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Figure 1. Dataset teaser. Samples of our trapped yeast cell dataset of high-resolution (≥ 2048 × 2048) brightfield images overlaid

with multi-class instance segmentation labels; shades of (dark) grey (������) indicate microstructures (traps) and shades of pink (������)

indicate individual cell instances. Image brightness adjusted for better visualization. Best viewed in color; zoom in for details.

Abstract

Segmenting cells and tracking their motion over time is a

common task in biomedical applications. However, predict-

ing accurate instance-wise segmentation and cell motions

from microscopy imagery remains a challenging task. Us-

ing microstructured environments for analyzing single cells

in a constant flow of media adds additional complexity.

While large-scale labeled microscopy datasets are avail-

able, we are not aware of any large-scale dataset, including

both cells and microstructures. In this paper, we introduce

the trapped yeast cell (TYC) dataset, a novel dataset for un-

derstanding instance-level semantics and motions of cells

in microstructures. We release 105 dense annotated high-

resolution brightfield microscopy images, including about

19k instance masks. We also release 261 curated video

clips composed of 1293 high-resolution microscopy images

to facilitate unsupervised understanding of cell motions and

morphology. TYC offers ten times more instance annota-

tions than the previously largest dataset, including cells and

microstructures. Our effort also exceeds previous attempts

in terms of microstructure variability, resolution, complex-

ity, and capturing device (microscopy) variability. We facil-

itate a unified comparison on our novel dataset by introduc-

ing a standardized evaluation strategy. TYC and evaluation

code are publicly available under CC BY 4.0 license.

1. Introduction

Detecting, segmenting, and tracking individual cells in

microscopy images is fundamental for many biomedical ap-

plications [21, 51, 53, 80]. For example, accurate segmen-

tation and tracking of individual cells are essential for an-

alyzing the cellular processes of living cells in time-lapse

fluorescence microscopy (TLFM) experiments [3, 66]. In

general, computer vision-based single-cell analysis can aid

the development of personalized medicine, early tumor de-

tection, and the analysis of biological signal transduction,

amongst others [32, 39, 65, 66, 79].

Deep neural networks have become the predominant

workhorse of current state-of-the-art algorithms in the do-

main of computer vision [13, 38, 70, 81]. However, un-

leashing the full potential of deep neural networks re-

quires vast amounts of data [7, 36, 87]. Subsequently,

the widespread availability of large-scale public datasets,

such as ImageNet [70], KITTI [25], Cityscapes [13],

Ego4D [26], SA-1B [36], and LAION-5B [74], has been

a major contributor to the recent success of deep neural net-

work approaches. While large-scale (labeled) datasets in the

domain of single-cell analysis are available, these datasets

do not consider microstructured environments [8, 20, 62].

Significantly limiting the applicability of models trained

without microstructures to analyze cells in microstructures

due to the significant domain gap.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Dataset # annotated pixels [107] # cells # traps Resolution Annotation type # trap types

Bakker et al. [3] – 1000 0 512×512 Cell outline 1

Reich et al. [67] 0.81 914 971 128×128 Instance segmentation 2

TYC dataset (ours) 46.39 14541 4405 ≥2048×2048 Instance segmentation 6

Table 1. Dataset comparison. High-level statistics of our TYC dataset (labeled set) and other segmentation dataset including cells and

microstructures. Our TYC datasets exceeds existing efforts in all high-level statistics.

Microstructured environments are commonly employed

to analyze populations of hundreds or thousands of cells in-

dividually [3, 14, 27, 33, 47, 58, 61, 64, 66, 76]. A con-

stant flow of growth media hydrodynamically traps cells

within the microstructures, enabling their analysis over

time [3, 66]. Understanding the instance-level semantics

and motions of cells in microstructured environments is par-

ticularly challenging due to the perceptual similarity of mi-

crostructures and cells (cf . Fig. 1). In this paper, we propose

the trapped yeast cell dataset for understanding instance-

level semantics and motions of trapped yeast cells. Our

TYC dataset of high-resolution (≥ 2048 × 2048) bright-

field microscopy images includes both a labeled instance

segmentation set and an unlabeled set of video clips. In

total, we release 18946 instance masks, of cells and mi-

crostructures (cf . Fig. 1). Our labeled dataset exceeds all

existing cells in microstructures datasets in terms of anno-

tated pixels, number of instances (cells & traps), resolution,

and microstructure variability (cf . Tab. 1). Our unlabeled

set contains 261 curated high-resolution microscopy video

clips for unsupervised understanding cell motions facilitat-

ing cell tracking.

In addition to the proposed dataset, we also present a

standardized evaluation strategy to facilitate fair compari-

son of future work with our dataset. This may also serve

to standardize the results of biological investigation, mak-

ing them comparable between laboratories. In particular,

we present an instance-level and semantic-level evaluation

strategy for our labeled set. Our evaluation strategy consid-

ers both the downstream biological application and the raw

segmentation performance for benchmarking.

To showcase the complexity of our TYC dataset, we re-

port qualitative segmentation results of the Segment Any-

thing Model (SAM), a recent foundation model for segmen-

tation [36]. While SAM is able to provide fairly accurate

instance masks for very simple cell and microstructure con-

figurations, SAM fails to provide useful masks as scenes get

more complex (e.g., touching cells). This demonstrates the

complexity of segmenting cells in microstructures.

2. Related Work

Many biological applications rely on microscopy image

data for single-cell analysis [56]. Most applications require

instance segmentation of cells [53, 54, 56]. Object tracking

is required to analyze cells through time [51]. The vast ma-

jority of state-of-the-art cell segmentation approaches rely

on deep neural networks [57, 22]; prominent examples in-

clude, U-Net [69] StarDist [73], and Cellpose [60, 78]. Sim-

ilarly, current cell tracking approaches also predominately

rely on deep neural networks [4, 10, 31, 44, 46, 51, 80, 72].

The widespread use of deep learning in cell analytics

tasks has motivated the construction of large and general

datasets [57, 20]. Caicedo et al. [8] proposed the 2018 Data

Science Bowl dataset for single-cell segmentation in fluo-

rescence imagery, composed of 670 images with instance-

wise annotations. Recently, Edlund et al. [20] released the

large-scale microscopy image dataset LIVECell, for single-

cell (instance) segmentation, with 5239 densely annotated

phase-contrast images and eight cell types. The ISBI Cell

Tracking Challenge [51, 80] offers multiple datasets for

both cell segmentation and tracking. Anjum et al. [1] pro-

posed CTMC with 86 annotated videos.

While significant efforts have been devoted to the devel-

opment of cell analytics datasets, only very limited (anno-

tated) data of cells in microstructures is available. Bakker et

al. [3] released about 1000 cell outline annotations of yeast

cells in microstructures. Recently, Reich et al. [67] pro-

posed the first instance segmentation dataset of yeast cells

in microstructured environments. These datasets, however,

entail major limitations (cf . Tab. 1). Both datasets include

only a limited number of annotated objects (cells and traps)

and capture only a small number of different trap types. Ad-

ditionally, the dataset by Reich et al. [67] only includes low-

resolution crops of high-resolution brightfield microscopy

images. The annotated set of our TYC dataset exceeds all

previous datasets of cells in microstructures in terms of all

high-level dataset statistics. Tab. 1 provides a comprehen-

sive overview between existing datasets including cells and

microstructures and our TYC dataset (labeled set).

To overcome the limited availability of annotated mi-

croscopy data, some approaches aim to synthesize mi-

croscopy images and annotations [37, 71]. While synthe-

sized data can be effective for simple cell analytic tasks,

these approaches are not able to synthesize complicated cell

and microstructure scenes as well as vast and complex cell

motions. Additionally, synthetic images commonly suffer

from a domain gap w.r.t. real images, requiring approaches

to address this domain gap when deep neural networks are

pre-trained on synthetic data [23, 59, 82].
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Figure 2. Overview data acquisition process. General TLFM experiment setup for single-cell fluorescence measurement. Microscope

(from left to right), microfluidic chip (cell chamber within the purple dot), trap chamber (pink rectangle), trap microstructure design, traps

with cells (cells in green, fluorescent overlay, right); black scale bar 1 mm white scale bar 10 μm.

3. Dataset

We made numerous design choices during data collec-

tion, curation, and annotation of our TYC dataset. This

section reports these design decisions and provides dataset

statistics. We selected 105 high-resolution (≥ 2048×2048)

brightfield images for our labeled set, from over a dozen

TLFM experiments. The unlabelled video set contains 261
manually-selected video clips. The selection encompasses

the entirety of the data distribution: it includes edge cases,

various magnifications, and diverse focal positions. The key

objects in the imagery are yeast cells (various strains) and

trap microstructures. Six widespread trap geometries are

included in the dataset (cf . Fig. 3), in order to ensure that

models trained on our TYC dataset can generalize over a

wide variety of microstructure geometries.

3.1. Data acquisition

We recorded the dataset with a computer-controlled mi-

croscope (Nikon Eclipse Ti, Fig. 2a). The yeast cells were

cultured in a tightly controlled environment within a mi-

crofluidic chip (Fig. 2b) comprised of a microscopy cover

slip and transparent Polydimethylsiloxane (PDMS). The

trap chamber contains approximately 1000 trap microstruc-

tures (cf . Fig. 2c). Various trap geometries are available

(cf . Fig. 3). The microstructures and a constant flow of

yeast growth media hydrodynamically trap the cells, con-

straining them laterally in XY (cf . Fig. 2d & 2e). The axial

constraint is provided by the coverslip and PDMS ceiling,

the space between which is on the order of a cell diameter.

This facilitates a continuously uniform focus of the cells.

The entire chip is maintained at a temperature of 30 °C and

together with the flow of yeast growth media this enables

yeast to grow for prolonged periods and over multiple cell

cycles. The cells bud daughter cells multiple times within

the course of a typical experiment (budding approximately

every 90min, experiments typically run for 15h), and these

are flushed out by the continuous flow to avoid clogging of

the chip.

We recorded time-lapse brightfield (transmitted light)

and fluorescent channel imagery of the budding yeast cells

every 10min. We used either NIS-Elements or μManager

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

Figure 3. Trap types. Overview of trap microstructure geome-

tries included in our TYC dataset, cropped from high-resolution

microscopy images (cf . Fig. 1).

to control the microscope in different experiments [19].

Imagery from both 100× and 60× objectives, which are

widespread in order to resolve the cells, are included. A

CoolLED pE-100 and a Lumencor SpectraX light engine

illuminated the respective channels and lighting conditions

are varied throughout the dataset. Resolutions are 2048 ×
2048 and 2304 × 2304 recorded with Hamamatsu cameras

ORCA-Flash4.0 V2, V3, and with an ORCA-Fusion. Mul-

tiple lateral and axial positions were recorded sequentially

at each timestep (Fig. 2). In addition to our own data, se-

lected imagery from the dataset by Bakker et al. [3] are in-

cluded in our TYC dataset (upscaled from 512 × 512 to

2048× 2048 to match our data).

3.2. Biological application

Creating novel functionality from standardized parts is

central to synthetic biology. Ideally, synthetic biological

circuitry is rationally designed in silico to predetermined

design specifications [5, 64], e.g., to detect and kill cancer

[75, 85], but also for a plethora of other applications and

real-world problems. Saccharomyces cerevisiae (yeast) and

E. coli are the model organisms of choice in synthetic biol-

ogy [64], both in terms of development and characterization

of novel biological circuitry. With TYC we focus on yeast.

TLFM plays a central role in the thorough characteri-

zation and standardization of biological investigation, as it

is the only technique available to capture both the popula-

tion heterogeneity and dynamics of synthetic circuitry on

the single-cell level [39, 43, 45]. However, extracting the

relevant information from within the imagery, i.e. measur-
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ing fluorescence via cell segmentation, is currently a limit-

ing factor and there is no standard for it or calibration set

to compare vision model-based measurements upon. The

TYC dataset will not only facilitate the development of new

vision models that resolve the current bottleneck in extract-

ing the measurement data reliably but also provide a bench-

mark for all of the future models to be calibrated against and

contribute to the reproducibility of TLFM-based biological

investigation and development.

3.3. Annotations and classes

We present a labeled set composed of 105 high-

resolution brightfield microscopy images with instance-

level annotations for cells and microstructures. An example

of our annotated microscopy images is presented in Fig. 4.

Our dense annotations consist of non-overlapping pixel-

wise instance maps with semantic class annotation. We an-

notated all images in-house to ensure consistent and high-

quality annotations. Annotation time per image differs be-

tween about 30min for microscopy images with only a few

cells (< 20 cell instance) and up to 2h for images with more

than 300 cell instances (cf . Fig. 1 and 4).

We assume no overlap between instances since the em-

ployed microfluidic chips ensure a monolayer of cells. For

ambiguous configurations (e.g., touching and slightly over-

lapping cells), we label ambiguous regions to belong to the

upper cell instance. Note due to accurate microfluidic chip

production, ambiguous cases are a rarity.

Following prior work, our instance segmentation anno-

tations include two semantic classes, cell and (microstruc-

ture) trap [67]. While instance segmentations of merely the

cells suffice for most applications, we also include instance-

level annotations of microstructures [56]. We motivate this

design choice twofold. First, learning to distinguish be-

tween perceptually similar cell and trap instances might be

enforced by explicitly learning to segment both cells and

traps. Second, understanding the location of both cell and

trap instance enables us to determine cells that are hydrody-

namically trapped and those that are not trapped, which are

likely washed out of the image and the whole chip [64, 67].

All pixels not labeled as a trap or cell instance are as-

sumed to belong to the background. Since we only assume

a single background class, our annotations can also be seen

as panoptic segmentation labels [35]. In particular, panoptic

segmentation distinguishes between things - countable ob-

jects like cells or traps and stuff - amorphous regions such

as the background. We later use this property during evalu-

ation and assume that cell and trap instances belong to the

things category and the background to the stuff category.

During annotation, distinguishing between cell instances

is well-defined by the cell membrane. Budding yeast cells,

in which a daughter cell buds off the mother cell, represent a

non-trivial edge case [18]. We label daughter cells as sepa-

(a) Brightfield microscopy image (b) Instance segmentation label

Figure 4. Instance annotations. Brightfield microscopy images

including cells & microstructures on the left (a) and the corre-

sponding instance segmentation labels on the right (b). Shades of

grey (������) indicate microstructures (traps) and shades of pink

(������) indicate individual cell. For visualization purposes, we

adjusted the brightness of the microscopy image and show a crop

of the full image. Best viewed in color; zoom in for details.

rate cell instances as soon as the connecting region between

the mother and daughter becomes convex or thinner than the

daughter cell’s diameter. The process of budding is shown

in Fig. 16; additionally, Fig. 5 provides annotated examples

of budding cells.

Fabrication errors can lead to damaged or fully broken

microstructures. While we generally label a pair of traps

as a single microstructure instance (cf . Fig. 4), broken traps

lead to ambiguities. If a trap is damaged, but the general

structure still follows the structure of an intact trap, we an-

notate the full trap pair (cf . Fig. 6 right example). In case the

structure of a broken trap is vastly different from an intact

trap, we refrain from labeling the broken trap (cf . Fig. 6 left

example). In case a trap is broken and overlapped by a cell

instance, we also refrain from labeling the broken trap (cf .

Fig. 6 second left example). Note both previous cases lead

to microstructure instances, including only a single trap, not

a trap pair (standard case).

Figure 5. Examples of budding yeast cells. A daughter cells

(small cells) bud from a trapped mother cells. The bottom row

shows the raw image and the top row an overlay between the label

and the raw image. Crops from full images are shown.
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Figure 6. Trap fabrication errors. Examples of damaged and

broken traps. The top row shows the instance segmentation label,

the bottom row shows the brightfield image, and the middle row

shows an overlay of both. Crops from full images are shown.

3.4. Statistical analysis

This subsection provides a statistical analysis of our la-

beled TYC dataset. We also compare our dataset to the

dataset proposed by Reich et al. [67]. Note that a high-level

comparison against related datasets is provided in Tab. 1.

Fig. 7 compares the distribution of semantic annotations.

6% of all annotated pixels belong to the cell class. Simi-

larly, also 6% of all annotated pixels are labeled as traps.

The dataset by Reich et al. [67] includes a higher pixel-

wise density of cells (8%) and traps (16%). Notably, our

dataset provides a more balanced semantic distribution than

the dataset by Reich et al. [67].

Cell Trap
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P
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p
o
rt
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Our dataset

Cell Trap

Reich et al . [67]

Figure 7. Semantic distribution. Portion of labeled pixels (y-

axis) per semantic class (x-axis) for our TYC dataset and [67].

Note pixels not labeled as cell or trap belong to the background.

Our labeled dataset of brightfield microscopy images in-

cludes vastly different numbers of object instances. On av-

erage, a microscopy image of our labeled set includes 138
cells and 42 trap pairs. In the extreme, the maximum num-

ber of cells in an image is 469, and the maximum number of

traps is 67. The minimum number of cells in a microscopy

image is 6, and the minimum number of trap pair instances

is 12. Fig. 8 showcases a histogram of object instances per

image for both the cell and trap class. It can be observed

that the range of cell instance counts is significantly larger

than the range of the number of trap instances.

Fig. 9 showcases the histogram of object sizes in our la-

beled set and the dataset by Reich et al. [67]. We observe

# instances
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g
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Trap

Figure 8. Number of instance in images. Histogram visualizing

the frequency of number of object instances (cells & trap) in our

labeled dataset. The left plot shows the cell class object counts

(pink ��) and the right plot the trap class object counts (grey ��).

that while our labeled dataset includes more objects, our

dataset also entails a broader distribution of cell and trap

sizes. In particular, our labeled dataset includes more small

cell instances than the dataset of Reich et al. [67]. While

the dataset by Reich et al. [67] includes primary trap in-

stances of the same shape, our dataset offers a wider range

of different trap sizes.
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Figure 9. Object size histogram. Histogram showing the fre-

quency of different object instance sizes (cells & trap) in our

labeled dataset. The left plot shows the cell class object sizes

(pink ��) and the right plot the trap class object sizes (grey ��).

Our TYC dataset includes six different microstructure

trap geometries (Fig. 3). The frequency of these different

trap types is presented in Fig. 10. Type 2 is routinely em-

ployed in our wet lab and is the most frequent in the dataset.

Other traps serve more specialized roles.

1 2 3 4 5 6
0
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45

Trap type

#
im

a
g
e
s

Figure 10. Frequency of trap types. Frequency of different trap

types in our TYC dataset (labeled set).
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(a) Our labeled dataset

L

H

(b) Reich et al. [67]

Figure 11. Cell density map. Cell location density map of (a) our

dataset and (b) [67]. Areas in pink (��) indicate a high cell density

(H). Regions in white indicate a low cell density (L).

The spatial distribution of cells in our labeled set is visu-

alized in Fig. 11. We observe that our labeled set does not

have a positional bias. In contrast, the dataset by Reich et

al. [67] entails a strong positional bias, with cells primarily

located in the center of the image. This bias is caused by

the fact that the dataset by Reich et al. [67] utilizes crops of

the full microscopy image, including only a single trap pair.

Similar to the cell positioning, the spatial distribution

of traps also shows no predominant positional bias (cf .

Fig. 12). While there is no general positional bias to-

wards specific image regions, the regular grid-based posi-

tioning of the microstructured traps can be observed. Thus,

understanding the general grid-based positioning of traps

might enable accurate detection and segmentation of trap

instances. In contrast to our dataset, the dataset by Reich et

al. [67] entails a strong positional bias of trap positions.

This is due to the fact that Reich et al. [67] utilizes trap-

centered crops of the full microscopy images.

We include some challenging edge cases in our labeled

dataset, in order to facilitate robust segmentation models.

Examples of scenarios where additional objects are in the

imagery include debris or contamination on the chip (cf .

Fig. 13). In some TLFM experiments, microchips can get

contaminated by debris. In total, our labeled set includes 11
microscopy images with such challenging edge cases. De-

bris adds additional complexity to the microscopy images

since debris around cells perceptually affects the appear-

ance of the cell borders.

(a) Our labeled dataset

L

H

(b) Reich et al. [67]

Figure 12. Trap density map. Trap location density map of (a)

our dataset and (b) the dataset by Reich et al. [67]. Black (��)

indicate regions where many traps are located (H). White areas

showcase regions where only a few or no traps are located (L).

(a) Brightfield microscopy image (b) Instance segmentation label

Figure 13. Strong debris example. Example of strong debris in

the microfluidic chip. For visualization purpose we adjusted the

brightness of the microscopy image and show a crop of the full

image. Best viewed in color; zoom in for details.

3.5. Dataset split

We split our densely instance-wise annotated set into

separate sets for training, validation, and testing. For test-

ing, we provide two separate sets. The standard test set

partly contains data from experiments that also contributed

to the training and validation set. Note while data can be

from the same experiment, we do not use the same specific

position (cf . Fig. 2) for the separate sets. Additionally, we

also provide an out-of-distribution (OOD) test set, which

only includes images from separate experiments not present

in the training, validation, and standard test set. A distri-

bution shift occurs between experiments, due to variations,

such as in microchip fabrication or lighting.

Our dataset split is described in Tab. 2. While we initially

use a random split for the training, validation, and test set,

we later curated all three sets to include a representative

number of trap types, debris, and focal positions. For the

OOD test set, we hand-pick specific samples.

Split # images # ann. pixels [107] # cells # traps

Training 81 35.53 12296 3448

Validation 8 3.69 950 310

Test 8 3.59 753 346

OOD Test 8 3.58 542 301

Table 2. Dataset split. Training, validation, test, and OOD test

split of our labeled dataset.

3.6. Unlabeled video data

In addition to the labeled dataset, TYC also includes a

large unlabeled dataset, including high-resolution TLFM

clips. Motivated by the recent advances in unsupervised op-

tical flow estimation [34, 50, 55, 68, 77, 83] and the use of

optical flow for tracking [15, 17, 28, 41, 48, 84, 88], we aim

to facilitate the unsupervised understanding of cell motions

with our unlabeled dataset. Our unlabeled dataset might

also facilitate general unsupervised representation learn-

ing [2, 9, 11, 24, 29]. In total, we provide 261 curated video

clips, including 1293 high-resolution frames.

The clip length ranges from 3 frames to up to 11 frames

with a Δt of 10min. Fig. 14 shows a histogram of the dif-
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Figure 14. Clip lengths histogram. Frequency of clip lengths.

ferent clip lengths. While longer sequences are available,

the majority of our clips are composed of three frames.

We curate our unlabeled dataset; in particular, we en-

sure no drift of the microfluidic chip. This is to ensure

limited global motions, facilitating the learning of fine cell

motions. Additionally, we only include clips where no sig-

nificant amount of cells are washed in or out. While we

have no significant amount of washed-out cells, our dataset

still includes complex cases of vast cell motions and occa-

sional washed-out cells. Examples of vast cell motions and

washed-out cells are shown in Fig. 15.

t0 t1 t2 t3 t4

Figure 15. Washed out cells. Example of cells hydrodynamically

washed out of a trap pair. In the upper clip, three cells are washed

out. In the lower clip, only a single cell is washed away. Frames

cropped from the full microscopy clip. Δt is 10min.

Similarly to the labeled dataset, our large unlabeled

dataset also includes budding yeast cells. We provide a vi-

sualization of the temporal appearance of the budding pro-

cess in Fig. 16. The process of budding is, in particular,

challenging since small daughter cells appear out of the void

due to the large Δt of 10min between frames.

t0 t1 t2 t3 t4

Figure 16. Budding yeast cell over time. Temporal sequence of

our unlabeled set showcasing budding. A cell grows to the top of

the trap. Frames cropped from the full video clip. Δt is 10min.

4. Evaluation

We propose a standardized evaluation approach for mea-

suring the segmentation performance on our TYC dataset

(labeled set). While our dataset offers instance-wise anno-

tations and most biological applications require single-cell

information, some biological applications might only rely

on semantic-level information (e.g., the fluorescence of all

cells). To this end, we offer both semantic and instance-

level evaluation approaches. Note our evaluation strategy is

strongly inspired by the recent work from Reich et al. [67].

4.1. Semantic-level evaluation

For evaluating the semantic-level performance of seg-

mentation approaches we utilize the cell class intersection-

over-union (IoU). The cell class IoU is computed by:

IoU (pc, gc) =
|pc ∩ gc|

|pc ∪ gc|
, (1)

where gc is the ground truth set of pixels for the cell class

and pc denotes the predicted set of cell class pixels. The

motivation for utilizing the cell class IoU is twofold. First,

the cell class IoU is, in particular, significant for biomed-

ical applications only requiring semantic predictions, e.g.,

measuring the fluorescence of all cells. Second, as previous

work (e.g., [3] & [65]) reports this metric when evaluating

on the dataset by Reich et al. [67] using the cell class IoU
provides a point of comparison to existing work.

4.2. Instance-level evaluation

We propose to utilize the panoptic quality (PQ) for mea-

suring the instance-level performance on our TYC dataset.

In particular, we make use of the property that our instance

segmentation labels can also be interpreted as panoptic an-

notations since we only have one background class and as-

sume no instance overlap (cf . Sec. 3.3).

For calculating the PQ, we first match all predicted ob-

ject masks of a semantic class with the ground truth masks.

From this matching, three categories (per semantic class)

emerge: True Positive (TP), False Positive (FP), and False

Negative (FN) matches. We refer the reader to the work of

Kirillov et al. [35] for details on the matching approach. Af-

ter matching, the PQ is calculated per semantic class (cell,

trap, & background) by:

PQ =

∑
(p,g)∈TP IoU(p, g)

|TP|
︸ ︷︷ ︸

Segmentation quality SQ

|TP|

|TP|+ 1
2
|FP|+ 1

2
|FN|

︸ ︷︷ ︸
Recognition quality (RQ)

, (2)

where 1
|TP|

∑
(p,g)∈TP IoU(p, g) calculates the mean

intersection-over-union of the matched mask predictions p

and the label g. After computing the PQ for each semantic

class, the full PQ is obtained by averaging over all classes.
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The PQ is composed of the segmentation quality (SQ)

and recognition quality RQ. This property allows us to sep-

arately analyze the segmentation performance and the per-

formance of recognizing objects present in an image. We

provide PyTorch [63] code for computing both metrics.

5. SAM Results

SAM (Segment Anything Model) is a recent foundation

model for segmentation [6, 36]. Trained on 11M diverse

images, SAM achieves remarkable zero-shot performance

on new image distributions. The support for prompting [42]

enables SAM to perform diverse segmentation tasks. SAM

can be prompted with text, points, boxes, and dense masks.

To overcome the ambiguity of segmenting an image, SAM

generates multiple mask predictions alongside a score for

each prediction. Note SAM only predicts instance masks

and not semantic classes, limiting the application of our

evaluation strategy. Thus, we provide qualitative results.

Follow-up work has evaluated SAMs zero-shot segmen-

tation performance on biomedical imagery [12, 30, 49, 52].

While SAM achieves strong results on some biomedical

tasks (e.g., large-organ seg.) and even exceeds the state-

of-the-art, SAM falls short to produce accurate results on

other tasks (e.g., pleural effusion seg.) [12, 49]. We utilize

SAM to perform zero-shot segmentation of cells and traps.

We employ SAM with a ViT-H backbone [16, 40] to seg-

ment cells and traps. We prompt SAM with 256 points per

side (default is 32) to segment the whole high-resolution

microscopy image. To ensure no significant overlap be-

tween segmentation masks of individual objects we use a

non-maximum suppression IoU threshold of 0.1 (default is

0.7). For all other parameters, we utilize the default.

Fig. 17 shows quantitative results of SAM on our TYC

dataset. In simple cases, SAM yields fairly accurate pre-

dictions. In more complex cases (e.g., debris) SAM fails

to produce accurate segmentations. We especially observe

that touching cells are often segmented as a single object.

Additionally, SAM tends to segment background artifacts.

Fig. 18 presents both correct mask predictions and fail-

ure cases of SAM in more detail. If only a small number

of cells are trapped in a single trap pair, SAM typically seg-

ments traps and cells correctly (cf . Fig. 18a). Note while we

Figure 17. SAM zero-shot results. Qualitative segmentation re-

sults of SAM on our dataset. Colored masks indicate different

instance predictions. Best viewed in color; zoom in for details.

(a) Good examples (b) Poor examples

Figure 18. Good & poor SAM results. (a) In some cases, SAM

generates good mask predictions. (b) In other cases, SAM fails to

predict accurate segmentation masks. Color coding as in Fig. 17.

define a pair of traps as a single instance, segmenting both

traps separately is technically not wrong due to the ambigu-

ity of zero-shot segmentation. If many cells are trapped in

a trap pair, SAM often struggles to detect each cell instance

(cf . Fig. 18b). If an image includes a lot of debris, SAM

also struggles to predict correct segmentations.

6. Conclusion and Outlook

In this paper, we proposed a novel high-resolution

dataset designed to facilitate the understanding of instance-

level semantics and motions of yeast cells in microstruc-

tures. Our TYC dataset provides pixel-wise instance

masks for segmenting yeast cells in microstructures — a

widespread task in biological research. Alongside the la-

beled dataset, we also provide a large unlabeled dataset,

including short microscopy video clips to facilitate the un-

supervised understanding of cell motions and morphology.

To ensure fair comparisons of future cell segmentation ap-

proaches, we propose a standardized strategy for evaluating

segmentation performance on our dataset. Qualitative zero-

shot results of the recent segmentation foundation model

SAM demonstrate the complexity of our TYC dataset, as

SAM often struggles to generate satisfactory mask predic-

tions. Our effort aims to drive progress in the field of

biomedical image analysis and facilitate the development

of novel cell segmentation and tracking approaches, as well

as make these comparable between laboratories.

While our dataset includes both image and video data,

currently only image-level annotations are provided. How-

ever, some applications may require temporal labels. We are

keen to extend our dataset in the future with video instance

segmentation annotations [86], facilitating the development

of unified segmentation and tracking approaches.
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rina Nöh. CellSium: versatile cell simulator for micro-

colony ground truth generation. Bioinformatics advances,

2(1):vbac053, 2022. 2
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