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Abstract

Frontotemporal dementia (FTD) is a devastating neu-
rodegenerative disorder that primarily affects the frontal
and temporal lobes of the brain, leading to cognitive de-
cline and behavioral changes. Early and accurate diag-
nosis of FTD is crucial for initiating timely interventions
and providing appropriate care to patients. In the opinion
of the experts , about 12-22 persons out of the population
of 100,000 persons experience FTD. That means between
1.2 million and 1.8 million people have it worldwide. This
research paper proposes a novel deep learning framework
that utilizes sparse diffusion measures extracted from neu-
roimaging data to aid in the early diagnosis of Frontotem-
poral Dementia. The proposed model leverages the power
of deep learning techniques to automatically learn relevant
features from the data and effectively distinguish between
healthy individuals and those with FTD. The experimental
results demonstrate the promising potential of the proposed
approach in improving FTD diagnosis and paving the way
for future research in this area.

*Data used in preparation of this article were obtained

from the Frontotemporal Lobar Degeneration Neuroimag-

ing Initiative (FTLDNI) database. The investigators at

NIFD/FTLDNI contributed to the design and implementa-

tion of FTLDNI and/or provided data, but did not participate

in analysis or writing of this report (unless otherwise listed).

The FTLDNI investigators can be found at:NIFD/FTLDNI

investigators

1. Introduction

Frontotemporal Dementia(FTD) is a neurodegenerative

disorder, impacting millions of people globally [12, 19].

The current clinical diagnosis involves time-consuming

Diffusion Weighted Imaging (DWI), requiring at least 40

diffusion directions and leading to scanning durations ex-

ceeding three hours [18, 21]. Early and precise diagnosis

is crucial for effective treatment and management [8, 16].

Diffusion tensor imaging (DTI) is a powerful neuroimaging

technique that provides valuable information on the brain’s

white matter, often affected in FTD patients [5, 17, 26].

However, traditional linear methods for DTI processing re-

quire numerous diffusion directions, posing challenges for

patients and diagnostic labs. Recent advances in deep learn-

ing [1, 2, 3, 15, 23, 24] show promise in accelerating DTI

processing and improving quantitative measures for FTD

diagnosis. Attention-based deep learning, like Transformer-

DTI [10], focuses on relevant brain regions, enabling effi-

cient processing with fewer diffusion directions. However,

scalability becomes a concern with more diffusion direc-

tions due to increased trainable parameters, longer training

times, and higher memory requirements.

To address this, we propose a novel Swin-Transformer

attention-based deep learning model. The Swin Trans-

former’s hierarchical structure efficiently processes in-

put feature maps by dividing them into non-overlapping

patches, reducing computational costs and parameter count.

We aim to diagnose early FTD incidence accurately

by extracting quantitative measures such as Fractional

Anisotropy (FA), Axial Diffusivity (AD), and Mean Diffu-

sivity(MD) using our proposed model on the frontotemporal

lobar degeneration neuroimaging initiative (NIFD) dataset.

We compare its performance with traditional linear methods

and Transformer-DTI for different diffusion directions.

The main contributions of this article are as follows:

• Efficiently learning spatial correlation in neighboring

voxels to improve robustness of estimations of DTI pa-

rameters.

• Introducing a Framework for DTI Parameter Estima-

tion Utilizing Sparse Measurements while Maintaining

Comparable Estimate Quality to Dense Measurements.

• Demonstrating the capability of DTI parameter esti-
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mates of proposed model, to produce distinguishing

features for healthy and FTD patients.

The paper proceeds with a detailed description of our

proposed method and architecture in Section 2, followed by

experimental results and analysis in Section 3. We conclude

with a summary of our findings and future research direc-

tions in Section 4.

2. METHOD
A DWI image is a four-dimensional representation, with

the first three dimensions denoting spatial measurements

and the fourth dimension indicating water diffusivity across

various diffusion directions. DTI, a specific type of DWI,

captures diffusion anisotropy by utilizing a Gaussian model

that considers diffusivity as a function of orientation [4, 13].

This orientation function is characterized by a 3 × 3 sym-

metric matrix D, represented as Equation 1.

D =

⎡
⎣

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⎤
⎦ (1)

The tensor D represents the magnitude of diffusivity on

the surface of an ellipsoid, with its eigenvectors and eigen-

values corresponding to the directions and lengths of the

ellipsoid’s axes, respectively. The diffusion signal within

each 3D voxel is a vector s = [s1, s2, ..., sN ], and accord-

ing to the DTI formulation [13] shown in Equation 2, we

aim to extract the diffusion tensor D from the signal s.

si = s0e
(−bxxDxx−byyDyy−bzzDzz−2bxyDxy−2bxzDxz−2byzDyz)

(2)

Here, bjk, for j, k ∈ {x, y, z}, represents function

of diffusion directions g = {gi}Ni=1, where each gi =
[gix, giy, giz] is a unit direction vector. Additionally, s0 rep-

resents zero diffusion signal. By simplifying the b-matrix

as given in [13], we obtain the equation si/s0 = e−bgT
i Dgi ,

which provides the best accuracy of the diffusion coeffi-

cient D. The apparent diffusion coefficient Ki with re-

spect to each gi can be calculated as Ki = gTi Dgi =
(−1/b) ln(si/s0).

The design matrix α = [α1, ..., αN ]T repre-

sents the linear mapping between the diffusion ten-

sor D and the apparent diffusion coefficient estimates

K = [K1, ...,KN ]T using K = αD̄, where

D̄ = [Dxx, Dyy, Dzz, Dxy, Dxz, Dyz]
T and αi =

[g2ix, g
2
iy, g

2
iz, 2gixgiy, 2gixgiz, 2giygiz]

T . The traditional

linear least squares fitting (LLS) method [11] uses D̄ =
(αTα)−1αTK, which is susceptible to noise and sparse

measurements.

For sparse measurements, instead of using the linear

model, we propose solving for D directly using Equation

Algorithm 1 Preprocessing the data for the proposed model

The preprocessing algorithm for DWI images from the

NIFD dataset involves creating three preprocessed training

datasets: NIFD − 41, NIFD − 21, and NIFD − 5.

Step 1: Utilize the DTI model fitting procedure available

in the DIPY Python package[9] to process each individual

DWI image separately. This process yields six distinct

diffusion components, namely Dxx, Dxy , Dyy , Dxz , Dyz ,

which collectively constitute the diffusion tensor.

Step 2: Choose 20, 000 voxels from each DWI image by

evaluating their fractional anisotropy (FA) score. Voxel

selection should disregard zero values and maintain a

uniform distribution across the interval (0, 1).
Step 3: Collect a dataset comprising 20, 000 pairs of

(input, ground-truth), with each pair containing a 5× 5× 5
voxel patch as the input. This patch is characterized by

41 diffusion directions per voxel. The corresponding

ground-truth component encompasses a 5 × 5 × 5 voxel

patch, where each voxel is associated with a 6 × 1 vector

representing the six diffusion components of the diffusion

tensor.

Step 4: Create a matrix of dimensions 125 × 41 for each

input voxel by combining the diffusion signals from the

adjacent 5× 5× 5 patch.

Step 5: Concatenate the diffusion directions (3 × 41)
with the diffusion signal to yield a matrix of dimensions

128× 41 for each input voxel.

Step 6: Perform zero-padding on the input of every tuple,

resulting in a 128 × 100 matrix, while the corresponding

ground truth is depicted as a 125 × 6 matrix. The resultant

collection of training data is referred to as NIFD − 41.

Step 7: Utilizing the DIPY package, apply Qball-based

interpolation [25, 9] to the 41-directional input from the

NIFD − 41 dataset. This process will yield diffusion

signals with 41, 21, and 5 directions, respectively.

Step 8: Concatenate the diffusion directions and diffusion

signals within each tuple to generate input vectors of

dimensions 125 × 41, 125 × 21, and 125 × 5, as well as a

ground truth matrix of size 125× 6.

Step 9: Apply zero-padding to the input of every tuple,

resulting in the formation of a matrix sized 128× 100.

Step 10: The generated training datasets are denoted as

NIFD−41, NIFD−21, and NIFD−5, corresponding

to the specific diffusion directions of 41, 21, and 5 respec-

tively.

2 as an inverse map D̄ = F (X,g), where the input X =
[s1/s0, ..., sN/s0] per voxel. We have formulated F using

a Swin-transformer based neural network [14]. Our model-

ing framework is a more generic approach, where a single
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Figure 1. The proposed model architecture for training and prediction of the neural network.

Table 1. The number of pixels with p-values outside Confidence Intervals (95% and 99%) for t-statistics (tstat1 and tstat2) in the Proposed

Model, LLS fitting, and Transformer-DTI, with tstat1 hypothesis comparing Healthy CN > FTD patient and tstat2 hypothesis comparing

Healthy CN < FTD patient.

P-Value Ground Truth Proposed Model LLS fitting Transformer-DTI
5 Diff. 21 Diff. 5 Diff. 21 Diff. 5 Diff. 21 Diff.

tstat1, 95 C.I. 15870 9924 14471 13844 18262 9481 17820

tstat2, 95 C.I. 4294 7527 5719 5391 4351 12162 4517

tstat1, 99 C.I. 3591 2418 3564 3585 4836 2510 4866

tstat2, 99 C.I. 837 1702 1450 1061 913 3818 1181

model can efficiently learn from diffusion signals with dif-

ferent numbers of diffusion directions (e.g., 41, 21, 5).

In practical applications, multiple attention heads are

commonly used to learn diverse representations of the in-

put. The Transformer-DTI [10] model employed multi-head

self-attention to estimate diffusion tensor imaging parame-

ters using only six diffusion-weighted images.

In our proposed model, we introduce a modified ver-

sion of window self-attention to enhance non-linearity and

decrease the number of parameters. This window self-

attention mechanism offers several advantages over tradi-

tional self-attention mechanisms, making it a crucial com-

ponent. Instead of embedding the diffusion directions im-

plicitly using learned weights, we concatenate the direction

vector as part of the input signal. This enhancement im-

proves the model’s non-linearity and enables it to capture

more intricate relationships within the input data. Tradi-

tionally, self-attention applies distinct triplets of (query, key,

value) to each position in the input. However, in our pro-

posed model, we employ window self-attention, where the
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Figure 2. Comparison of 41 diffusion directions: Ground truth vs.

Proposed method vs. LLS fitting [11]

Figure 3. Comparison of 21 diffusion directions: Ground truth vs.

Proposed method vs. LLS fitting [11] and Transformer-DTI [10]

same triplets are applied to all windows within the same

patch. This patch-based method divides the input matrix

into patches and independently applies spatial relative at-

tention to each patch, reducing the computational burden of

spatial relative attention and allowing for the modeling of

long-range spatial relationships in large images.

In our proposed model based on the Swin Transformer

Figure 4. Comparison of 5 diffusion directions: Ground truth vs.

Proposed method vs. LLS fitting [11] and Transformer-DTI [10]

Figure 5. Six diffusion components of diffusion tensor for 5 diffu-

sion directions

Figure 6. Six diffusion components of diffusion tensor for 21 dif-

fusion directions

architecture, neighboring windows are strategically shifted

using a designated stride, resulting in overlapping regions

between adjacent windows. This strategic overlap serves to

facilitate inter-token attention, enabling tokens to establish

connections with one another even when they belong to dif-
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Figure 7. Axial brain slice representing the Cingulum region, high-

lighted with p-value of two sample t-test(df=8). Green color: hy-

pothesis testing tstat1 - Healthy CN > FTD patient, Red color:

hypothesis testing tstat2 - Healthy CN < FTD patient.

Figure 8. Coronal brain slice representing the Uncinate fasciculus

region, highlighted with p-value of two sample t-test(df=8). Green

color: hypothesis testing tstat1 - Healthy CN > FTD patient, Red

color: hypothesis testing tstat2 - Healthy CN < FTD patient.

ferent windows. This dynamic interaction between tokens

introduces an expanded array of opportunities for mutual

influence, thereby nurturing the development of more intri-

cate and enriched representations.

As a component of our proposed model, we have incor-

porated a novel activation function that is based on element-

wise multiplication. Specifically, in our system, the values

of Dxx, Dyy , Dzz are restricted to a range between 0 and

1, while the values of Dxy , Dyz , Dxz are limited to a range

between -1 and 1. To handle these distinct ranges, we uti-

lized the sigmoid activation function for the former set and

the tanh activation function for the latter set. Addition-

ally, the magnitude of the outputs D̄ is a nonlinear func-

tion of the magnitude of the DWI signals. To incorporate

this knowledge, we multiplied the final outputs by the out-

put of a Sigmoid-activated dense layer on the DWI signal.

This innovative approach enabled us to modulate the output

magnitude of the estimates, which in turn reduced the train-

ing time and improved the overall accuracy of our proposed

framework.

2.1. Data Preprocessing and Model Training

We developed an algorithm to preprocess diffusion-

weighted imaging (DWI) images from the NIFD dataset, re-

sulting in three preprocessed training datasets: NIFD−41,

NIFD−21, and NIFD−5. The preprocessing algorithm

is outlined in Algorithm 1 [9, 25].

Our neural network was trained on a dataset consisting

of 20,000 tuples per image obtained from three different

datasets: NIFD−41, NIFD−21, and NIFD−5 [9, 25].

These tuples were derived from a subset of 24 diffusion-

weighted imaging (DWI) images, preprocessed using Algo-
rithm 1. The architecture of our neural network is illustrated

in Figure 1, where we employ a Swin-transformer block

known for its ability to capture correlations within input sig-

nals [14]. In our case, the input signals consist of diffusion

signals along with diffusion directions, and our model con-

siders the diffusion signals within a neighboring 5 × 5 × 5
patch along with the current voxel diffusion signal.

3. Results and Discussions

In our experiments, we employed 54 DWI images from

the NIFD dataset, comprising 27 from the Cognitively Nor-

mal (CN) group and 27 from the FTD patient group. To

train our model, we used 12 CN and 12 FTD patient im-

ages, with 3 from each group used for validation. The re-

maining 12 CN and 12 FTD patient images were reserved

for testing. We considered the output of LLS fitting over

NIFD-41 as ground truth for our experiments. To evaluate

the performance of our proposed method, we compared its

results with LLS fitting and Transformer-DTI. Figure 2 il-

lustrates the comparisons of ground truth, proposed method,

and LLS fitting for 41 diffusion directions. The results

demonstrate that the proposed method is comparable to LLS

fitting, accurately estimating diffusion tensor parameters.

Figure 3 presents the diffusion measures for 21 diffusion di-

rectional signals, while Figure 4 shows the results for 5 dif-

fusion directional signals using the proposed method, LLS

fitting, and Transformer-DTI. Our proposed method shows

comparable performance to LLS fitting [11] for 21 diffusion

directions (Figures 3 and 6), and outperforms Transformer-

DTI [10]. For 5 diffusion directions, our model surpasses

both LLS fitting and Transformer-DTI (Figures 4 and 5),

demonstrating its effectiveness in accurately estimating dif-

fusion measures, especially with fewer diffusion directions.

Error plots of six diffusion components D̄ for 5 and 21 dif-

fusion directional signals are presented in Figures 5 and 6,

respectively. Furthermore, the study employed a t-test anal-

ysis using the tract-based spatial statistics (TBSS) pipeline

[22] to assess the statistical significance of our results. The

analysis compared two groups, Healthy CN and FTD pa-

tients, based on fractional anisotropy (FA) metrics. FA im-

ages were registered to the FMRIB-58 template in the MNI
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space using FNIRT from FSL [20]. The white matter skele-

ton was derived from a mean FA image with an FA thresh-

old of 0.2, enabling a reliable statistical interpretation of the

data. Figures 7 and 8 show axial and coronal brain slices

highlighting the Cingulum and Uncinate fasciculus regions

with p-values obtained from two sample t-tests. The re-

sults reveal significant associations between FTD patients

and the Cingulum and Uncinate fasciculus regions, consis-

tent with previous studies [6, 7]. Our proposed framework

demonstrates a similar relationship with sparse data, reduc-

ing scanning time significantly. These white matter tracts

play a crucial role in various cognitive processes, and alter-

ations in their microstructural integrity may be linked to the

onset of FTD. Table 1 compares the number of pixels with

p-values outside confidence intervals for different diffusion

directions (5 Diff. and 21 Diff.) at 95% and 99% confi-

dence intervals. The results demonstrate that our proposed

method maintains an equal number of pixels with signifi-

cant differences compared to the ground truth, whereas the

LLS fitting and Transformer-DTI methods show greater de-

viations from the ground truth.

4. CONCLUSION

In conclusion, the potential of the proposed Swin-

Transformer-based deep learning framework, integrating

sparse diffusion measures, as a promising approach for

early diagnosis of FTD patients. By incorporating sparse

diffusion measures, our framework effectively captures the

underlying structural connectivity of the brain, a critical fea-

ture in FTD patients. Through this innovative approach,

the Swin-Transformer-based deep learning model success-

fully learns the intricate relationships between brain con-

nectivity patterns and disease status, facilitating accurate

diagnosis of FTD patients at an early stage. The results

of this study encourage further investigation of the frame-

work’s capabilities in large-scale clinical trials, offering the

potential to contribute significantly to the field of neurode-

generative disorder diagnosis. Future research can also ex-

plore the framework’s effectiveness in detecting FTD pa-

tients in diverse populations, potentially expanding its ap-

plications to a broader range of individuals. Our proposed

Swin-Transformer-based deep learning framework presents

a promising avenue for enhancing early detection and di-

agnosis of FTD patients, which may lead to more effective

interventions and improved patient care.
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