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Abstract

Traditional supervised denoisers are trained using pairs
of noisy input and clean target images. They learn to pre-
dict a central tendency of the posterior distribution over
possible clean images. When, e.g., trained with the popu-
lar quadratic loss function, the network’s output will cor-
respond to the minimum mean square error (MMSE) es-
timate. Unsupervised denoisers based on Variational Au-
toEncoders (VAEs) have succeeded in achieving state-of-
the-art results while requiring only unpaired noisy data as
training input. In contrast to the traditional supervised ap-
proach, unsupervised denoisers do not directly produce a
single prediction, such as the MMSE estimate, but allow us
to draw samples from the posterior distribution of clean so-
lutions corresponding to the noisy input. To approximate
the MMSE estimate during inference, unsupervised meth-
ods have to create and draw a large number of samples – a
computationally expensive process, rendering the approach
inapplicable in many situations. Here, we present an alter-
native approach that trains a deterministic network along-
side the VAE to directly predict a central tendency. Our
method achieves results that surpass the results achieved by
the unsupervised method at a fraction of the computational
cost.

1. Introduction
The prevalence of noise in biomedical imaging makes

denoising a necessary step for many applications [14]. Deep

learning has proven itself to be the most powerful tool

for this task, as is evidenced by a growing body of re-

search [27]. Although deep learning-based approaches typi-

cally require large amounts of training data, recent advances

in unsupervised deep learning [20, 19, 25] have shown that

this requirement need not be a barrier to their use. Unlike

with supervised deep learning-based denoisers, which are

trained with pairs of corresponding noisy and noise-free im-

ages, users of unsupervised methods can train their models

with the very data they want to denoise.

Figure 1. Our Direct Denoiser outperforms unsupervised
VAE-based denoising (HDN) [19], while requiring only a frac-
tion of the computational cost: In red, the time to draw 1, 10,

100 and 1000 samples from HDN’s learned denoising distribution

plotted against the PSNR (higher is better) of the per-pixel mean of

these samples. Additionally, in blue, the time to take a single so-

lution from our Direct Denoiser is plotted against its PSNR. These

results are from denoising the Convallaria dataset.

The performance of unsupervised deep learning-based

denoisers is now approaching and even sometimes match-

ing the performance of their supervised counterparts [20,

19, 25], however, these two methods are fundamentally dif-

ferent in the way they do inference. By training a Varia-

tional AutoEncoder (VAE), unsupervised methods approx-

imate a posterior distribution over the clean images that

could underlie a noisy input image. This distribution will

be referred to as the denoising distribution. Random sam-

ples from the denoising distribution then constitute the infi-

nite possible solutions to a denoising problem. Supervised

and self-supervised learning methods, on the other hand,

offer a single prediction that compromises between all pos-

sible solutions. This is usually a central tendency of the de-

noising distribution and the specific central tendency that is

predicted depends on the loss function used. For example,
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a supervised method trained with the mean squared error

(MSE) loss function will predict the mean, which is also

known as the minimum mean squared error (MMSE) esti-

mate. A model trained with the mean absolute error (MAE)

loss function will predict the pixel-wise median, which is

known as the minimum mean absolute error (MMAE) esti-

mate.

While the ability of unsupervised methods to produce di-

verse solutions can in some circumstances be beneficial for

downstream processing [20], users oftentimes require only

a single solution such as the MMSE estimate. If they are to

approximate this from an unsupervised learning-based de-

noiser, they must process their image many times and av-

erage many possible sampled solutions, leading to a sig-

nificant computational overhead. For example, the authors

of [20, 19, 25] average 100 or 1000 samples per image to

obtain their MMSE estimate. Such an approach requires

substantial computational effort, and is not likely to be eco-

nomically and ecologically reasonable for labs regularly an-

alyzing terabytes of data.

This paper presents an alternative route to estimating the

central tendencies from an unsupervised denosier; one that

requires noisy images to be processed only once. We do so

by training an additional deterministic convolutional neu-

ral network (CNN), termed Direct Denoiser, that directly

predicts MMSE or MMAE solutions and is trained along-

side the VAE. It uses noisy training images as input and

the sampled predictions from the VAE as training targets.

Lacking a probabilistic nature, this network will minimize

its MSE or MAE loss function by predicting the mean or

pixel-wise median of the denoising distribution. The result

is a denoising network with the evaluation times of a su-

pervised approach and the training data requirements of an

unsupervised approach.

In summary, we propose an extension to unsupervised

deep learning-based denoisers that dramatically reduces in-

ference time by estimating a central tendency of the learned

denoising distribution in a single evaluation step. Moreover,

we show these estimates to be more accurate than those ob-

tained by averaging even up to 1000 samples from the de-

noising distribution. Figure 1 shows how much shorter in-

ference time is with our proposed approach, and how much

higher the quality of results are.

The remainder of the paper is structured as follows. In

Section 2, we give a brief overview of related work, concen-

trating on different approaches to denoising. In Section 3,

we provide a formal introduction to the unsupervised VAE-

based denoising approach, which is the foundation of our

method. In Section 4, we describe the training of the Direct

Denoiser. We evaluate our approach in Section 5, showing

that we consistently outperform our baseline at a fraction of

the computational cost. Finally, in Sections 6 and 7 we dis-

cuss our results and give an outlook on the expected impact

of our work and future perspectives.

2. Related Work
2.1. Supervised denosing

Traditional supervised deep learning-based methods

(e.g. [30, 28]) rely on paired training data consisting of

corresponding noisy and clean images. These methods

view denoising as a regression problem, and usually train

a UNet [23] or variants of the architecture to learn a map-

ping from noisy to clean. The most commonly used loss

function for this purpose is the sum of pixel-wise quadratic

errors (L2 or MSE), which directs the network to predict the

MMSE estimate for the noisy input.

The approach’s requirement for clean training images

greatly limits its applicability, particularly for scientific

imaging applications, where often no clean data can be ob-

tained. In 2018, Lehtinen et al. [16] had the insight that

training of equivalent quality can be achieved by replacing

the clean training image with a second noisy image of the

same content; a training method termed Noise2Noise. In

practice, such image pairs can often be acquired by record-

ing two images in quick succession. By using the L2 loss

and assuming that the imaging noise is zero-centered, the

network is expected to minimize the loss to its noisy train-

ing target by converging to the same MMSE estimate as in

supervised training.

While Noise2Noise and traditional supervised methods

are state-of-the-art with respect to the quality of their re-

sults, their requirement for paired training data makes them

inapplicable in many situations. In contrast, our method re-

quires only unpaired noisy data, which is available for any

denoising task, making it directly applicable in situations

where supervised methods are not.

2.2. Self-supervised denoising

Self-supervised methods have been introduced to enable

denoising with unpaired noisy data. Here we focus on

blind-spot approaches (e.g. [12, 2, 17, 22]), which mask in-

dividual pixels in the input image and use them as training

targets. These methods rely on the assumption that imag-

ing noise is pixel-wise independent given an underlying

signal. By effectively forcing the network to predict each

pixel value from its surroundings, blind-spot approaches

can learn to denoise images without the need for paired

noisy-clean data. Like supervised methods, self-supervised

denoisers (when used with L2 loss) predict an MMSE esti-

mate for each pixel, albeit based on less information, since

the corresponding input pixel cannot be used during predic-

tion. As a result, the quality of the output can be worse than

supervised methods. The blind-spot approach has been im-

proved to reintroduce the lost pixel information during in-

ference [21, 15], achieving improved quality in some situa-
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tions. In [4], Broaddus et al. extended the method to allow

for the removal of structured noise.

Our method also does not require paired data, but we do

not follow the self-supervised blind-spot paradigm. As a

consequence, we do not have to address the loss of pixel

information.

2.3. Unsupervised VAE-based denoising

Unsupervised VAE-based denoising methods [20] form

the backbone of our method. Like in self-supervised meth-

ods, training requires only noisy images. However, their

training and inference procedures differ greatly from self-

supervised approaches. We discuss this class of methods in

detail in Section 3.

2.4. Knowledge distillation

Knowledge distillation [9] is the process of training a

smaller student network using a large teacher network or

an ensemble [5] of teachers. The goal of this approach is

to reduce the computational effort required during inference

and enable more efficient employment of a powerful model.

Surprisingly, the student model can achieve better results

compared to being trained on the data directly. A survey of

the topic can be found in [7].

The approach of training our Direct Denoiser with the

output of another network can be seen as knowledge distil-

lation. However, in our case the Direct Denoiser is not in-

tended as a smaller replacement of the VAE, but as a model

with a faster inference procedure.

3. Background

3.1. The denoising task

A noisy observation, x, of a signal, s, can be thought of

as sampled from an observation likelihood, or noise model,
pNM(x|s). A noise model describes the random, unwanted

variation that is added to a signal when it is recorded. The

goal of denoising is to estimate the s that parameterized the

noise model from which a known x was sampled.

3.2. Unsupervised denoising

It was Prakash et al. [20] who proposed doing so via

variational inference, using a VAE [11] to approximate the

posterior distribution p(s|x). They improved their approach

with a more powerful architecture that could also handle

mild forms of structured noise in [19]. Salmon and Krull

then presented an alternative approach to tackling structured

noise in [25], but it unfortunately cannot yet be applied in

realistic settings.

To understand how unsupervised denoising works, we

must give a brief explanation of the VAE [11]. For a full

introduction, see [6].

Given a tractable prior distribution pθ(z) and a like-

lihood pθ(x|z), the marginal distribution pθ(x) could be

learnt by minimizing the objective

− log pθ(x) = − log

∫
z

pθ(x|z)pθ(z)dz. (1)

However, this integral is often intractable for high dimen-

sional x. VAEs instead approximate pθ(x) by minimizing

the following upper bound,

− log pθ(x) +DKL[qφ(z|x) ‖ pθ(z|x)]
= Eqφ(z|x)[− log pθ(x|z))] +DKL[qφ(z|x)) ‖ pθ(z)],

(2)

where θ and φ are learnable parameters and DKL is the

always positive Kullback-Leibler (KL) divergence [13].

Here, an approximate posterior qφ(z|x) is introduced and

optimized to diverge as little as possible from the true pos-

terior pθ(z|x).
The authors of DivNoising [20], Hierarchical DivNois-

ing (HDN) [19] and AutoNoise [25] adapt the VAE for de-

noising by incorporating a known explicit noise model into

this objective, directing the decoder of the VAE to map the

latent variable z to estimates of the signal s,

− log pθ(x) +DKL[qφ(z|x) ‖ pθ(z|x)]
= Eqφ(z|x)[− log pNM(x|s))] +DKL[qφ(z|x)) ‖ pθ(z)],

(3)

where s = gθ(z).

3.3. Inference in unsupervised denoising

After minimizing this new denoising objective, the sig-

nal underlying a given x is estimated by first encoding x
with qφ(z|x), sampling a z and mapping that sample to an

estimate of the signal with gθ(z). These solutions are sam-

ples from an approximation of the posterior p(s|x), which

we refer to as the denoising distribution.

Each sample from the denoising distribution is unique,

allowing users to examine the uncertainty involved in their

denoising problem. However, a single consensus solution

is often preferred. The authors of [20, 19, 25] chose to

calculate the per pixel mean of 100 or 1000 samples, de-

riving the minimum mean square error (MMSE) estimate

of the denoising distribution, to get a consensus solution for

measuring denoising performance. Taking so many samples

requires many forward passes of the denoiser and incurs

a potentially prohibitive computational overhead for large

datasets.

Our method extends the high quality denoising perfor-

mance and minimal training requirements of VAE-based de-

noisers by allowing them to directly and efficiently produce

MMAE and MMSE results without repeated sampling.
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Figure 2. Training scheme: We train our novel Direct Denoiser (blue) along side a Variational AutoEncoder (VAE) [20, 19]. The

processing of data is shown with solid arrows and the backward propagation of gradients required for training is shown with dashed

arrows. The VAE encoder takes a noisy image as input and predicts the parameters of a distribution in latent space, a sample is drawn from

here and mapped to a possible clean image by the decoder network. The reconstruction loss is computed using a pre-trained noise model.

Our Direct Denoiser is trained using noisy images as input and the clean image samples (predicted by the VAE) as target. Since individual

samples differ for the same input, there is no unique correct solution for this task. As a consequence, by using an L2 loss, the Direct

Denoiser will learn to predict the expected value, i.e., the MMSE solution. Using an L1 loss leads to predicting the pixel-wise median. We

block gradients from passing through the sampled clean image to prevent the VAE changing its outputs.

4. Method
When given samples from a probability distribution, we

are often interested in what a representative value of those

samples is. In the case of unsupervised denoising, we are

interested in a representative image from the denoising dis-

tribution. A common value to choose for this is the central

tendency of the distribution [29], a point which minimizes

some measure of deviation from all of the samples.

For samples from a learned denoising distribution,

p(ŝ|x), over possible solutions ŝ for a noisy input image

x, this would be

ŝ∗ = argmin
y

Eŝ|x[L(y, ŝ)], (4)

where L is some per-pixel loss function. If L is the L1 loss,

L(y, ŝ) = 1/n

n∑
i

|yi − ŝi|, (5)

then ŝ∗ corresponds to the pixel-wise median of the distribu-

tion, i.e., the MMAE estimate. Here, n denotes the number

of pixels and yi and ŝi denote ith pixel values. For the L2

loss,

L(y, ŝ) = 1/n
n∑
i

(yi − ŝi)
2, (6)

ŝ∗ will be the arithmetic mean, i.e., the MMSE.

The authors of [20, 19, 25] estimated ŝ∗ using a large

number of samples from their denoising distribution. We

propose instead training a CNN to directly predict a central

tendency.

Let hη be our Direct Denoiser with parameters η and

p(ŝ|x) be a denoising distribution. The following objective,

argmin
η

Ex[Eŝ|x[L(hη(x), ŝ)]], (7)

where L is either the L1 or L2 loss, would train hη to pre-

dict either the pixel-wise median or mean of p(ŝ|x), respec-

tively. After training an unsupervised denoiser according to

[20, 19, 25], we could train our Direct Denoiser with Eq. 7

by sampling noisy images x from a training set and then

running them through the unsupervised denoiser to obtain

possible clean solutions ŝ from the denoising distribution.

We however find that it is possible to train both mod-

els simultaneously. Let fθ,φ represent a VAE with the loss

function in Equation 3, where ŝ ∼ fθ,φ(x) is a sample from

the denoising distribution.

A single training step for simultaneously optimizing an

unsupervised denoiser and an accompanying Direct De-

noiser is as follows:

1. Pass a noisy training image x to the unsupervised de-

noiser and sample a possible solution ŝ.

2. Update the parameters (θ, φ) towards minimizing the

loss function in Equation 3.

3. Pass the same x to the Direct Denoiser, calculating

hη(x).

4. Update the parameters η to minimize L(hη(x), ŝ),
where L is the L1 or L2 loss function.
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5. Repeat until convergence.

A visual representation of this training scheme can be

found in Figure 2.

5. Experiments
Our Direct Denoiser was trained alongside HDN [19],

using six datasets of intrinsically noisy microscopy images

that come with known ground truth signal. Each dataset

can be found in [19], as can details of their size, spatial

resolution and train, validation and test splits. Note that

for the Struct. Convallaria dataset, we adapted HDN into

HDN3-6, making it capable of handling structured noise.

Denoising Performance To evaluate denoising perfor-

mance, we compare the Peak Signal-to-Noise Ratio (PSNR)

of our Direct Denoiser’s direct solutions to the PSNR of

HDN’s consensus solutions. The consensus solutions were

produced by averaging samples of size 1, 10, 100 and 1000,

reporting both their per-pixel median and mean. The Direct

Denoiser’s solutions were reported from a network trained

with an L1 loss and a network trained with an L2 loss. Re-

sults are in Table 1. Visual results from the same experiment

can be seen in Figure 3.

Inference Times We also compared inference time to de-

noising performance. Specifically, the total time for HDN

to generate 1, 10, 100 and 1000 samples for all 100 im-

ages in the Convallaria test set was measured, then plotted

against the PSNR of the mean of those samples, averaged

over all 100 images. On the same plot, the total time for our

Direct Denoiser to produce single solutions for each image

is plotted against their average PSNR. Each test image con-

sisted of 512×512 pixels.

Using our GPU (an NVIDIA GeForce RTX 3090 Ti),

generating a single 512×512 solution from HDN’s denois-

ing distribution takes 0.076 seconds, using 2207MiB of the

GPU’s memory. Our Direct Denoiser takes 0.029 seconds

at 1909MiB to do the same. Processing one image with ei-

ther model uses the full capacity of the GPU’s parallelism,

so we saw no speed improvements by processing more than

one image at a time.

If a consensus solution from HDN with PSNR approach-

ing that of the the Direct Denoiser requires sampling 1000

solutions, inference with the proposed method is 2621×
faster.

Training Times and Memory Usage Finally, the additional

training time incurred by co-training HDN with the Direct

Denoiser was examined. The authors of HDN [19] train

their network for 200,000 steps for all datasets, using a

batch size of 64 and image patch size of 64×64. Using our

GPU, training HDN alone takes 0.27 seconds per step for

15 hours total, using 13GiB of GPU memory. Training both

HDN and the Direct Denoiser takes 0.34 seconds per step

for 18.9 hours total, using 15GiB of GPU memory. Note

that smaller virtual batches can be used as in [19] to reduce

memory consumption. For the proposed method to be a net

time saving, inference would have to take 3.9 hours less.

Using our hardware and inference image resolution, time

is saved when the inference test set consists of 185 images

with 512× 512 resolution.

Network Architecture and Training The Direct Denoiser

used in these experiments was a UNet [23] with approxi-

mately 12 million parameters, while the unsupervised de-

noiser was the same Hierarchical VAE [26] used in [19]

with approximately 7 million parameters. We chose to give

our UNet more parameters than the Hierarchical VAE to

ensure the former had the capacity to learn the full relation-

ship between noisy images and solutions generated by the

latter. This may not have been necessary, and training a Di-

rect Denoiser with a lower computational demand would be

an interesting topic for future research.

Our UNet had a depth of four, with a residual block [8]

consisting of two convolutions followed by a ReLU ac-

tivation function [1] at each level. Downsampling was

performed by convolutions with a stride of two, and up-

sampling by nearest neighbor interpolation [24] followed

by a single convolution with stride one. All convolutions

had a kernel size of 3. The number of filters was 32 at

the first level and that number doubled at each subsequent

level. Skip connections were merged by concatenating the

skipped features with the features from the previously level

and passing the two through a residual block.

Training followed the same procedure described in [19],

with the only difference being that our Direct Denoiser had

its own Adamax optimizer [10] with an initial learning rate

of 3e-4 that reduced by a factor of 0.5 when validation loss

had plateaued for 10 epochs.

6. Discussion
Solutions from our Direct Denoiser consistently scored

a higher PSNR than consensus solutions of 1000 samples

from HDN. Table 1 shows HDN’s PSNRs converging to-

wards our direct prediction result with increased sample

size. It seems that solutions from our Direct Denoiser are

sometimes equivalent to averaging sample sizes orders of

magnitude larger than the largest samples size we used in

our experiment. Moreover, by looking at the inference times

reported in Figure 1, the time required to take such a sample

size would be impractical for large datasets.

7. Conclusions
We have demonstrated that an extension of the unsu-

pervised denoising approach–the Direct Denoiser–can be

used to dramatically speed up inference time, while at the

same time improving performance when compared the stan-

dard inference procedure with up to 1000 sampled images.
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Number of samples (HDN)
Dataset 1 10 100 1000 Direct

Convallaria 33.69 / 33.69 36.59 / 36.76 37.17 / 37.23 37.19 / 37.27 37.50 / 37.45

Confocal Mice 35.43 / 35.43 37.30 / 37.42 37.58 / 37.68 37.62 / 37.69 37.77 / 37.75

2 Photon Mice 31.21 / 31.21 32.63 / 32.68 32.86 / 32.87 32.89 / 32.89 33.55 / 33.54

Mouse Actin 31.62 / 31.62 33.52 / 33.66 33.87 / 33.92 33.91 / 33.95 34.22 / 34.28
Mouse Nuclei 33.48 / 33.48 36.24 / 36.44 36.79 / 36.89 36.81 / 36.90 36.87 / 36.93
Struct. Convallaria 29.02 / 29.02 30.88 / 31.00 31.22 / 31.27 31.27 / 31.29 31.58 / 31.64

Table 1. PSNR of consensus solutions from HDN [19] compared to direct solutions from our novel Direct Denoiser. HDN’s consensus

solutions were obtained by taking samples of varying sizes from its denoising distribution and calculating both their per-pixel median and

their per-pixel mean. The Direct Denoiser’s solutions were obtained from a single pass of a network trained under an L1 loss and a single

pass of a network trained under an L2 loss. PSNRs are reported as an average over all images in each test set, and are presented as the

median/mean consensus for HDN and as the solution from the L1/L2 network for the Direct Denoiser. Best results are printed in bold.

We believe our approach will become the default way of

producing central tendencies from unsupervised denoising

models with the increase in speed potentially allowing an

easy adaptation by the community.

While we have evaluated our method only for MSE and

MAE loss functions, we believe the approach could also

be used with other loss functions such as Tukey’s biweight
loss [3], which might allow us to find regions of high prob-

ability density or even the maximum a posteriori estimate.

Recent work in image restoration has suggested the

use of more sophisticated perceptual loss functions (see

e.g. [18]). These types of loss functions would likely only

be possible in a supervised setting with clean training data

and would be unlikely to succeed with Noise2Noise or self-

supervised methods. However, since the training targets

sampled by our VAE are essentially clean images, they

should be compatible with different types of complex loss

functions, opening the door to using perceptual loss with

noisy unpaired data.
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Figure 3. Visual results: Cropped images from each dataset showing consensus solutions of varying sample sizes from HDN’s denoising
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Denoiser.
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