
On the risk of manual annotations in 3D confocal microscopy image
segmentation

Justin Sonneck, Shuo Zhao and Jianxu Chen
Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V.

{justin.sonneck, shuo.zhao, jianxu.chen}@isas.de

Abstract

Image segmentation in 3D confocal fluorescence mi-
croscopy images is a common problem in many biomedi-
cal studies. Deep learning-based methods have achieved
great success on such tasks. In the literature, manual 3D
annotations are still commonly used for model training or
performance evaluation. But, due to the nature of the lens-
based optical instruments, diffraction of light always oc-
curs, which can lead to obscure boundaries of the biomed-
ical structures being imaged. For example, when analyz-
ing nuclei from 3D fluorescence microscopy images of cells
marked by DNA dyes, the exact boundaries are usually not
clearly identifiable, especially along Z. This makes accu-
rate segmentation, both manually and automatically, very
challenging. For applications where the boundary accu-
racy is crucial, the downstream analyses can thus be sig-
nificantly compromised. This problem can be addressed
with special experimental-computational co-design to ac-
quire the “biological ground truth”. For the nuclei ex-
ample, we can take cells expressing mEGFP tagged lamin
B1, from which we can acquire both the DNA dye chan-
nel (nucleus) and the lamin B1 channel (nuclear envelope).
Lamin B1 signals clearly mark the nuclei boundary and
can thus serve as the real truth. We demonstrate that
training a deep learning-based nuclei instance segmenta-
tion model with biological ground truth and manual anno-
tations will result in significant differences in various met-
rics, such as volume or application-specific measurements.
Also, we show the universalness of such issues with man-
ual annotations by testing different state-of-the-art deep
learning-based methods. We hope our work can raise within
the biomedical image analysis community the awareness
of (1) the importance of interdisciplinary collaborations,
e.g., computational-experimental co-design for biological
ground truth collection, and (2) potentially significant is-
sues with manual annotation in training or evaluating deep
learning-based segmentation models.

1. Introduction

Nowadays, many influential biomedical researchers with

a novel discovery in basic or translational science were

enabled by modern microscopy techniques. For example,

imaging over 0.2 million human induced pluripotent stem

(hiPS) cells using high-resolution 3D confocal fluorescent

microscopy built up the ground for the discovery of the

fundamental principle of how normal stem cells organizing

themselves [16]. With the advancement of microscopy tech-

niques, the scale of microscopy images was also growing at

an unprecedented pace, in terms of number of images or

the size of each image, or both. Therefore, fully automated

microscopy image analysis has become critical, where deep

learning-based methods have achieved significant success

in recent years.

In order to develop deep learning-based biomedical im-

age segmentation models, manual annotations still play a

decisive role, either as training data for supervised learn-

ing [6] or active learning [19], or as the ground truth for

evaluating self-supervised methods [12], semi-supervised

methods [21], or weakly supervised methods [18]. It is

well-known that manual annotation could be extremely

time-consuming especially in 3D, taking hours to annotate a

single image, and also suffer from irreproducibility and sub-

jectiveness issues, as it is impossible for people to annotate

the same image pixel-wise identical when requested to do

multiple times, or for different people to perform identical

annotations on the same image.

Besides the time-demanding, irreproducible, and subjec-

tive concerns, the most important issue with manual anno-

tation is the potential inaccuracy and therefore the poten-

tial negative impact on the downstream analysis or appli-

cations. For medical images, e.g., in radiology, it is possi-

ble that “a single source of truth” does not exist in practice

and many methods have been proposed to leverage multi-

annotations [20]. Even though we argue that the “real” truth

can never be physically accessible, for certain bioimag-

ing problems, it is feasible to obtain “a single source of

truth” with high biological validity, which can be consid-
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ered as biologically optimal approximation of the real truth

in practice. This is what we called “biological ground truth”

(bioGT, see Section 2.2).

In this work, we used the problem of nuclei instance seg-

mentation from high-resolution 3D fluorescent microscopy

images, as an example to quantitatively demonstrate the risk

of manual annotations. With a systematic experimental-

computational co-design strategy, it is possible to acquire

special data where the cells “inform” us a clear nuclear

boundary by themselves as the bioGT. Evaluated by such

bioGT, we find that the segmentation results obtained from

a deep learning model trained with manual annotations

could suffer from over 30% errors in the downstream anal-

ysis (see comprehensive analysis in Section 3). To the best

of our knowledge, research has been done to urge the es-

tablishment of quality standard for manual annotations in

medical images [10], and our work is the very first time

where the risks of manual annotations in bioimages are sys-

tematically quantified. We hope to raise the awareness of

the potential risks of manual annotations and at the same

time highlight the interdisciplinary nature of biomedical im-

age analysis, where experimental-computational co-design

could be a viable path to achieve trustworthy deep learning-

based biomedical image analysis.

2. Methods
The problem we used in this work to study the risk of

manual annotation is 3D nuclei instance segmentation from

high-resolution 3D confocal microscopy images of hiPS

cells visualized via a fluorescence DNA dye. In this sec-

tion, we will first present 2 different approaches for manual

annotation, followed by the bioGT in this problem, then the

deep learning models we used for 3D nuclei instance seg-

mentation, and finally the evaluation metrics.

2.1. Manual Annotation

There are several approaches to manually annotate nu-

clei. One way is to annotate individual slices in XY pro-

jection of a 3-dimensional stack independently and then

reassemble the obtained segmentation into a stack. We

have done this using the Python-based multidimensional

image viewer Napari [1] and call this annotation Napari
ground truth (Napari-GT) hereafter. In contrast, we used

the software 3D Slicer [4] to annotate multiple, but not all,

XY-projected slices per nucleus and then interpolated be-

tween all segmented slices. A great strength of 3D Slicer is

the combination of simultaneous display of front and side

views. While annotating individual slices using 3D Slicer,

we constantly considered all 3-axis combinations to anno-

tate top and bottom of the nuclei as accurately as possi-

ble. We call the thus obtained annotation Slicer-GT. Fig.

2 gives insights into the corresponding graphical user inter-

face, where front and both side views are simultaneously

A
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Lamin B1
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z=42

z=44

Lamin B1
Lamin B1 + wts 
segmentation 

Figure 1. (A) Different Z slices (same XY section) of a 3D im-

age with DNA dye channel, lamin B1 channel and its overlay with

the obtained watershed segmentation. The arrows in magenta in-

dicate some signals coming from light diffraction near the top of a

cell, which should not be segmented. (B) Overview of the work-

flow for obtaining bioGT with seeded watershed segmentation in

the lamin B1 channel. The watershed result (white areas in the

bottom image), whose contour (in yellow) accurately follows the

lamin B1 signal (the middle image), can be used as the bioGT
(i.e., the segmentation target) for nucleus segmentation in the DNA

dye channel (the top image), where the nuclear boundary is very

unclear (see yellow arrows). As a reference, we overlay the con-

tour of manual segmentation (Napari-GT, in blue) with the bioGT.

The over-segmentation by manual annotation is mainly due to the

blurry boundary in the DNA channel, especially along Z direction.

displayed. Indicated arrows show crosshairs for a better

cross reference between different views.

2.2. Biological Ground Truth (bioGT)

With interdisciplinary experimental-computational co-

design, it is possible to obtain biologically valid segmen-

tation ground truth efficiently. In the high-resolution 3D

confocal fluorescent microscopy image in this problem, the

nuclei marked by DNA dye may suffer from very obscure

boundaries (see Fig. 1-B), especially along the optical axis

(a.k.a., Z-axis), due to light diffraction and photobleach-

ing. As a result, it is very hard to delineate the nuclear

boundary with pixel-level accuracy, particularly along Z.

One option to obtain the bioGT, i.e., a biologically opti-

mal approximation of the real truth, is as follows. With

gene-editing techniques, one can make hiPS cells express-
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Figure 2. Detail of the graphical user interface of the software 3D
Slicer[4], which we used for Slicer-GT. We show front view and

both side views including crosshairs (yellow arrows) for cross ref-

erence. In addition, a 3D representation of the annotated nucleus

is shown in the upper right corner.

ing mEGFP tagged lamin B1, and design an experimental

assay to acquire multi-channel 3D images, with both the

DNA dye channel and the endogenously tagged lamin B1

channel (see Fig. 1A). Lamin B1 is a protein that marks

up the nuclear lamina, commonly used for visualizing the

nuclear envelope, which could be generally interpreted as

the “membrane” of the nucleus. The light diffraction effect

on such thin membrane-like signals is negligible comparing

to the ball-like signals of nuclei. Therefore, localizing the

contours from the lamin B1 channel could provide a biolog-

ically valid approximate of the true nuclear boundary, and

thus could be then used as the bioGT. There are many viable

solutions to extract the nuclear shape from the lamin B1

channel. For simplicity, we used the seeded watershed al-

gorithm [9], a semi-automatic method with human clicking

inside the contours as seeds (taking less than a minute), and

applied it to the lamin B1 channel itself. The results of the

seeded watershed algorithm were not sensitive to the exact

location where human clicked, and thus making the results

well reproducible. It is worth mentioning that the lamin B1

channel is not always available; otherwise, we can simply

segment nuclei directly from lamin B1. For other cell lines,

e.g, gene-edited to express other proteins to visualize other

cellular structures, we can only acquire the DNA dye chan-

nel, but not the lamin B1 channel.

2.3. Deep Learning-based 3D nuclei instance seg-
mentation

In this work, we adopted a variant of EmbedSeg [7], a

deep learning model with clustering-based instance genera-

tion, as the main method for 3D nuclei instance segmenta-

tion. The advantages of clustering-based instance segmen-

tation models are, for example, independence of image di-

mensions and in theory able to handle instances of differ-

ent connectivity and morphology. We used the extended

EmbedSeg introduced in [14], which offers more effective

training (e.g., on-the-fly data augmentation, training with

exclusion masks, multi-GPU training, etc.) and more flexi-

ble network backbones (we chose the anisotropic variant of

UNet introduced in [2]). In addition, to demonstrate the is-

sue with models trained on manual annotations is universal,

we tested another two state-of-the-art 3D nuclei instance

segmentation methods: StarDist-3D [17], a deep learning-

based method using star-convex polyhedra to represent nu-

clei (2D or 3D), and Cellpose [15], a method based on the

prediction of spatial gradients. Here, we used the 3D exten-

sion provided by Cellpose, using 2D models to create 3D

instance segmentation. A further development of Cellpose

is Omnipose [3], which unlike the extension of Cellpose,

uses 3D models for 3D segmentation. Since training of cus-

tom 3D models was not fully functioning at the time of the

paper submission opening [5], nuclei instance segmentation

using Omnipose is not pursued further in this manuscript.

We didn’t include any detection-based instance segmenta-

tion [11], since densely packed squeezed 3D shapes pose

a great challenge for accurately separating tightly touching

boundaries with 3D bounding boxes.

2.4. Methodology of Validation

Pixel-level accuracy of the nuclei instance segmentation

results may not matter for simple applications, like nuclei

counting, but could be important for other downstream anal-

ysis. Besides basic metrics, like volume, we performed

a systematic evaluation of the impact of the segmentation

accuracy on the 3D nuclear shape modeling with spheri-

cal harmonic (SH) expansions. Using SH expansions, the

nuclear shapes can be decomposed into individual parame-

ters, like oscillations using the Fourier transform. The cor-

responding equation can be seen in equation (1), where l
is the SH degree, m is the order, φ is the polar angle and

θ is the azimuthal angle. Plm is the corresponding Legen-

dre polynomial [13]. With all SH coefficients of the first

16 SH degrees, principal component analysis was used to

identify a set of generally interpretable modes of the nu-

clear shapes [16]. We used the first 8 principal components

(PCs) as used in [16] and 10 most important SH coefficients

of each PC as the metrics for quantifying how the inaccu-

racy in manual annotations affect the downstream analysis.

Ylm(θ, φ) =
1√
2π

√
2l + 1

2

(l −m)!

(l +m)!
Plm(cos θ)eimφ (1)

3. Experiments, results and discussions
The source data in our experiments were from the pub-

lic dataset released with [16]. We took a subset of multi-
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channel 100×3D microscopy images of hiPS cells with

both the DNA-dye channel and the lamin B1 channel.

First, we manually segmented 560 nuclei in 20 images,

both Napari-GT and Slicer-GT, merely based on the DNA-

dye channel without referring the lamin B1 channel. The

manual annotations were done by PhD students with good

knowledge of optical microscopy images. Meanwhile, we

obtained the bioGT for the same set of images based on

the lamin B1 channel using seeded watershed, as shown

in Fig. 1-B. After collecting the manual annotations and

the bioGT sets, we compared the volumes of the nuclei to

study the reproducibility of the bioGT volumes using man-

ual annotations. Based on these results, we used the Napari-
GT and bioGT sets to train different state-of-the-art deep

learning-based instance segmentation methods to further

analyze how the choice of training data affects predicted

segmentations. We held out an independent evaluation set

of 18 images with bioGT. For the analysis we considered

all predicted nuclei completely in the field of view (i.e., not

touching image borders) with volume of at least 100μm3.

A nucleus in the prediction is considered as matched with a

nucleus in the ground truth if there is an overlap of at least

51% of the volume of the ground truth nucleus. All compu-

tation was conducted on a computing cluster, only using one

NVIDIA A100 GPU with 40GB memory. All the hyperpa-

rameters used in our experiments were according to the sug-

gested values in the original packages, such as learning rate,

optimizer, train/validation split ratio, etc.. The scripts for

downloading the raw microscopy images from the public

data repository, running all the model trainings, evaluation

and analysis will be released at https://github.com/MMV-

Lab/manual annotations risk. The collected manual anno-

tations and bioGT as well as the trained models will be

available at https://zenodo.org/record/8247136, in order to

make our results fully reproducible.

3.1. Comparison between manual annotations and
bioGT

Fig. 4 shows a direct comparison between the volumes

of individual nuclei in bioGT and both manual annotations

(Slicer-GT and Napari-GT), with the coefficients of de-

termination r2 = −0.81 (Napari-GT) and r2 = −2.93
(Slicer-GT). r2 describes the goodness of a regression’s lin-

ear fit. The maximum value of 1 means perfect fit. In our

case, higher r2 indicates smaller discrepancy between the

volumes of manual segmentation and bioGT. Negative val-

ues indicate a bad fit, where a simple average value is even

better than the fit used. Specifically, the nuclear volume

of manual Napari-GT segmentation is 32.41% ± 24.81%
larger than the corresponding nucleus in bioGT. We believe

the observed overestimation is mainly due to “optical illu-

sion”, where the diffraction of light causes the objects ap-

pearing larger than they should be, especially along the op-

tical axis. It is also evident, that Slicer-GT annotated nu-

clei have similar problems with overestimated volumes. Not

only the coefficient of determination is even smaller, as in-

dicated above, but also the deviation of the volumes is sig-

nificantly higher significantly higher at 58.81% ± 22.06%.

We suspect that the constant side view of the software 3D
Slicer might be misleading to detect the exact boundaries of

DNA-dyed nuclei in Z. Additionally, interpolation between

slices at the blurred boundaries could lead to inaccuracies.

Due to the larger deviation of Slicer-GT annotated nuclei,

we focused on Napari-GT as representative of manual an-

notation for further analysis. We can observe similar man-

ual annotation issues in other public benchmark datasets,

not only on our manual annotations. For example, in the

dataset BBBC034v1 from the Broad Bioimage Benchmark

Collection [8], the manual segmentation was performed by

researchers with great expertise on these microscopy data.

Fig. 3 shows an example of their nuclear segmentation,

with reasonable accuracy in XY (even though slightly less

smooth than it should be), while the segmentation along Z

suffers over-segmentation issues. The annotation process of

this data is not described in detail in the corresponding lit-

erature, but due to the inconsistencies visible in side view,

a slice-by-slice annotation similar to Napari-GT can be as-

sumed. We presented this example, published as ground

truth data, to show how common such problems are for

manual annotation.

Manual 
segmentation

DNA dye

fr
on

t 
vi

ew
si

de
 v

ie
w

XY

DNA dye

ZY

Manual 
segmentation

Figure 3. Overview of a manual annotation example including

DNA dye channel and the manual segmentation for both front view

and side view. It is worth mentioning that this is from a public data

repository [8], not our annotation.
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Figure 4. Comparison of nuclear volumes of both manual annotations and biological ground truth (bioGT). The unit line is plotted as a

reference.

Table 1. r2 for various metrics for different deep learning models, each trained with manual Napari-GT annotations and bioGT.

Metrics
EmbedSeg StarDist-3D Cellpose

Napari-GT bioGT Napari-GT bioGT Napari-GT bioGT

Volume -0.29 0.95 0.50 0.49 -0.10 0.70

PC1 0.38 0.96 0.45 0.94 -0.22 0.15

PC2 0.26 0.94 0.61 0.59 0.19 0.68

PC3 0.75 0.94 0.45 0.66 0.53 0.91

PC4 0.83 0.96 0.54 0.52 0.71 0.78

PC5 0.75 0.95 0.36 0.66 0.45 0.82

PC6 0.60 0.90 0.23 0.40 -0.49 0.58

PC7 0.25 0.77 0.24 0.44 -0.88 0.13

PC8 0.71 0.89 0.36 0.41 -0.06 0.65

3.2. Comparison between different deep learning
models

On average, EmbedSeg, StarDist-3D and Cellpose take

1 ∼ 9 minutes (depending on pre-training with pre-cropped

patches or fine-tuning on full images), 2 minutes, and

7.5 minutes for each training epoch, as well as 21GB,

39GB, 4.7GB GPU memory, respectively. For segmen-

tation performance, out of 292 nucleus instances in to-

tal, EmbedSeg and StarDist-3D correctly detected 291 and

292, respectively, while Cellpose only detected 98, suf-

fering from many false negative errors. This is proba-

bly due to Cellpose’s 2D-based pseudo-3D training. Next,

we compared the volume of segmented nuclei from each

model against the volume of the nuclei in bioGT as a ratio:

((V olseg/V olbioGT − 1)× 100%). We got EmbedSegbioGT

(4.04%± 3.70%), EmbedSegNapari-GT (29.58%± 12.33%),

StarDist-3DbioGT (15.24% ± 8.07%), StarDist-3DNapari-GT

(17.53% ± 13.36%), CellposebioGT (12.62% ± 8.75%),

CellposeNapari-GT (23.74%± 16.99%), respectively. We can

see that the EmbedSeg model trained with manual Napari-
GT annotation resulted in about 30% over-estimation in nu-

clear volume, while only < 5% for the EmbedSeg model

trained with bioGT.

Table 1 summarizes the r2 values measuring how con-

sistent every metric was between segmentation from differ-

ent models and bioGT. EmbedSegbioGT achieved the best

overall performance, much better than EmbedSegNapari-GT.

Models trained with bioGT generally performed better than

models trained with manual annotations, even though the

impact varies for different models. StarDist-3DbioGT per-

formed only slightly better than StarDist-3DNapari-GT while

both suffering from considerable inaccuracy. This is mainly
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Figure 5. Sample prediction from (A) EmbedSeg and StarDist-3D, both trained with bioGT, (B) StarDist-3DbioGT and StarDist-3DNapari-GT

and (C) CellposebioGT and CellposeNapari-GT, either in front view or in front and side view. White areas show the corresponding bioGT.

due to the underlying star-convexity, making segmented nu-

clear boundaries more polygonal and less accurate. An ex-

ample can be seen in Fig. 5B. It can be seen that the bound-

aries of the two predictions in XY at the arrow-indicated

areas differ significantly from bioGT. In addition, it is no-

ticeable that StarDist-3DNapari-GT has clear problems in de-

termining the correct nucleus height. A direct comparison

between EmbedSegbioGT and StarDist-3dbioGT can be seen

in Fig. 5A. It can be seen that the segmentation of the

EmbedSegbioGT model matches the exact boundary of the

nucleus much better. To emphasize the blurry boundaries,

the contour of the bioGT is also shown in the DNA dye repre-

sentation. The superior performance of CellposebioGT over

CellposeNapari-GT is likely because bioGT has better spa-

tial consistency in 3D and thus much easier for Cellpose

to learn spatial gradients (i.e., annotating 3D nuclei slice-

by-slice can hardly maintain the smoothness along Z). Fig.

5C shows an example of both Cellpose predictions. Both

cases clearly show that Cellpose has problems to segment

the nuclei properly. Not only are the boundaries predicted

to be too small, in addition many different cell instances are

predicted, thus splitting a single nucleus into many smaller

segments. However, CellposebioGT predicts a clearly domi-

nant instance, which is why the volume of CellposebioGT is

closer to that of bioGT than that of CellposeNapari-GT.

Figure 6. Overview of the difference between the coeffi-

cients of determination Δr2 of the predictions obtained with

EmbedSegbioGT and EmbedSegNapari-GT. Positive values indicate

the superiority of the bioGT model, while the annotated cells of

the heatmap represent the coefficients discussed with high impact

on the principal components presented. Accordingly, the other

coefficients shown are negligible due to their low impact on the

principle components and are shown only for completeness. For

clarity, the shown range is limited to ±0.5.

3899



5 10 15 20 25 30 35
number of training images

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

r2
vo

lu
m

e
A

DNA dye bioGT + predicted contours

DNA dye bioGT + predicted contours

si
de

 v
ie

w
fr

on
t 

vi
ew

B

XXYYY ESNapari-GT

ZY

ESbioGT

Figure 7. (A) r2 of different EmbedSegbioGT models with different numbers of training data. (B) Prediction from EmbedSegbioGT and

EmbedSegNapari-GT on the only failed case (EmbedSeg detected 291 out of 292 nuclei), both compared to bioGT (the white area) in front

overview and side view.

3.3. Impact on individual SH coefficients

Following the first 8 PCs (covering 86.33% of the vari-

ance within the data), we further examined 10 SH coeffi-

cients with the largest impact on each of these 8 PCs. Since

one SH coefficient may be important for multiple PCs, in

our case, this resulted in 35 different SH coefficients in total

as metrics, which we compared the difference between their

r2 for EmbedSegbioGT and EmbedSegNapari-GT. The result-

ing error is Δr2 in a range of 0.08 ≤ Δr2 ≤ 2.61 with an

average of 0.43 (positive mean EmbedSegbioGT has higher

r2, while negative mean EmbedSegNapari-GT has higher r2).

Fig. 6 shows the comparison of all Δr2. Even though only

a total of 50.52% of the coefficients are superior for the

bioGT model, this includes, among others, all 35 compo-

nents with a large impact on our analysis. The first princi-

pal component covers 45.51% of the total variance within

the data and the average absolute weight ω̄ of the top 10

coefficients for PC1 is ω̄ = 0.211 ± 0.235 in a range of

0.037 ≤ ω ≤ 0.807, while the average absolute weight of

the other 279 coefficients (including 25 ones with large im-

pact on other PCs) for the first PC is ω̄ = 0.002± 0.003 in

a range of 0.000 ≤ ω ≤ 0.023. This shows the negligibil-

ity of the coefficients without much impact on the PCs and,

since the bioGT model is superior for all impactful SH coef-

ficients, this is further evidence of how manual annotations

affect downstream modeling of nuclear shapes.

3.4. Impact of the size of training data

We conducted experiments on different amounts of train-

ing data for EmbedSeg using bioGT. The results are shown

in Fig. 7A and confirm, based to the improved performance

with an increased number of training images, that a suf-

ficiently large amount of training data is important. The

size of training data heavily depends on the difficulty and

time-cost of ground truth collection. For a 3D image of

about 30 nuclei, the manual Napari-GT annotation time

was about one hour, while the total human effort to gen-

erate the bioGT, at less than a minute, was a fraction of that

time. Therefore, a systematic experimental-computational

co-design to permit efficient bioGT collection would make

it painless to collect a fairly large training set and thus

possible to build robust deep learning models for subse-

quent analyses. In addition, Fig. 7B shows the only failed

case, where the prediction of the EmbedSegbioGT model

contains holes within the segmentation, while the predic-

tion of EmbedSegNapari-GT also segments only slightly more

than half of the shown nucleus. This is a special nucleus

where the DNA dye was not highly expressed, resulting in

very weak nuclear signals without much textures. This is

another indication of the need for sufficient training data to

cover enough variance and make the predictions more ro-

bust against heterogeneously distributed DNA dye.

4. Conclusions and outlook
In this work, we want to point out the non-trivial risk

of using manual segmentation in biomedical research with

quantitative evidence, using an example problem of 3D

nuclei instance segmentation in fluorescence confocal mi-

croscopy. We showed the universalness of this issue on var-

ious state-of-the-art deep learning-based 3D nuclei instance

segmentation models and quantified the need for a suffi-

ciently large training set, which also made manual annota-

tion practically infeasible due to the huge time requirement.

Based on our results, we propose a computational and ex-

perimental co-design for the collection of biological ground

truth data that can be used to train deep learning-based seg-
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mentation models to enable robust and reproducible analy-

sis, even in subsequent experiments in which no additional

channel for bioGT is included anymore. In experiments

where obtaining a bioGT is not possible, we propose to per-

form variance estimation where a sample of the dataset is

annotated multiple times by the same researcher or the same

sample is annotated independently by multiple experts and

these annotations are evaluated for robustness.

Subsequent studies could address the detailed exami-

nation of data acquisition of further biologically correct

ground truths for other biomedical data and discuss their

limitations and advantages. It would also be interesting

to examine the impact of (an)isotropic sampling in Z as

well as that of convolved fluorescence light on ground truth

data acquisition. Possible further subsequent work could be

the investigation of specific applications: Although for cer-

tain experiments, knowing the volume is crucial, in some

cases it is already sufficient to know it only relatively (for

example, before and after treating the sample with a drug

to analyze the drug’s impact on growth or shrinkage). For

these experiments, studies could be conducted to determine

whether deep learning-based instance segmentation meth-

ods trained with manual annotations can predict volume

changes consistently enough for reliable studies.

We hope that our work has brought enough attention to

the biomedical image analysis community regarding the po-

tential issues of manual segmentation and highlights the ne-

cessity of interdisciplinary collaboration for reliable, time-

efficient and reproducible biomedical image analysis.

Acknowledgement

All authors are funded by the Federal Ministry of Edu-

cation and Research (Bundesministerium für Bildung und

Forschung, BMBF) in Germany under the funding ref-

erence 161L0272 and are also supported by the Min-

istry of Culture and Science of the State of North Rhine-

Westphalia (Ministerium für Kultur und Wissenschaft des

Landes Nordrhein-Westfalen, MKW NRW).

References
[1] Jannis Ahlers, Daniel Althviz Moré, Oren Amsalem, Ashley
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