
Complex-Valued Retrievals From Noisy Images Using Diffusion Models

Nadav Torem*† Roi Ronen*† Yoav Y. Schechner† Michael Elad‡

†Viterbi Faculty of Electrical and Computer Engineering & ‡Department of Computer Science
Technion - Israel Institute of Technology, Haifa, Israel

{torem@campus, roironen@campus, yoav@ee, elad@cs}.technion.ac.il

Abstract

In diverse microscopy modalities, sensors measure only
real-valued intensities. Additionally, the sensor readouts
are affected by Poissonian-distributed photon noise. Tradi-
tional restoration algorithms typically aim to minimize the
mean squared error (MSE) between the original and recov-
ered images. This often leads to blurry outcomes with poor
perceptual quality. Recently, deep diffusion models (DDMs)
have proven to be highly capable of sampling images from
the a-posteriori probability of the sought variables, result-
ing in visually pleasing high-quality images. These mod-
els have mostly been suggested for real-valued images suf-
fering from Gaussian noise. In this study, we generalize
annealed Langevin Dynamics, a type of DDM, to tackle
the fundamental challenges in optical imaging of complex-
valued objects (and real images) affected by Poisson noise.
We apply our algorithm to various optical scenarios, such
as Fourier Ptychography, Phase Retrieval, and Poisson de-
noising. Our algorithm is evaluated on simulations and bi-
ological empirical data.

1. Introduction
Light is a complex-valued field. During imaging, both

the phase and intensity of the field change by the cap-

tured objects and the propagation within the optical sys-

tem. Typically, the examined objects are assumed to have

only real values. Recovering the phase of complex-valued

objects is often crucial [1, 2]. However, image sensors

can only measure real-valued non-negative intensities. This

limitation gives rise to inverse problems such as phase-

retrieval [3, 4, 5, 6, 7] ptychography [8, 9], Fourier ptychog-

raphy [10, 11, 12, 13, 14], coded diffraction imaging [15]

and holography. A common characteristic of all these prob-

lems is the nonlinear relationship between the measure-

ments and the complex-valued unknowns.

Furthermore, the particle nature of light leads to

Poissonian-distributed photon noise, in contrast to the com-

monly assumed Gaussian noise [16, 17, 18, 19, 20, 21, 22].

Figure 1: Poisson denoising. Results of BM3D + I +

VST [23] and our algorithm on real data [18], obtained via

two-photon microscopy. [Bottom] A zoom-in. Our recov-

ery has high-perceptual quality (sharp) and low distortion.

Poisson noise complicates the recovery of phase-related

problems as well as linear problems involving real-valued

images. Therefore, addressing Poisson noise during restora-

tion is of great importance, especially in scientific tasks,

such as cell imaging (see Fig. 1).

Over the years, restoration algorithms have varied based

on their objective. These algorithms, whether classical

(NLM [24], KSVD [25], , WNNM [26], and BM3D [27])

or based on deep-learning (TNRD [28], MALA [29],

DnCNN [30], Noise2Void [31] and NLRN [27]), have

been typically designed to minimize the mean squared er-

ror (MSE) between true and estimated images. These are

MMSE estimators. Alternatively, other methods pursued

maximum a-posteriori probability1 (MAP) [25, 32].

The distortion-perception trade-off [33, 34] states that in

image recovery, the resulting distortion (MSE score) is re-

ciprocal to the resulting perceptual quality. Hence, there

is a growing interest in recovery algorithms that yield high

perceptual quality, rather than minimizing the MSE. Some

prior works along this line use generative adversarial net-

works (GANs) for image recovery. GANs can be turned

into samplers from the posterior distribution. However,

1Interestingly, also works on these methods tend to report performance

using MSE.
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Figure 2: Imaging of a complex-valued objects. The imaging setup captures only real valued noisy intensities. Given the

noisy measurements, our method stochastically recovers the objects amplitude and phase.

training difficulties and lack of solid mathematical guaran-

tees hindered these techniques.

Newcomer generative models are deep diffusion models

(DDMs). DDMs are a highly-performing class of iterative

probabilistic generative models. DDMs have shown success

in solving various inverse problems [35, 36, 37, 38, 39, 40,

41]. However, a DDM requires a likelihood term, which is

often analytically intractable due to the imaging noise statis-

tics. As a result, restoration algorithms that utilize DDMs

have primarily concentrated on linear inverse problems af-

fected by stationary Gaussian noise [37, 40, 39]. An ex-

ception is [42] which proposes DDMs for nonlinear inverse

problems. It has two limitations: (i) Being restricted to real-

valued images, and (ii) Requiring costly back-propagation

through a DNN in each iteration. This lengthens computa-

tion time during recovery.

One type of DDM is annealed Langevin Dynamics. In

this study, we generalize this DDM type, to tackle funda-

mental challenges in optical imaging: recovering complex-

valued objects (and real images) affected by Poisson noise

(see Fig. 2). To handle the untraceable likelihood term, we

analytically develop a novel relaxed model, derived from

the optical setting and the Poisson noise distribution. We

show that the gradient of the prior can be expressed via an

expectation, which is conveniently approximated by a deep

neural network (DNN). We apply our algorithm2 to various

optical scenarios, such as Fourier ptychography, phase re-

trieval, and Poisson denoising. Our method samples from

the posterior distribution, thus exposing uncertainties in the

recovery, via the spread of the results. The uncertainty is

valuable when imaging true objects. We show results on

simulations and real empirical biological data .

2. Theoretical Background
2.1. Noise

Empirical light measurements are random, mainly due

to the integer nature of photons and electric charges. This

2An initial description of this work appears in [43].

randomness is often regarded as photon noise. Dark noise,

quantization noise, and photon noise are the dominant noise

sources in common cameras [44]. Denote incorporation of

noise into the expected noiseless signal I by the operator

N . The noisy measurement is y = N (I).
Photon noise is modeled by a Poisson process [44]. A

pixel is characterized by its full well capacity (FWC), that

is, the maximal amount of charge that can be accumulated

in the pixel before saturating. Let xe ∈ [0,FWC] be the

expected (noiseless) value of a measured signal (photo-

electrons). The corresponding noisy measurement is

ye ∼ Poisson(xe). (1)

Photon noise is fundamental. Its crucial nature of signal-

dependency (1) is valid both for photon-hungry scenes, and

even more so for well-lit scenes, as the noise variance is

higher in brighter pixels.

Modeling the nature of noise, being signal-dependent, is

important when solving scientific inverse problems in opti-

cal imaging. However, data analysis under Poisson noise is

difficult to deal with in a closed form. Therefore, in many

inverse problems, Poisson noise is approximated by a Gaus-

sian distribution, ne ∼ N(0, xe). The variance still depends

on the noiseless signal. Define normalized variables

x =
xe

FWC
∈ [0, 1] , y =

ye

FWC
, σ0 =

1√
FWC

. (2)

The Gaussian approximation of a measurement is

nmeas ∼ N(0, σ2
0x) . (3)

The normalized approximation of Eq. (1) is

y ≈ x+ nmeas . (4)

In Eqs. (1,4), the noise variance is linear in x, and the signal-

to-noise-ratio (SNR) is the same. Hence, in this work, the

parameter σ0 controls the measurement noise level.
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2.2. Imaging of Complex-valued Objects

Let r represent the 2D spatial coordinate of an object.

Let a(r), φ(r) be its amplitude and phase, respectively,

and j =
√−1. An optically-thin object has transmittance

o(r) = a(r) exp [jφ(r)]. Cameras only measure intensity.

Therefore, optical imaging systems can often be formulated

by an imaging model, which is nonlinear in o. Let ρ be the

object irradiance. Let H be a linear transformation, which

depends on the optical system. A noisy measurement y is

modeled by

y = N (
ρ|H{o(r)}|2) . (5)

For example, in the phase retrieval problem [45], H is

equivalent to the Fourier transform F .

Fourier ptychography uses a set of M linear transforma-

tions H = {Hm}Mm=1. This method enables to expand the

diffraction limit set by the numerical aperture of the opti-

cal system, thus increasing the optical resolution. Let F−1

be the inverse Fourier transform. In the spatial frequency

domain k, the pupil function P (k − km) is a 2D bandpass

filter, centered at spatial frequency km with a spatial band-

width set by the system numerical aperture. Overall,

Hm{o(r)} = F−1{P (k− km)F{o(r)}}. (6)

Discretize o(r) to q elements and the measurements y(r)
to qmeas = Mq sampled pixels, creating vectors o ∈ C

q

and y ∈ R
qmeas

. The discrete version of the linear trans-

formation H is H ∈ C
qmeas×q . The discrete versions of

the Fourier transform, its inverse, and the pupil function are

denoted by F,F−1 and Pm, respectively. Then, Hmo =√
ρF−1 [Pm � [Fo]], where � is an element-wise multipli-

cation. Assume that the dominant noise in Eq. (5) is photon

noise. Following Sec. (2.1), during data analysis, we ap-

proximate this noise as Gaussian nmeas ∼ N(0, σ2
0 |Ho|2).

Then, Eq. (5) takes the form

y = |Ho|2 + nmeas . (7)

2.3. Langevin Dynamics

Denoising is ill-posed: a noisy input may have multiple

possible solutions. To address this, Langevin Dynamics can

be used for denoising, converging stochastically to a single

sharp possible solution. Here we detail it shortly.

Let t ∈ [1, . . . , T ] be an iteration index and αt > 0 be an

appropriately chosen small function of t, having αt→T = 0.

To maximize the probability distribution p(x|y), the follow-

ing iterations can be apply

xt+1 = xt + αt∇xt log p(xt|y) . (8)

Eq. (8) may converge to an undesired local maximum. To

address that, Langevin Dynamics [46] adds to Eq. (8) syn-
thetic noise nLangevin

t ∼ N(0, I) at iteration t,

xt+1 = xt + αt∇xt
log p(xt|y) +

√
2αtn

Langevin
t . (9)

Langevin Dynamics is a type of gradient descent. It relies

on stochastic steps to converge to a probable solution.

In general, when solving an inverse problem, neither

p(xt|y) nor ∇xt
log p(xt|y) are known. Still, to use

Eq. (9), there is a need to assess ∇xt
log p(xt|y). To ad-

dress that, Ref. [47] extends Eq. (9) into annealed Langevin

Dynamics. Hence, iterations would not perform Eq. (9),

and would not attempt to update a vector xt whose proba-

bility cannot be computed. Instead, iterations would update

a vector, that we denote x̃t, for which we can analytically

assess the gradient ∇x̃t
log p(x̃t|y). We thus need to prop-

erly define x̃t. Analogously to Eq. (9), annealed Langevin

Dynamics has this iterative rule

x̃t+1 = x̃t + αt∇x̃t
log p(x̃t|y) +

√
2αtn

Langevin
t . (10)

Any x̃t differs from x by an error eanneat ,

x̃t = x+ eanneat . (11)

We stress that this induced error eanneat is only a conceptual

mathematical maneuver, and is not actually added during

the iterative process. It is important that the probability dis-

tribution of eanneat would be known, despite not knowing

the actual value of eanneat . Moreover, the error is designed
such that eanneat→T ≈ 0.

Let us proceed with the description of annealed Langevin

Dynamics Eq. (10). Using Bayes rule,

∇x̃t
log p(x̃t|y) = ∇x̃t

[log p(y|x̃t) + log p(x̃t)] . (12)

There is a need to derive tractable expressions to the right-

hand side of Eq. (12). The term ∇x̃t
log p(y|x̃t) in Eq. (12)

can sometimes be derived analytically using the known dis-

tribution of eanneat , as we show in Sections 3.1 and 3.2.

To obtain ∇x̃t log p(x̃t), Refs. [40, 48] follow [49]: Be-

fore imaging takes place, they pre-train a DNN denoiser to

approximate ∇x̃t
log p(x̃t).

3. Langevin Dynamics for Optical Imaging
As described in Sections 2.1 and 2.2, real-world mea-

surements have: (a) Poisson distributed noise; (b) Nonlinear

transforms over complex-valued objects. There is a need to

extend annealed Langevin Dynamics for both (a) and (b).

As discussed in Section 2.3, in general inverse prob-

lems ∇x log p(x|y) is unknown. Therefore, in annealed

Langevin Dynamics, ∇x̃t
log p(x̃t|y) is exploited, while

using the connection

lim
t→T

∇x̃t log p(x̃t|y) → ∇x log p(x|y). (13)

In a similar fashion, to analytically handle signal depen-

dency of noise, we model the noise as if the signal depen-

dency is proportional to x̃t rather then x. This allows us
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Algorithm 1: Langevin Dynamics for complex-

valued objects. For real-valued images, õ is re-

placed by x̃.

Initialize õ0, set a step size ε > 0
for t ← 1 to T do

αt ← ε(σ2
t /σ

2
T )

Draw nLangevin
t from a Gaussian distribution

if õ is complex-valued then
From Eq. (39) compute gradient

Δt ←∇õt−1
log p(y|õt−1) + hcomplex

Θ̂
(õt−1|σt)

else
From Eq. (26) compute gradient

Δt ←∇õt−1 log p(y|õt−1) + hPoisson
Θ̂

(õt−1|σt)

end
õt ← õt−1 + αtΔt +

√
2αtn

Langevin
t

end
ô ← õT

to analytically develop ∇x̃t log p(y|x̃t) as described later

on in Sections 3.1 and 3.3. From Eq. (11), notice that our

approximation becomes accurate as x̃t → x. The iterative

algorithm is described in Algorithm 1.

3.1. Denoising Poissonian Image Intensities

We now attempt to recover an image x, given its noisy

version y. As discussed in Section 2.1, y contains several

types of noise. Indeed data is generated using a rich noise

model: true Poissonian, compounded by graylevel quanti-

zation. For data analysis, however, we act as if y is re-

lated by Eq. (4). The parameter σ0 is known from the cam-

era properties by Eq. (2). Here, all vector operations are

element-wise. Analogously to [40, 48], we set a sequence of

noise levels σ0 > σ1 ≥ σ2 ≥ · · · ≥ σT > σT+1 = 0. Let

epartt be a statistically independent synthetic partial dummy

error term, distributed as

epartt ∼ N
[
0, (σ2

t − σ2
t+1)I

]
. (14)

A sum of zero-mean Gaussian variables is a Gaussian,

whose variance is the sum of the variances. So,

t2∑
τ=t1

epartτ ∼ N
[
0, (σ2

t1 − σ2
t2)I

]
. (15)

Using Eqs. (3) and (15) , we design epartt such that

nmeas =
√
x

T∑
τ=0

epartτ . (16)

Moreover, recall that eanneat is a dummy error term. We set

eanneat in this task as

eanneat =
T∑

τ=t

epartτ . (17)

We do not set eanneat as Refs. [40, 48] because the noise in

Refs. [40, 48] has stationary Gaussian distribution and here

it is Poissonian (signal-dependent). We generalize Eq. (11)

to Poisson noise, by defining an annealed variable

x̃t = x+
√
xeanneat = x+

√
x

T∑
τ=t

epartτ . (18)

Eq. (18) allows us to derive ∇x̃t
log p(y|x̃t) analytically for

Poisson denoising. Inserting Eqs. (16) and (18) in Eq. (4),

y = x̃t−
√
x

T∑
τ=t

epartτ +
√
x

T∑
τ=0

epartτ = x̃t+
√
x

t−1∑
τ=0

epartτ .

(19)

Notice that x̃t is statistically independent of the addi-

tional dummy error
∑t−1

τ=0 e
part
τ . We apply the following

steps. From Eq. (19),

p(y|x̃t) = p(y − x̃t|x̃t) = p

([
√
x

t−1∑
τ=0

epartτ

]
|x̃t

)
.

(20)

Recall that x in Eq. (20) is unknown. Therefore, to set an

explicit analytical expression of Eq. (20), we approximate

the remaining measurement noise as if the signal depen-

dency is proportional to x̃t rather3 then x. Overall, Eq. (20)

takes the form of

p(y|x̃t) ≈ p

([√
x̃

t−1∑
τ=0

epartτ

]
|x̃t

)
. (21)

Finally, the expression
√
x̃t

∑t−1
τ=0 e

part
τ is both known and

statistically tractable. This allows us to find an explicit ex-

pression of the probability distribution p(y|x̃t)

p(y|x̃t)≈ 1√
2π(σ2

0 − σ2
t )x̃t

exp

[
− (y − x̃t)

2

2(σ2
0 − σ2

t )x̃t

]
. (22)

Computing the gradient of the logarithm of Eq. (22) yields

∇x̃t
log p(y|x̃t) =

1

2(σ2
0 − σ2

t )

(
y2

x̃2
t

− 1

)
− 1

2x̃t
. (23)

In analogy to Section 2.3, we compute ∇x̃t
log p(x̃t).

The derivation is detailed in the supplementary material.

Here we bring the result: ∇x̃t
log p(x̃t) is given by,

∇x̃t log p(x̃t) = E

[
x− x̃t

σ2x
|x̃t

]
. (24)

The expectation in Eq. (24) cannot be calculated analyti-

cally. The reason is that the probability distribution of x is

3From Eq. (18), this approximation becomes accurate as x̃t → x.
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not accessible. So, before imaging takes place, we pre-train

a DNN hPoisson
Θ having learnable parameters Θ to estimate

∇x̃t
log p(x̃t), using synthetic pairs of corresponding clean

and noisy images (x,x′),

Θ̂ = argmin
Θ

E

[∥∥∥∥x− x′

σ2x
− hPoisson

Θ (x′|σ)
∥∥∥∥
2

2

]
. (25)

The expectation E is approximated by an empirical average

of all pairs in the training set of corresponding clean and

noisy images (x,x′). Overall, Eqs. (23,24,25) yeild

∇x̃t log p(x̃t|y) = ∇x̃t log p(y|x̃t) + hPoisson
Θ̂

(x̃t|σt) =

1

2(σ2
0 − σ2

t )

(
y2

x̃2
t

− 1

)
− 1

2x̃t
+ hPoisson

Θ̂
(x̃t|σt) . (26)

3.2. Recovering Complex-Valued Objects

This section formulates annealed Langevin Dynamics

for complex-valued, nonlinear imaging models. Let �(·),
�(·) be real and imaginary arguments of a complex-valued

number, respectively. Analogously to Eq. (9), for Langevin

Dynamics, ∇ot
log p(ot|y) is needed. However, p(ot|y) is

not known, thus analogously to Eq. (10), annealed Langevin

Dynamics for a complex-valued object is

õt+1 = õt + αt∇õt log p(õt|y) +
√
2αtn

Langevin
t . (27)

Here, nLangevin is a random complex-valued vector, where

�(nLangevin),�(nLangevin) ∼ N(0, I) and independent.

For simplicity, we present here the special case H = I in

Eq. (7). Thus, most derivations can be given in scalar for-

mulation, that is, y = |o|2 + nmeas. The generalization of

the model to a general H is detailed in the supplementary

material. Analogously to Eq. (11), we set

õt = o+ eanneat . (28)

Using Eq. (28) in Eq. (7) yields

y = |õt|2 − ecouplet + |eanneat |2 + nmeas , (29)

where

|ot|2 = �(ot)2 + �(ot)2 , (30)

ecouplet = 2 [�(õt)�(eanneat ) + �(õt)�(eanneat )] , (31)

and |eanneat |2 = �(eanneat )2 + �(eanneat )2. The non-

linearity of Eq. (7) yields two terms in Eq. (29) that pose an-

alytic challenges: a coupling term of ecouplet ; and a squared

annealing error term |eanneat |2. We handle them by intro-

ducing a relaxed model, creating annealed Langevin Dy-

namics for complex-valued objects, as

y = |õt|2 − ecouplet + |eanneat |2 + ñmeas
t − σ2

t zt . (32)

We detail Eq. (32) in Section 3.3.

3.3. Relaxation of the Nonlinear Problem

Let {σt}Tt=0 be a sequence of standard deviations, set to

σ0 > σ1 ≥ σ2 ≥ · · · ≥ σT > σT+1 = 0. Let

�(epartt ),�(epartt ) ∼ N [0,
1

4
(σ2

t − σ2
t+1)] (33)

be statistically independent Gaussian variables. As

described in Section 2.2 and in Eq. (3), for H = I,
nmeas ∼ N(0, σ2

0 |o|2). Using |o|2 from Eq. (30),

nmeas ∼ N [0, σ2
0�(o)2 + σ2

0�(o)2]. In analogy to

Eq. (16), we use Eq. (33) and design dummy variables

�(epartt ),�(epartt ) such that,

nmeas = 2�(o)
T∑

τ=0

�(epartτ ) + 2�(o)
T∑

τ=0

�(epartτ ) . (34)

Notice that Eq. (34) now has a form similar to the coupling

term ecouplet in Eq. (31). To make computations tractable,

we assume o ≈ õt in Eq. (34). We do not use õt as a de-

noised version yet. An approximate4 measurement noise is

ñmeas
t = 2�(õt)

T∑
τ=0

�(epartτ ) + 2�(õt)
T∑

i=0

�(epartτ ) .

(35)

Using Eqs. (31) and (35), define

eremain
t (õt) = ñmeas

t − ecouplet

= 2�(õt)
t−1∑
τ=0

�(epartτ ) + 2�(õt)
t−1∑
τ=0

�(epartτ ) . (36)

The term zt in Eq. (32) is designed to address the squared

annealing error term |eanneat |2. We detail zt in the supple-

mentary material, here we give the final result,

zremain
t = |eanneat |2 − σ2

t zt

=

[
t−1∑
τ=0

�(epartτ )

]2

+

[
t−1∑
τ=0

�(epartτ )

]2

. (37)

Inserting Eqs. (36) and (37) into the relaxed model in

Eq. (32), yields

y = |õt|2 + eremain
t (õt) + zremain

t . (38)

Using Eq. (38), ∇õt log p(y|õt) can be derived analytically.

Here we give the results: the derivation is detailed in the

supplementary material. Let I0, I1 be the modified Bessel

functions of the first kind [51]. Then,

∇õt log p(y|õt) =
õt

2(σ2
0 − σ2

t )

[
I(õt, y)

√
y

|õt| − 1

]
, (39)

4From Eq. (28), the approximation becomes accurate as eanneat → 0,

where õt → o and ñmeas
t → nmeas.
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σ0 = 0.025 σ0 = 0.05 σ0 = 0.1 σ0 = 0.2
CelebA 64x64 PSNR↑ SSIM% ↑ FID↓ PSNR↑ SSIM% ↑ FID↓ PSNR↑ SSIM% ↑ FID↓ PSNR↑ SSIM% ↑ FID↓

I + VST + BM3D [23] 39.1±1.0 99±0.1 2.80 35.8±1.1 98±0.2 8.90 30.9±1.2 96±1.0 25.4 27.2±1.1 93±2.0 63.2

PnP RED [50] 39.8±0.9 99±0.1 4.00 36.9±1.0 98±0.3 7.50 31.8±0.9 96±1.0 12.4 27.8±1.2 93±2.0 28.4

Bahjat et al. [48] 34.2±1.1 97±0.9 2.10 34.1±0.7 97±1.0 6.70 30.6±0.9 95±2.0 11.1 27.1±1.2 91±4.0 15.2

MMSE 42.5±1.0 99±0.1 1.32 38.4±1.1 99±0.2 3.60 34.5±1.1 98±0.5 7.50 30.9±1.2 96±1.0 11.9
Ours 41.5±1.1 99±0.0 1.25 37.1±1.0 99±0.4 2.70 32.8±1.1 98±0.5 6.10 28.6±1.3 94±1.0 13.0

FFHQ 256x256

DPS [42] 36.8±4.7 99±0.1 2.00 33.8±3.8 98±0.4 5.47 31.5±2.7 98±2.0 12.3 28.6±2.0 93±2.0 23.8
Ours 41.9±1.0 99±0.0 0.72 37.9±1.3 99±0.1 2.50 33.5±1.1 96±1.0 10.0 29.0±1.0 93±1.0 33.6

Table 1: Results on 1000 images of CelebA and FFHQ datasets. For σ0 ≤ 0.1, our algorithm has better FID and similar

SSIM with the MMSE denoiser and DPS [42]. The MMSE denoiser inherently achieves superior PSNR.

where I(õt, y) = I1

( |õt|√y

σ2
0−σ2

t

)
/I0

( |õt|√y

σ2
0−σ2

t

)
. The gradient

∇õt
log p(õt) is given by

∇õt
log p(õt) = E

[
o− õt

σ2
|õt

]
. (40)

See the supplemental material for the proof of Eq. (40).

Hence again, we pre-train5 a DNN hcomplex
Θ having

learnable parameters Θ to estimate ∇õt
log p(õt)

Θ̂ = argmin
Θ

E

[∥∥∥∥o− o′

σ2
− hcomplex

Θ (o′|σ)
∥∥∥∥
2

2

]
. (41)

Overall, the complex-valued derivative is

∇õt
log p(õt|y) = ∇õt

log p(y|õt) + hcomplex

Θ̂
(õt|σt) =

õt

2(σ2
0 − σ2

t )
�

[
I(õt,y)�

√
y

|õt| − 1

]
+ hcomplex

Θ̂
(õt|σt) .

(42)

4. Experiments
To evaluate recoveries we use the FID, SSIM and PSNR6

criteria. In all experiments we used the NCSNv2 architec-

ture [49] as the DNN. The bottleneck of the proposed al-

gorithm is iteratively running this DNN T ∼ 1000 times,

where time complexity increases with image size and lin-

early with T . We apply our algorithm on both real biologi-

cal data [18, 11] and on synthetic datasets, CelebA (64×64)

and FFHQ (256 × 256). We stress that during testing on

synthetic scenes, we synthesized data using actual Poisson
noise (Eq. 1). Moreover, 8-bit quantization was applied on

the simulated electron count.

4.1. Denoising Poissonian Image Intensities

We compare our algorithm with [23, 42, 48, 50] and an

MMSE solution. Fig. 3 and Table 1 present Poisson denois-

5The network input is a two-channel tensor of �(o′),�(o′).
6For complex-valued objects, the amplitude is evaluated

by standard PSNR metric. The recovered object’s phase ∠o
has an inherent ambiguity. We evaluate phase recovery by

PSNRphase(∠ô) = 10 log10

[
(2π)2

[
MSEphase(∠ô)

]−1
]

, where

MSEphase(∠ô) = argminθ ‖∠o− (∠ô+ θ)‖22 /q.

Clean Image Noisy Image DPS Ours

Clean Image Noisy Image BM3D MMSE  Ours

Figure 3: Poisson denoising results. From top to bottom:

CelebA σ0 = 0.1, σ0 = 0.2. FFHQ σ0 = 0.2.

ing results. Across all tests, our method outperforms [23], a

non-learning-based state-of-the-art method for Poisson de-

noising. Furthermore, we outperform Ref. [48], which uti-

lizes annealed Langevin Dynamics for Gaussian noise. This

indicates the benefit of addressing the natural property of

imaging noise. PnP RED [50] is a method to solve general

inverse problems. It uses Gaussian denoiser as its prior7.

Our method surpasses it, emphasizing the significance of

employing a customized denoiser for Poisson denoising.

Typically, the SNR in standard optical systems satis-

fies σ0 ≤ 0.1. In that regime, we have better FID re-

sults and similar SSIM results than the MMSE denoiser and

DPS [42]. MMSE denoisers are designed to minimize the

MSE criterion, that is, maximizing the PSNR. Thus, unsur-

prisingly, an MMSE denoiser yields a superior PSNR than

7The data term derives from a Poissonian model.

3815



σ0 = 2/255 3/255 4/255
HIO [52] 22.2 19.9 17.9

BM3D-prGAMP [54] 24.5 23.2 21.0

BM3D-ADMM [53] 27.5 24.5 21.8

DnCNN-ADMM [53] 29.3 26.0 22.0

prDeep [53] 28.4 28.5 26.4

Ours 33.1 32.6 28.9

Table 2: Phase retrieval PSNR results for the “natural” im-

ages dataset in [53], using different noise levels σ0.

other algorithms8, however, with blur outputs (see Fig. 3).

4.1.1 Poisson Denoising of Real Data

Fig. 1 shows our method on real data [18]. It contains noisy

colored images of fixed BPAE cells, obtained using two-

photon microscopy. The imaged sample was split into 20

non-overlapping patches, 19 for training, and the remaining

for testing. In [18], each patch was repeatedly captured 50

times, as 50 noise realizations. The clean ground-truth im-

age is based on temporal averaging of the 50 images. The

DNN trains only on 19 images with synthetic Poisson noise,

while testing on raw data involves real noise. The authors in

Ref. [18] modeled the imaging system noise by two additive

components with zero means: A signal-dependent Poisson

noise, and a negligible9 signal-independent Gaussian noise.

Therefore, we apply our denoising algorithm as the mea-

sured image y can be described by Eq. (4). The PSNR and

SSIM of the noisy raw data are 26 and 0.67, respectively,

while ours are 33 and 0.92.

4.2. Phase Retrieval

As described in Section 2.2, phase retrieval can be mod-

eled using H = F, that is, y = N (|Fx|2). Here N
contains photon noise and quantization, the latter using 8

bits per pixel. Note that even if x is a real-valued im-

age, the measurement y has no phase. This task is ill-

posed. The Hybrid Input-Output (HIO) [52] algorithm is

frequently used in phase retrieval. Letψ be a random Gaus-

sian vector. HIO initializes hundreds of possible candidate

solutions {xl} by Fxl =
√
y exp(j2πψl). Then, HIO it-

eratively uses negative feedback in Fourier space, in order

to progressively force the candidate solutions to conform to

the problem constraints. The candidate that holds best these

constraints is the evaluated HIO solution.

We compare our method (Algorithm 1) for phase re-

trieval, vs. prior art. Here, we initialize our algorithm

8An alternative method averages outputs of DDMs, to approximate an

MMSE result, followed by PSNR comparison [40].
9Let x ∈ [0, 1] be the true normalized image. Let nG, nP be Gaussian

noise and Gaussian approximation for the Poisson noise, with correspond-

ing standard deviations σG = 5 × 10−4 and σP =
√
x(2.5 × 10−2).

Then, the measured image y is approximated by y = x+ nG + nP .

Clean Image HIO Our Stochas c Resutls Our Variance

Figure 4: Phase retrieval results on CelebA images. A vari-

ance image is obtained by using 50 stochastic solutions.

Figure 5: Phase retrieval qualitative results for the dataset

suggested in [53] (σ0 = 4/255).

with an extremely noisy version of the HIO solution. We

found that the noisy initialization gives us better robustness

during iterations, but still stochastically converges to a va-

riety of possible solutions (see Fig. 4). Additionally, we

follow the experiment suggested in [53]. First, we trained

hComplex
Θ (o′|σ) with overlapping patches drawn from 400

images in the Berkeley Segmentation Dataset [55]. Then,

we evaluate our method on a test set of six “natural”

images[53], three images are presented in Fig. 5. Table 2

compares the results. In the supplementary material, we

present more results and further details.

4.3. Fourier Ptychography: Real Experiment

We further demonstrate our approach on the Fourier pty-

chography problem, described in Section 2.2. We use data

of real-world publicly available complex-valued biological

samples [56]. Using a Fourier ptychography imaging sys-

tem, the amplitude and phase of a sample of human bone

cells are recovered [11]. We randomly divided the recov-

ered sample into non-spatially overlapping patches, each of
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Figure 6: Fourier ptychography. Average PSNR for 10

complex-valued objects: [Top] Varying Poisson noise levels

σ0 and fixed M = 89. [Bottom] Varying number of LEDs

M and a fixed noise level σ0 = 0.1. [Baseline] Algorithm 1

excluding the prior term hcomplex

Θ̂
. The bars stand for PSNR

standard deviations.

size 256 × 256 pixels. Then, the patches were split ran-

domly into training and test sets. We train our denoiser over

the training set, according to Eq. (41). For each patch o in

the test set, we simulate M noisy measured images, each

corresponding to a single LED in the optical system, ac-

cording to Eqs. (5) and (6). Figs. 6 and 7 show the results

using Algorithm 1. Further details about this test and more

results are in the supplementary material.

5. Discussion
We generalize annealed Langevin Dynamics to realis-

tic optical imaging, which involves complex-valued objects

and Poisson noise. Our method is generic and can be ap-

plied to a variety of imaging transformations H. Further-

more, the pre-trained DNN in Eq. (41) is independent of the

imaging system parameters σ0 and H of Eq. (7). Hence, the

same DNN can be used for various optical systems.

Dealing with non-Gaussian noises, is essential in real-

world imaging. Hence, noise statistics create new and in-

teresting challenges, specifically in low-light conditions.

There are more challenging forward models in imaging.

These include imaging by coherent illumination (with

speckles), partial-coherence, and models that are nonlin-

ear with respect to the illumination (e.g. two-photon mi-

croscopy). Other computer vision problems are highly

nonlinear in the unknowns, such as tomography scatter

Figure 7: Fourier ptychography. Our results of a complex-

valued restoration, for M = 89 LEDs, σ0 = 0.1 and 8

bit quantization. [Top] The amplitude and phase images’

dynamic range ∈ [0, 1] and [−π, π] respectively. [Bottom]

Scatter plots for the amplitude and phase values, the dashed

red lines represent a perfect recovery.

fields [57, 58]. Therefore, motivated by this paper, we hope

that more research expands annealed Langevin Dynamics to

additional challenging models in real-world imaging.
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