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Abstract

This is a supplementary document to the main
manuscript. Here we provide more quantitative and qual-
itative results. Moreover, this document details gradi-
ent derivations, which were not included in the main
manuscript, for space limits.

1. Denoising Poissonian Image Intensities

This section details the complete derivations in Sec. 3.1
of the main manuscript. To be self-contained, this sec-
tion repeats some equations that already exist in the main
manuscript. In this section, all vector operations are
element-wise. Denote incorporation of noise into a clean
image x by the operator A/. The noisy measurement is

y =N(x). (1)

Let N(0,0?) be a Gaussian distribution with zero expecta-
tion and variance o2. Let oo be a noise level, known from
the camera properties, as described in Sec. 2.2 of the main
manuscript. We set a sequence of noise levels

o0 >01>022>-20r>0r41=0. 2

For analysis, we act as if y is related by Eq. (5) of the main
manuscript,

y =x + nmcas , (3)

where
n™ ~ N (0, 05x) . 4)

Recall from the main manuscript that ¢ € [1,...,7T] is
an iteration index, a;; > 0 is an appropriately chosen small
function of ¢, and I is the identity matrix. Then, annealed
Langevin dynamics has the following iterative rule

i1 = Xy + Vg, logp(Xe|y) + QOétn?angevm . (5

Using Bayes rule,

Vz, logp(Xe|y) = Vx, [logp(y[X¢) + logp(%:)] . (6)
Here, n; "5V ~ N(0, 1) is a synthetic noise at iteration ¢.
In Section 1.1 herein, we detail Vg, logp(y|X:), while
Vz, logp(X:) is described in Section 1.2 herein. Overall,
the Langevin dynamics algorithm for denoising Poissonian
image intensities is shown in Algorithm 1 herein. The small
constant € in Algorithm [ herein is a pre-defined step size.

1.1. Likelihood Gradient: Poisson Denoising

Let e?™" be a statistically independent synthetic partial
dummy error term, distributed as

e} ~ N[0, (0} —of )] . (7)

A sum of zero-mean Gaussian variables is a Gaussian,
whose variance is the sum of the variances. So,

ta
E egart ~

T=11

to
N [0, > (07 —03+1>I] = N[0,(c}, =0T . (®

T=%1

Note that using Eqs. (2) and (8) herein
T
> ebrt N (0,081) . 9)
7=0
Using Eqgs. (4) and (9) herein, we design eP?** such that

T
n" = N(0,09%x) = vVXN(0,081) = x> _ebt .
7=0

a0
Let e""°* be a dummy error term. We design ef""**
such that it is conceptually contained in the measurement



Algorithm 1: Langevin dynamics for denoising
Poissonian image intensities

Input: {o;}]_;,y,00 and a small constant ¢
Initialize Xo ~ N (0, 021)
fort <1t T do
2
Q< GZT;

Draw n ~ N(0,1I)
At Vg, logp(y[xe-—1)+ hgmsson (X¢t—1,0¢)

= = Langevin
Xt < Xp—1 + OétAt + 2atnt &

end

X < X7

Langevin
t

noise. This enables to derive an analytical expression for
Vz, logp(y|x:). We set

T

annea __ art

e = E el 11)
T=t

We define a relation between the unknown desired variable
x and the annealed variable as

Xy = x + /xednned, (12)

Inserting Eqs. (10) and (12) herein in Eq. (3) herein yields

T T t—1
y = &—Vx D e yx et = %y /x S el
T=t 7=0 7=0

(13)

To derive Vg, logp(y|X:), we seek to express y us-

ing terms (besides X;) whose probability distributions are

known and independent of X;. However, in Eq. (13) herein,

x is unknown. We can hypothetically extract x from
Eq. (12) herein using

1 N annes:
X = 5 |:25<t :t 4>~(t + (e?nnca)ze?nnea + (e?nned)2] ,
(14)
and substitute Eq. (14) herein in Eq. (13) herein. This

would make y expressed using three terms: x;, ef""°* and

Zt;:lo et However, from Eq. (12) herein, x;, €372¢*
statistically dependent. Thus, we cannot use Eq. (14).
Instead, we apply the following steps. From Eqgs. (8)

and (13) herein,

are

t—1
p(ylxe) =ply — %e[%¢) =p (ﬁz ei’“l%) (15)
7=0

Recall that x in Eq. (15) herein is unknown. Therefore,
to set an explicit analytical expression of Eq. (15), we ap-
proximate the remaining measurement noise as if the signal

dependency is proportional to X; rather then x'. Overall,
Eq. (15) takes the form of

t—1
P (JZ Zezarwsct). (16)
7=0

Finally, the expression /X Zt;:lo ePat is both known and
statistically independent of X;. This allows us to find an
explicit expression of the probability distribution p(y|X;)

5 1 (y — %¢)? }
~ _ . (17
p(y|xt) 271_(0_% — O’%)it xp |: 2(0’3 - O'%)it (a7

Computing the gradient of the logarithm of Eq. (17) herein
results in

- 1 2 1
Vx, logp(y|X:) = )] (% - 1) % (18)

0 0t t
1.2. Gradient of the Prior: Poisson Denoising

We need to derive Vg, logp(X;) in Eq. (6) herein for
iterations of annealed Langevin dynamics. So, before
imaging takes place, we pre-train a deep neural network
(DNN) hE°isson 1o approximate Vi, log p(X;). In analogy
to Eq. (12) herein, let (x, x") be a synthetic pair of clean and
noisy images, rendered using

x' = x + /xntan (19)

Here, n"#" ~ N(0,0%I), where o is an arbitrary noise
level. Using Eq. (19) herein,

p(x'[x) = p (x = x[x) = p (vVxn"""|x)

1 / 2
- e || - @

By definition, the marginal distribution p(x’) can be written
as,

p(x') = / p(xX'[x)p(x)dx . Q1
Inserting Eq. (20) in Eq. (21) herein yields

(x — %)

' 1
no_ TR
P = / V2mo?x P [ 202x

Then, the gradient of Eq. (22) herein satisfies

} p(x)dx . (22)

(x' —x%)

/ 1 °
Vwp(x') = /mvx/ exp {—W} p(x)dx
. /I 2
exp { (XQUQ;:) } p(x)dx .
(23)

B / [x—x'] 1
) o2x | Voro2x

'From Eq. (12), the approximation becomes accurate as egnnea — 0,
where X+ — X.



Inserting the definition of p(x’|x) given in Eq. (20) to
Eq. (23) herein results in

Ven) = [P ppboix. 20

o2x

Divide both sides of Eq. (24) herein by p(x’). This leads to

S o

Recall Bayes rule,

PO X)px)

26
p(x’) (20

p(xx') =

Inserting Eq. (26) in Eq. (25) herein results in

Vap(x) _ / {X—ﬂ p(x[x)dx . @7)

p(x) o7x

The left-hand side of Eq. (27) herein satisfies

Vp(x')

() = Vy logp(X) . (28)

The right-hand side of Eq. (27) herein can be given by

x—x x—x
/ { % ] p(x|x')dx = E { —ix x’] . (29)
Overall, from Egs. (27) to (29) herein,
-
Ve logp(x') = E [XU2; x’} . (30)

The expectation in Eq. (30) herein cannot be calculated
analytically. The reason is that the probability distribu-
tion of x is not accessible. Therefore, we approximate
the expectation in Eq. (30) herein using a DNN. We gen-
erate a large dataset of synthetic pairs of clean and noisy
images (x,x’) using Eq. (19) herein, with various stan-
dard deviations o. Then, we train a deep neural network
hEPs°n (x/|o) with learnable parameters ©, such that

2
] . (3D

2

/
X —X :
> o hgmsson(x/’o_)
g°X

O = arg ngnE

Overall, using Eqs. (6), (18), (30) and (31) herein

Vs, logp(X¢|y) =

1 y2 —1) = 1 4 hPoisson(i |O‘ ) (32)
2(02 — 02) \ X2 2%, © L

Algorithm 2: Langevin dynamics for complex-
valued objects.

Input: {o,}]_;,y,H,0¢ and a small constant ¢
Initialize 0¢, e.g. by Gaussian noise, or by y
fort <1t T do

2

o < E:Tt
T
Draw n = N(0,I)+jN(0,I)
At <_v6t—1 10gp(Y|6t—1)+hgmplcx(6t—1vUt)

~ ~ Langevin
0y < 0;_1 + (ltAt + 2(tht &

Langevin
t

2. Recovering Complex-Valued Objects

This section details the complete derivations of annealed
Langevin dynamics for complex valued, nonlinear imaging
models, as described in Sec. 3.2 of the main manuscript.
To be self-contained, this section repeats some equations
that already exist in the main manuscript. Here, a noisy
measurement satisfies

y = N([Ho[?) , (33)
where cross this paper, | - |> operates element-wise. For
analysis, we act as if y is related by Eq. (8) of the main
manuscript, that is,

y = |H0|2 4 nmcas , (34)

where
n™* ~ N (0, 03|Hol|?) . (35)

Let R(:), 3(-) be real and imaginary arguments of a
complex-valued number, respectively. Analogously to
Eq. (5) herein, annealed Langevin dynamics for a complex-
valued object is

8141 = 0¢ + Vs, 10og p(8e]y) + v2oum "8V ™ | (36)
Using Bayes rule,
Vs, logp(6:ly) = Vs, [logp(y|6:) +logp(6,)] - (37)

Here, R(nj®"&Vm™) §(nj2meevin) N(0,1), are dis-
tributed independently. In Section 2.1 herein we detail
Vs, logp(y|6:), while Vg, logp(6;) is described in Sec-
tion 2.2 herein. Overall, the algorithm for Langevin dy-
namics for complex-valued objects is shown in Algorithm 2
herein. The small constant € in Algorithm 2 herein is a pre-
defined step size.

2.1. Likelihood Gradient: Complex-Valued Ob-
jects

Sec. 3.2 of the main manuscript presents the special case
H =1 in Eq. (34) herein. Here, nevertheless we detail the



derivations for a general H matrix. In analogy to Eq. (11)
herein, in Section 2 herein, we define a complex-valued
dummy error term e?""®. Regardless of the exact value

of ef""*® which is given in Section 2.1 herein, we set
0, = 0+ e, (38)
By definition
Ho,[* = [R(Ho,))" + [3(Ho)* ,  (39)
and

(o™ 2 = [R(He}™ )| + [3(Hef™ )] . (40)
Let ® denote element-wise product. Define

e;:ouplc — 2%(1‘1625) o) %(He?nnca)
+23(H6,) O S(He™e) . (41)

Using Eqs. (38) to (41) herein, |Ho|? satisfies
|Ho|? = [H(6, — e™°)|2 = |Ho, — Helme? |2
= [R(HB,) — R(Hef™ )] + [3(Ho,) — S(He;™ )]
— [Ho,|? — P 4 [Heawmea|? | (42)
Overall, from Eqgs. (34) and (42) herein,
y = |H6t|2 _ egouplc + ‘He?nnoa|2 + pmeas (43)

The non-linearity of Eq. (34) herein yields two terms
in Eq. (43) herein, that pose analytic challenges: a cou-

pling term of €{°"P'°; and a squared annealing error term
|Hei""°2|2. We handle them by introducing a relaxed
model

y = [Hoy|? — e°"P'° 4 [He™ 2|2 + pt — g2z, . (44)

We detail Eq. (44)

couple _annea meas
€ ) €4 y Iy

herein and  specifically
and z; in Section 2.1.1 herein.

2.1.1 Relaxation of the Nonlinear Problem

Let

. . 1
%(egart)’ g(egdrt) ~ N |:0, Z—l(g'f — Ut2+1)1:| (45)
be statistically independent Gaussian vectors. Recall that a
sum of zero-mean Gaussian variables is a Gaussian, whose
variance is the sum of the variances. Hence, in analogy to
Eq. (10) herein, and using Eq. (45) herein

to t2
Z %(egart)’ Z %(egart) ~
T=t T=t1
1 to ) ) 1 9 2
N (0.3 207~ ot )I| = N |0.3(ch —ob)T) .
T=1,

(40)

Note that using Eq. (45) herein

T T
ar ar 1
D R, ) S(ed t)NN(O,ZO'gI) RNCY)

7=0 7=0
Define the random vectors

T
np™ = 2R(Ho)® ) ~ R(eP™™)

=0

~ 2R(Ho) ® N <0, iaél) =N (0,08 [%(HO)P) )

(48)

and

T
n™" = 2G(Ho)® )  (eb™)
=0
o . L o0\ L 2 ex 2
~23(Ho) ©® N | 0, 4001 =N (0,05 [S(HO)]") .

(49)

Recall that a sum of zero-mean Gaussian variables is a
Gaussian, whose variance is the sum of the variances. So,
from Eqgs. (48) and (49) herein, we obtain

nbrt bt Y (o, o2 [R(Ho)]® + 02 [%(Ho)]Q) .

(50)
By definition
Ho|* = [R(Ho)]” + [3(Ho)]" . (51)
From Egs. (35) and (51) herein, we obtain
n™ ~ N(0,02|Hol?)
= N (0,08 [R(Ho)]* + 0§ S3[(Ho)]?) . (52)
Using Egs. (50) and (52) herein, we can design dummy vari-
ables efart such that,
nmeas — nxl)art + ngart
T T
=2R(Ho)®» R(e!™) +23(Ho)o»  I(eb™).
7=0 7=0

(533)

Notice that Eq. (53) herein now has a form similar to the
coupling term e{°"P'® in Eq. (41) herein.

Recall that we seek to derive V3, log p(y|6,). This re-
quires expressing y using terms (besides 0;) whose prob-
ability distributions are known and independent of 0;. In
analogy to Eq. (14) herein, we can hypothetically insert
Egs. (38) and (53) in Eq. (44). This leads to an expression
of y that contains statistically dependent terms of X, that do



not cancel each other, therefore, Vs, log p(y|6;) cannot be
derived. Hence, to set an explicit analytical expression of
Vs, log p(y|6:), we approximate the measurement noise as
if the signal dependency is proportional to o, rather then o,

T T
ﬁ?cas _ QS?(H@)GZ m(egart HOt Z epart

7=0 =0
(54)
Overall, when ¢ — T then, nj"**® — n™°®. We continue
to generalize the annealing error in Eq. (11) to a complex-
valued annealing error: analogously to [1], we design eP*"*
such that

T T
He?nnca _ Z %(egart) +JZ %(egart) , (55)

T=t T=t

where j = +/—1. Inserting He2""** from Eq. (55) into
Eq. (41) herein yields
e;:ouplc —
T T
2R(HG,) © > R(eP™) +23(HS,) © Y I(eb™) .

T=t T=t

Using Eqgs. (54) and (56) herein, define
eiomaln(ot) — nlrencas _ egouPlC
t—1 3 t—1
=2R(HGS,) © Y R(eP™) +23(Hoy) © Y S(eP™™) .
=0 =0
(57
Until here in this section, we detailed ("¢, gannea fmeas
of Eq. (44) herein. From this point, we detail z, that appears
there.
The vector z; is designed to address the problem of
squared annealing error term |He""¢®|2, Inserting Eq. (55)
into Eq. (40) herein, we obtain

[Heg2|? = [R(Hej™ )] + [3(Hej™ )]
T 2 T 2
=) R(eX| + Z%(esart)] . (58)
T=t T=t

A chi-squared distribution x?(k) is defined by a sum of
+ random variables: each independent, having a square-
normal distribution [2]. Fig. | herein visualizes x*(k). So,
|[Hei"¢2|2 in Eq. (58) herein is distributed x?(2), up to
scale

4 annea 1 annea
fxz(Q) <O'_t2|Het |2> = 5 exp ( o0 2 |He |2>
(59)

o
o

2
—x°(2)
2
0.4 ---x“(4)]
5 X" (4)
)
503} 1
o
>
Z02F  \_ 1
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Figure 1: Visualization of x2(k) for k = 2, 4.

where fy2(2) operates element-wise.  Analogously to
|Heine2|2 | we propose two annealing error terms accord-

ingly,’

[ST_R(ep)]? | [STg(er))’

= 60
ZiT O_E + O_E ) ( )
and
SELR(epat)]? [Sihg(erart))?
B = O e T S

O 0}

S0, zo_(t—1), Zt—7 in Egs. (60) and (61) herein are dis-
tributed x2(2), up to scale. Then using Egs. (60) and (61),
we define

Zt = Zt T — Z0—(t—1) - (62)

Using Eqgs. (58) and (60) to (62) herein, we obtain

zicmain = |Hetannoa|2 _ UtQZt
t—1 2 ri-1 2
— [Z R(eP) > 3(e$‘m)] : (63)
7=0 T7=0

Inserting Eqs. (57) and (63) herein into the relaxed model
in Eq. (44) herein, yields

y = |H6t‘2 + egomain(at) + Ziomain ) (64)
Using Eq. (64) herein, Vs, logp(y|0:) can be derived
analytically. To alleviate computations, we denote s as

t—1 t—1

R(s) = Z R(eP) | F(s) = Z I(eP) . (65)

7=0 7=0
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Figure 2: A visualization of Z(6;,y) in Eq. (70) herein for different values of oy. Here H = 1 and o = 0.5 + 0.54, while y

is obtained by Eq. (34) herein using oo = 0.3. We present ,/y by a red dashed line. The red cross marks o.

~ 0.1 (62 — o) [2]. Thus, using Eq. (68) herein, we can derive
bﬁ p(y|0;) analytically.
| Let Iy, I, be the modified Bessel functions of the first
~No kind [3], which operate element-wise. Let || be an opera-
() tor that outputs the element-wise product of a given vector.
Then,
0.05

02 04 06 08 1
R (0r)

Figure 3: A visualization of the log-likelihood of Eq. (64)
herein. Here H = 1 and o = 0.5 + 0.55. We present
R(0) by a red dashed line. Here, y is obtained by Eq. (34)
herein, using o0p = 0.1. The red cross marks depicts the
log-likelihood maximum.

Inserting Eq. (65) herein in Eq. (57) herein, yields
elemain(5.) = 2R(6;) © R(s) 4 23(6¢) © I(s) . (66)
Inserting Eq. (65) herein in Eq. (63) herein, yields
Zi N = R(s)) + [3(s))” - (67)
Then, using ef™&in zremain from Egs. (66) and (67) herein,

y = |H6, > + 2R(H6,) © R(s) + 23(Ho,) © S(s)
+(Rs)” + [S(s)]%)
= [R(HS;) + R(s)]> + [S(Ho,) + S(s))* . (68)
Notice that the probability distribution function of

(R(HG,) + R(s))* +(I(Hb,) + S(s))” in Eq. (68) is non-
central chi-squared of the second kind, up to a scaling by

2Note that atz zt; in Eq. (44) herein can be considered as an additional
annealing error in the measurement domain.

p(yle:) =[] {2(03 1_ o2y P (g(;rc%'P—I(:tQ'j)

t

-
o I (—W) . (69)

o5 — 0}

We visualize log p(y|0;) in Fig. 3 herein. Define,

0o Tt o5 — o}
(70)
Fig. 2 herein visualizes Z(0;,y) in Eq. (70) herein. The
complex-valued derivative of log p(y|0;) is given by,

Vs, logp(ylo:) =

B (g oo ooy 1)) -

0y — 0t
where H is the conjugate transpose of H.

2.2. Gradient of the Prior: Complex-Valued Ob-
jects

We need to derive Vs, logp(6:) in Eq. (37) herein
for annealed Langevin dynamics of complex-valued ob-
jects. Analogously to Section 1.2 herein, before imaging
takes place, we pre-train a DNN hgomplex to approximate
Vs, logp(6). In analogy to Eq. (38) herein, let (0,0’) be
a synthetic pair of clean and noisy complex-valued objects,
rendered using

0/ —o+ ntrain . (72)



Here R(n'?) I(n'rain) ~ N(0,0%I), where o is an ar-
bitrary noise level. Using Eq. (72) herein,
p(o']o) = p (n"*"o)

1 /I 2
= 5o {-%} . (73)

By definition, the marginal distribution p(o’) can be written
as

= p(0' ~olo)

o) = [ plolo)p(o)do. (74)
Inserting Eq. (73) into Eq. (74) herein yields
= / \/%exp [—%} p(o)do . (75)
Then, the gradient of Eq. (75) herein satisfics
(o' —o)
/ Vara? o P [ 207
(o' — o)

o—o 1 2
- / [—] Jaree [ oo a0

Inserting the definition of p(o’|o) given in Eq. (73) herein
to Eq. (76) herein results in

2] p(0)do

Vasto) = [ |22 piolloioldo. )

Divide both sides of Eq. (77) herein by p(o’). This leads to

T 2]y oo

Recall Bayes rule,

p(e'lo)p(o)

plolo) = 207

(79)

Inserting Eq. (79) into Eq. (78) herein results in

V;(z(o)(/())’) _ / [0;2"'] p(olo’)do . (80)

The left-hand side of Eq. (80) herein satisfies

vo/p(ol)
p(o’)

= Vo logp(o') . (81)

The right-hand side of Eq. (80) herein can be given by,

o—o o—o
I e
Overall, from Eqgs. (80) to (82) herein
o /
Vo logp(o') = E {O 2 o’] . (83)
g

The expectation in Eq. (83) herein cannot be calculated
analytically. The reason is that the probability distribution
of o is not accessible. Therefore, we approximate the expec-
tation in Eq. (83) herein using a DNN. We generate a large
dataset of synthetic pairs of clean and noisy objects (0, 0’)
using Eq. (72) herein, with various standard deviations o.
Then, we train a deep neural network ho™ ™' (o’|or), such
that

2
. ) o—o
0= argménIE [H—Q

_ hcomplex (O/ |

0)2

] . (84)

Overall, using Egs. (37), (71), (83) and (84) herein

Vs, logp(oily) =
o © [I(()MY)QQ_

1 hcompleX( t|gt) )
2(08 — 0?) 104 }

(85)

3. Fourier Ptychography: Additional Back-
ground

Here we describe a Fourier ptychography imaging sys-
tem that was used in experiments [4]. Let r represent a 2D
spatial coordinate. Let A\ be the wavelength. The system
has an array of M LEDs. Let §,, be the illumination angle
of the mth LED. The model is that a LED creates illumina-
tion by a plane wave u-FP(r). The plane wave angle 4.,
corresponds to a spatial frequency

k;, =sin(d,)/A, (86)

that is,
up P (r) = exp (jkm - 1) - (87)

Let o(r) be the transmittance of an optically-thin object.
The wave exiting the object is a multiplication of this trans-
mittance and u>FP (r) in Eq. (87) herein:

up(r) = o(r) exp (jkm - 1) . (88)

Let F,F~! be the spatial Fourier transform and its inverse,
respectively. Define

O(k) = Flo] (k) - (89)

At the pupil plane (see Fig. 1 of the main manuscript), the
light field corresponds to the spatial Fourier transform of
u®Pi(r) in Eq. (88) herein,

Un (k) = Flug (k) = Ok —kp) . (90)

Let P(k) be a low-pass filter, that is, a binary circle cen-
tered at the origin. Denote by AN the radius of P(k), de-
termined by the system numerical aperture (NA) and \. Let
M(-) be a magnification operator of an imaging system.
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Figure 4: [Left] The relative error image #*!, following
our recovery using data corrupted by og = 0.2. [Right]
Normalized histogram of 2™, The orange line is a Gaus-
sian curve, using the spatial mean and standard deviation
lrel, Orol, Obtained by Eq. (92). Here, pye ~ 0, and
Orel = 0.19.

The light intensity at the image plane resulting from a sin-
gle LED is

Ym(r) = N (M[IFH [P(K)O(k — k)] °]) (r) . OD)

Hence, the angles of the LEDs and the support of P (k) de-
fine the measured frequency content of the object. Fig. 12
herein visualizes the measured frequency content of the ob-
ject for different numbers of LEDs.

4. Additional Results

In this section, we present additional results that were not
included in the main manuscript, for space limitations. Fur-
thermore, we detail and elaborate on the experiments pre-
sented in the main manuscript.

4.1. Denoising Poissonian Image Intensities

We follow the approach of [5] and assess if the es-
timated image holds X ~ p(x). Denote a color
channel by ¢ € {R,G,B}, a pixel index by p €
[1,q™¢], and a test image index by i € [1, N5
Define a relative error per channel c pixel p and im-

age { by née;)() [pr xcp /\/ J,'Cp 7/ Us-
ing Egs. (3) and (4), assessing if X ~ p(x)

can be done by verifying if a relative error im-
age 1 = [(y — %) /V/X] is distributed as N(0, 02I). As
shown in Fig. 4 herein, the distribution of 1™ seems indeed
white and Gaussian. Let us assess the mean and variance of

ﬁff’;. Per 4, the mean and the root mean squared relative
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Figure 5: Poisson denoising. The blue crosses denote &
(Eq. 93), for different characterized noise levels og. The
dashed red line represents a perfect estimation.

errors are, respectively,

. 1 q 3 el
firer(i) = W Zniep(l) )
p=1 c=1
meas 3
Ure](i) = mcas Z Z nrel : 92)
p=1 c=1

We ran our method to denoise N*¢* = 1000 images from
the CelebA test set. For all denoised images, we computed
frel(7) for i € [1, N*¢'] and calculated fiye1(4), ol (i), us-
ing Eq. (92). We accurately obtained, Vi, e (i) = 0. The
distribution statistics of o, (7) appear in Fig. 5 herein, in-
cluding its empirical average over the test set, that is,

Ns(_t

o= Nsct Z Urcl (93)

For o9 < 0.2, 6 agrees with o¢. This is supporting our
quest for denoised images as if sampled from p(x). For
lower SNR scenarios, ¢ deviates.

Furthermore, we show additional examples of Poisson
denoising. The experimental details are provided in the
main manuscript. Figs. 7 to 9 herein compare our results,
for different noise levels oy, with an MMSE solution. Our
denoised images have higher quality than the MMSE solu-
tion, which is blurred. Figs. 10 and 11 herein compare our
results, for different noise levels o, with DPS [6] method.

4.2. Phase Retrieval

As described in Sec. 4.2 of the main manuscript, phase
retrieval can be modeled using H = F, that is,

y = N(|Fo|?) . (94)



Figure 6: Qualitative comparison between the ground-truth
images (odd rows) in the dataset suggested by [7] and our
recovery (even rows).

Here A contains photon noise and quantization, the latter
using 8 bits per pixel. Moreover, here o is a real-valued
image. Note that even so, the measurement y lacks phase
information.

We compare our method (Algorithm 2 herein) for phase
retrieval, vs. prior art. We follow the experiment suggested
in [7]. First, we trained hgomplex (o'|o) (Eq. 84 herein) with
overlapping patches drawn from 400 images in the Berkeley
Segmentation Dataset [8]. Then, we evaluate our method on
a test set of 6 “natural” images, as presented in Fig. 6. We
simulate for each image from the test set its noisy intensity
measurements using Eq. (94) herein with noise level o¢p =
4/255, as described in the main manuscript.

As reported in [7], the results were sensitive to initial-
ization. So, as done in [7], we initialized our method using
the result obtained by the Hybrid Input-Output (HIO) [9]
algorithm. Fig. 13 presents a block diagram of the pro-
cess. Let @ be a random Gaussian vector. We initialized
50 possible candidate solutions {0;}7°; such that Fo; =
VY exp(j2mp;). We ran HIO algorithm for 50 iterations
for these candidates. The reconstructed candidate is the can-

didate with the lowest error
2
|y — [Fof3]]; - (95)

Then, we initialize the HIO algorithm with the recon-
structed candidate, and ran again the HIO algorithm for
1000 iterations, resulting in the HIO result. We initialize
our method in Algorithm 2 herein with a noisy version of
the HIO result. Following [7], this process was repeated
three times and the reconstruction with the smallest error in
Eq. (95) herein was used as the final estimate.

4.3. Fourier Ptychography: Real Experiment

In all experiments that are presented in the main
manuscript and herein A = 512nm and NA = 0.2 [4]. For
the configuration of M = 89 LEDs (see Fig. 12 herein), the
maximal LED angle is set such that the effective numerical
aperture of the system is 3.1 x NA.

Fig. 12 herein visualizes the measuring coverage for dif-
ferent numbers of LEDs of the object’s Fourier space in
our experiments. We show Fourier ptychography results
for real-world publicly available amplitude-only biological
sample [10]. Using a Fourier ptychography imaging sys-
tem, the amplitude of a sample of stained dog stomach cells
was recovered in high resolution [4]. We randomly di-
vided the recovered sample into non-spatially overlapping
patches, each of size 256 x 256 pixels. Then, the patches
were split randomly into training and test sets. We train our
denoiser over the training set, according to Section 2 herein.
For each patch o in the test set, we simulate M noisy mea-
surements y, each with a single LED. Figs. 14 and 15 herein
show quantitative and qualitative results, respectively. Ad-
ditionally, Fig. 16 herein shows qualitative recovery results
of Fig. 9 from the main manuscript.
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Figure 7: CelebA Poisson denoising results for oy = 0.1.



Figure 8: CelebA Poisson denoising results for og = 0.2. Figure 9: CelebA Poisson denoising results for og = 0.3.
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Figure 11: FFHQ Poisson denoising results for o
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Figure 10: FFHQ Poisson denoising results for o
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Figure 12: Visualization of coverage of the object’s Fourier domain. The red circle is determined by the maximal LED angle
of the system, having a frequency radius of £™#*. The blue dots correspond to k,,, of the LEDs, while the half-transparent

green circles are the measured spectra domains around each k,,,, having frequency radius of
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Figure 13: A block diagram of the phase retrieval experiment. (a) Initialization using the HIO [9] algorithm. (b) Final
recovery using prDeep [7] and our method (Algorithm 2). The process of (a) and (b) is repeated three times, resulting in

~prDeep

three solutions for each method {6"™}3_,, {6} }3_,. Then, for each method, the reconstruction with the smallest error
in Eq. (95) (out of the three) is used as its final estimation.



Ground Truth

Figure 14: Qualitative results of amplitude objects. From left to right: Ground-truth image; Recovered images for M = 5
and M = 89 measurements; The difference between the true and estimated object. The dynamic range of the ground-truth
and recovered images is [0, 1]. For better visualization, the dynamic range of both difference images is [—0.04, 0.04].
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Figure 15: The average PSNR of 10 amplitude-only objects: [Top] For different Poisson noise levels og with M = 89.
[Bottum] For a varying number of LEDs M with a fixed noise level 0y = 0.3. The bars stand for the PSNR standard
deviation.
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Figure 16: Fourier ptychography of complex-valued objects. Qualitative recovery results of four examples in our test set.
Here, we used M = 89 LEDs, a noise level of og = 0.1, and quantization using 8 bits per pixel. The dynamic range of the
ground-truth and recovered images of the amplitude and phase is [0, 1] and [—, 7], respectively. For the difference images,
the dynamic range is tuned just for visualization.



