely

pixel-wise method, and kernel-based filtering methods like

median filter (med) and Gaussian filter (gaus) made the dis-

tinction by blurring off the noise and the background as well

as the foreground. They accentuated cells, but the contrast

was barely improved because they did not make clear dis-

tinction between foreground pixels and background pixels.

Among the tested filters, the DoG filter showed the most

comparable results to NU-Net. The DoG filter is a band

pass filter, and assumes that the objects of interest have a

consistent size. It enhances visibility of objects by subtract-

ing two Gaussian filters with different kernel sizes. DoG

is, in a way, aware of contents and could detect foreground

from background.

Figure 1 compares details of NU-Net to those to DoG

filter. While both DoG filter and NU-Net picked up objects,

DoG suffered from blurring artifacts from its algorithmic

nature, just as other rule-based algorithms suffer from their

own pitfalls. Blurring merged objects together making it

hard to recognize individual objects. Moreover, DoG ac-

centuated other structures too in presence of noise. NU-Net,

however, did not suffer from blurring and was more robust

to noise. Additionally, NU-Net not just detected contents

but also actively enhances contrast by pushing foreground

pixels up towards 255 (maximum value in unsigned integer
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Figure 4. Comparing NU-Net to various filters. They were loga-

rithmic lookup table (LUT) mapping, Gaussian filter (gaus), me-

dian filter (med) and difference of Gaussians (DoG) filter. (a) It

shows the input image and the filtered images as well as their his-

tograms. The red line shows the cumulative distribution of pixel

values and gives a rough idea of image contrast. (b) It shows the

ground truth (GT) mask and NU-Net’s result. Though, its cumula-

tive distribution looks similar to that of DoG, the qualitative result

is much cleaner than DoG. (c) Quantified contrast ratio (CR) of

foreground pixels over background pixels.

8-bit) and background pixels down towards 0 though the

morphological loss. As shown in the histogram in figure 4,

histogram of image after NU-Net had all over lower back-

ground pixel values than that after DoG or than those after

any filters presented.

3.3. Evaluation on realistic workflows

Given the clear aim of having an impact on actual, daily

use of image analysis across labs and facility, the clearest

path to evaluate NU-Net is through studying its use within

a classical, end-to-end workflow.

3.3.1 Evaluation on a training set dataset

Figure 5. Use of NU-Net to improve a cell detection workflow of

neuron in inverted contrast in a THG dataset. Left image: original

image with detections from scikit-image blob-lob in red, right im-

age: same with NU-Net filtered image. Right: distribution of F1

score across the dataset

First we study the effect of NU-Net in an object detection

workflow on the LOCAL-THG dataset. To voluntarily use
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a simple and straightforward workflow, similar to one that

would be tried first in practice, we use the scikit-image[39]

function blob_log as a point detection algorithm. It is

actually not so simple as it scan through the Gaussian scale

space of a Laplacian of Gaussian filter for stable detection,

using a set threshold. The dataset comprises 14 2D images

taken from a 3D Third Harmonic Generation (THG) mi-

croscopy volume of a slice of mouse brain. Due to the fact

that THG signal is mainly from myelinated axons and not

from cell bodies, the neuron are seen as noisy black spots

in inverted contrast. A manual annotation of the positions

of the cells was done, and the blob_log function was ap-

plied, with and without NU-Net. The results can be seen

Fig. 5 and show a clear improvement of the detection, with

the average F1 score across the dataset going from 0.54 to

0.72.

3.3.2 Evaluation on an unseen dataset

Obviously this assessment is biased since the LOCAL-THG

dataset is part of the training set. As an unbiased assess-

ment, we performed a similar numerical experiment on an-

other dataset, unseen by the algorithm. We used a published

dataset from [2], available on the Image Data Resource[41]

https://idr.openmicroscopy.org under the accession idr0048,

image ID 9846151, accessed through an OME-zarr end-

point (see code in section 5). It shows a section of a mouse

cortex where the astrocytes are labeled with brainbow, and

thus where the neuron are not labeled and again seen in in-

verted contrast. This problem is more challenging though

since the background, consisting of astrocytes of various

colors and intensities, is quite diverse. We randomly se-

lected 15 crops out of the large volume and manually anno-

tated them. This time, since the problem is more challeng-

ing and to be fair, the detection threshold was optimized in-

dependently for both conditions. The results are shown Fig.

6, with the mean F1 score rising from 0.49 to 0.61 from the

use of NU-Net.

3.4. Controlling filtering magnitude

One big advantage of NU-Net as a filter is an ability to

control the filtering magnitude. It can be achieved by adjust-

ing the ratio between the morphological loss and the content

loss. In practice, it is as simple as to manipulate the frac-

tion of loss weights, that is w in equation 3, during training.

Essentially, the larger the ratio w is, the more binarized the

outputs become. An example of varying w is shown in fig-

ure 7.

We noticed that as w decreases, the content loss curves

do not follow ideal curves anymore, which means that the

resulted model would become closer to an antoencoder. Yet,

due to presence of the morphological loss, resulted NU-

Nets could still filter blobs. In the perspective of histogram

of images, it also means that filtered output roughly keeps

the original distribution as close as possible. In compari-

son, when w increases, outputs becomes more like those of

binary segmentation.

3.5. Inference time and resources

NU-Net is light and fast. The size of a model is about as

small as 6.5 MB. To run inference over a volume whose

size is 130 x 400 x 400 pixels (depth, height, width), it

consumed 1.3 GB of GPU memory, which can fit in lap-

top hardware. On a workstation, it took only 3 second ( 23

ms/plane), while it took around 20 seconds on CPU ( 150

ms/plane).

3.6. Assessing versatility on open images

To test pre-trained NU-Net and to assess its versatil-

ity, we explored IDR (Image Data Resource) [41], an on-

line database where researchers share their biological image

data, and selected a handful of image crops that contained

nuclei or cells; they include various modality in various

sample and conditions. A pre-trained NU-Net with w = 8.0
was applied, and the results are shown in figure 8. Overall,

NU-Net could spot and enhance blobs, acting as denoising,

textured or inhomogeneous background subtraction and se-

lective object enhancement, depending on the image.

3.6.1 Graphical user interfaces

NU-Net is easily accessible and available via Napari viewer

[36], a multidimensional image viewer. We made NU-Net

available as a plugin of Napari. The plugin comes with

simple graphical user interfaces (GUIs) and 5 pre-trained

NU-Net with varying w value from 5.0 to 10.0. Users may

adjust filtering magnitude via w value and run the process

either on CPU or GPU.

4. Conclusion

We propose a nuclear and cellular filter, NU-Net, built on

perceptual losses as a drop-in alternative to classical filters.

Those are very useful in biological image analysis pipelines

but limited by their simplicity and strong assumptions. We

introduced a novel loss based on perceptual losses, which

attempts to generalize a single style given multiple images.

Training is self-supervised as it does not require paired la-

bels contrary to supervised learning. Our model result in

appreciable contrast gain against even complex and textured

background while keeping details, proved useful in prac-

tical use cases and is versatile, giving good results across

the diversity of biological images. By adjusting loss coeffi-

cients during training, NU-Net can exert different degrees of

filtering power. We made NU-Net easy to use via a Napari

plugin with GUIs, including 5 pre-trained models. Overall,
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Figure 6. Use of NU-Net to improve a cell detection workflow of neuron in inverted contrast in a public brainbow astrocytes dataset. Left

image: original image with annotation in blue, middle image: grayscale projection with detections from scikit-image blob-lob in red, right

image: same with NU-Net filtered image. Right: distribution of F1 score across the dataset
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Figure 7. Controlling filtering magnitude by manipulating the loss

coefficient w. (a) Loss curves with varying w values. Each mor-

phological loss looks barely changing, but that is because w value

is a multiplier of the morphological loss. (b) An example of ap-

plying NU-Nets trained with different magnitudes of weight (w).

Note that w is a ratio of the morphological weight to the content

weight in equation 3. Image source: DSB2018 dataset [1].
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Figure 8. Application of a pre-trained NU-Net (w = 8.0) to nu-

clear and cellular images hosted on IDR (Image Data Resource)

[41].

our aim is for NU-Net to be included into existing biolog-

ical analysis workflow and allow for improved analysis of

biological images across the board, to enable biological un-

derstanding.

5. Code and data availability
The source code of NU-Net resides at https://

github.com/LaboratoryOpticsBiosciences/
nunet and comes with codes to reproduce a large

part of the figure of the paper. Additionally, the

module is packaged and available through Python

Package Index (PyPI) for easy installation and us-

age. A Napari plug-in is available at https:
//github.com/sbinnee/napari-nunet. Fi-

nally, the data used for training is used through https://
github.com/LaboratoryOpticsBiosciences/
bioimageloader, where information on how to obtain

the various datasets is available.
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