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Abstract

The identification and removal of systematic errors in
object detectors can be a prerequisite for their deployment
in safety-critical applications like automated driving and
robotics. Such systematic errors can for instance occur un-
der very specific object poses (location, scale, orientation),
object colors/textures, and backgrounds. Real images alone
are unlikely to cover all relevant combinations. We over-
come this limitation by generating synthetic images with
fine-granular control. While generating synthetic images
with physical simulators and hand-designed 3D assets al-
lows fine-grained control over generated images, this ap-
proach is resource-intensive and has limited scalability. In
contrast, using generative models is more scalable but less
reliable in terms of fine-grained control. In this paper, we
propose a novel framework that combines the strengths of
both approaches. Our meticulously designed pipeline along
with custom models enables us to generate street scenes
with fine-grained control in a fully automated and scalable
manner. Moreover, our framework introduces an evaluation
setting that can serve as a benchmark for similar pipelines.
This evaluation setting will contribute to advancing the field
and promoting standardized testing procedures.

1. Introduction

Deep learning has significantly improved performance in
many computer vision domains [21, 26]. However, models
can display subpar performance on narrow but semantically
coherent subgroups of the data. This can happen due to
spurious features [33, 29], associations that a computer vi-
sion model has picked up when utilizing shortcut learning
[9, 36, 19, 18]. While such shortcuts can lead to higher
accuracy on the in-distribution data, they often fail on out-
out-distribution data [42] and in the long-tail of the data dis-
tribution.

This non-homogeneous performance is problematic for

Figure 1: Systematic errors detected with our SCROD
pipeline into wrong classes boat, bench, bed, and train or
False Negatives. The prompt used is “brown sports car is
driving in forest, , in the morning, bright, idyllic, insanely
detailed.”. Here, the image is downscaled by a factor of 5.5
before inputting it into the object detector, the rotation angle
is —20°, and images are generated with 16 different seeds.
Only in one case, it is detected as correct class car. The
used object detector is FasterRCNN_ResNet50_FPN from
torchvision [23].

applications such as automated driving, where models
should work well on all subgroups of the data [1]. There-
fore, recently there has been an increased interest in iden-
tifying subgroups of the data on which a computer vision
model has subpar performance, which we call systematic
errors [6, 13, 25, 35, 37]. While systematic errors have been
studied for image classification [6, 13, 25, 37], multi-modal
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Figure 2: Single generative models, such as a Stable Dif-
fusion v1.5 (SD-v1.5) [32], do not allow to reliably gener-
ate images with fine-grained control, while our SCROD
pipeline can (see Fig. 5). In this figure, we show images
generated by SD-v1.5 for 4 different seeds and the prompt
“blue sports car rotated by 50 degrees around the X axis
from the side view on a grey background in the center of
the image”. In general, orientation is neither consistent nor
correct, the object is cropped, and the color of the back-
ground and the main object is confused (upper right image,
“attribute binding”).

generative models [35] and image captioning [7], there is
limited research for their discovery for object detectors, re-
lying on a human-in-the-loop [7].

Real-world data is unlikely to cover all relevant sub-
groups in the tail of the data distribution. A promising al-
ternative is to evaluate object detectors on synthetic data
instead. Methods for synthesizing data can be roughly split
into two categories: i) methods that rely on using physical
simulators and hand-designed 3D assets [10, 31], which is
labor-intensive and not scalable; ii) methods that rely on a
single generative model, such as the Stable Diffusion v1.5
(SD-v1.5) [32], where geometric properties such object lo-
cation, scale, or orientation are not easily controlled by tex-
tual prompts, as can be seen in the Fig. 2. Moreover, the
well-known problem of attribute binding makes also object
color/texture, and background control unreliable.

We address this challenge by combining several genera-
tive models (externally pre-trained as well as custom fine-
tuned ones) in our novel pipeline (see Fig. 4). While we fo-

cus on the application of automated driving and thus on car
objects, our method can be extended to other types of ob-
jects that are well represented in the distribution of the train-
ing data of the generative models we use in our pipeline.
With this pipeline, we can identify systematic errors of ob-
ject detectors (Fig. 1).

Our contributions are as follows:

e In Section 3, we propose a novel pipeline for street
scene synthesis, allowing fine-grained control over at-
tributes such as object location, scale, orientation,
color, type, as well as scene background.

e We propose a custom model for outpainting, which

is based on finetuning an inpainting model for street-
scene outpainting, that we use in our street scene syn-
thesis pipeline for background generation.
In Section 4, we conduct an evaluation of the ob-
ject detectors using our pipeline in two settings: one,
where the background is a plain color and a second one
where we show how our findings extend to more real-
istic (outpainted) backgrounds, where the background
is generated conditioned on the text prompt. There we
show some concrete systematic errors of the best ob-
ject detectors from torchvision [23].

2. Related work

Controlled image generation. Controlled image gener-
ation can be achieved either by training generative models
such as Stable Diffusion models from scratch with some
guidance, such as inpainting guidance [32] or using meth-
ods for finetuning [40, 11, 27, 16, 38, 3], with guidance such
as inpainting, Canny Edges, Depths Maps, Segmentation
Maps, bounding boxes with target classes and many more.
None of them can however offer a reliable fine-grained con-
trol over all the attributes at the same time that are useful for
object detection: location, scale, orientation, object color,
object type, and background.

Systematic error identification with subgroup anno-
tations. This research direction mainly relies on creating
reliable datasets, that can label as many attributes (or sub-
groups) as possible. Some examples are: DeepFashion2
[8] (attributes such as occlusions, segmentation, viewpoint,
style, and category name are labeled), ImageNet-X [12] (at-
tributes such as pose and background are labeled), WEDGE
[24], DAWN [28], nuScenes [2] (attributes such as weather
condition). While it is the most reliable way to test object
detectors, it is not scalable as covering all possible combi-
nations of relevant attributes is not feasible in general. Note
moreover, that only the datasets in bold are related to the
application of automated driving. Thus, this research offers
limited utility for the systematic error identification of ob-
ject detectors. Additionally, methods such as [10, 31] also
offer subgroup annotations, but they rely on hand-made 3D
assets or physical simulators.
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Systematic error identification without subgroup an-
notations. Previous methods [6, 13, 25, 35, 37] have pre-
dominantly focused on the systematic errors of either clas-
sifiers or multi-modal models such as CLIP [30], and only
a few, such as AdaVision [7], have done systematic error
identification without subgroup annotations for object de-
tection models. AdaVision, however, proposes a search
over existing images with human-in-the-loop. It thus does
not allow fine-grained control over the object attributes, as it
is challenging to collect a dataset that encompasses all pos-
sible combinations of attributes, retrieve the relevant ones,
and search through them automatically.

Novel View Synthesis. Control over the orientation of
the object is important for automatically testing object de-
tectors. Currently, this can be achieved either by using 3D
assets and physical simulators as mentioned above or by us-
ing a generative model, such as Stable Diffusion, and fine-
tuning it to predict novel views from a single view such as
in Zero-1-to-3 [22]. This latter approach is promising for
our pipeline and it can be further improved by fine-tuning
on a bigger dataset [4].

3. Segment Control Rotate Outpaint Detect
(SCROD) Pipeline

To identify systematic errors of object detectors, we re-
quire fine-grained control of the object properties such as
pose. Using a single generative model, such as SD-v1.5, as
has been done by Metzen et al. [25], does not allow such
fine-grained control of details of the generated object to the
degree which is necessary for the testing of object detectors,
as can be seen in Fig. 2.

3.1. Workflow of SCROD

In contrast, we propose a multi-stage pipeline consist-
ing of several generative models, where each model fo-
cuses on controlling specific properties of the generated ob-
jects and scenes. We focus on the properties such as object
type, color, location, scale, orientation, and background of
a given object of category “car”. The whole pipeline is dis-
played step-by-step in Fig. 4. In the figure, we start with a
real image of an object (in this case a side view of a black
sports car). In the following, the runtime is reported for a
batch size of 1 on an A100 GPU.

1. Object type: by using Segment Anything Model
(SAM) [14] we segment objects of different car types
automatically from the same fixed view (side view in
our case). The inference time is 4 seconds.

2. Object Color: we extract Canny Edges of the seg-
mented object and by using a ControlNet with Canny
Edges conditioning [40], we then condition on the fine
details of the automatically segmented object to create
cars of different colors. Varying the color might intro-
duce systematic errors for some object detectors as can

Figure 3: Object outpainting: On the left is the starting
image of a synthetic car rotated by 90°. In the middle is
the image outpainted with the SD-v1.5 inpainting model,
where we observe over-generation: instead of preserving
the boundary of the object, the outpainting continues hal-
lucinating the object outside of the given boundary. On
the right is the image outpainted with our proposed out-
painting model, a LoRA fine-tuned [11] SD-v1.5 inpainting
model (Section 3.2). Both outpaintings use the same seed
and prompt “sedan is driving on snowy street”.

be seen in the realistic setting in Fig. 7. The inference
time is 20 seconds.

3. Orientation: by using a model such as Zero-1-to-3
[22], that was fine-tuned from SD on ObjaVerse [5] to
generate views of the object, conditioned on the de-
sired angles around X, Y, and Z axes, we can rotate an
object around the X axis (pointing up). In our pipeline,
we additionally use Stable Diffusion x4 upscaler (SD
x4) [32] to improve the resolution of the generated im-
ages. The inference time is 2 seconds for the single
view generation and 19 seconds for upscaling.

4. Scale and Location: we then downscale and change
the location of the generated object by a different num-
ber of scaling factors, which does not require a sepa-
rate model. Varying the scale and the location might
introduce systematic errors for some object detectors
as can be seen in the realistic setting in Fig. 6.

5. Background: In the experiments of this paper, we fo-
cus mainly on a plain color background, which does
not require a separate model, and reduces the effects
of background cues on object detector behavior. How-
ever, in case we want to outpaint a naturally looking
background instead of using a plain color, we require
an outpainting model. For this we use LoRA fine-
tuning [11] of the SD-v1.5 inpainting model as de-
scribed in Section 3.2. In the case of using the out-
painting model, the inference time is 5 seconds.

3.2. Outpainting model

To date, no strong models for masked-object outpainting
exist and inpainting models tend to over-generate' the ob-

'We say an object is overgenerated if instead of preserving the bound-
ary of the object during the outpainting continues hallucinating the object
outside of the given boundary.
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FCOS_ResNet50_FPN_Weights.COCO_V1 x

Figure 4: Depiction of our SCROD pipeline for synthesizing objects with certain attributes. The workflow is as follows:
[Top, st from left] We start with a real image of an object (in our experiments we always start with a side view of a
car, but it can be chosen arbitrarily). [Top, 2nd from left] We segment the object itself and remove the background, using
SAM [14]. [Top, 3rd from left] We extract Canny edge maps of the segmented object using a Canny edge detector. [Top,
4th from left] We invoke a ControlNet [40] to synthesize a new image, conditioned on the edge map and a text prompt
(in the example “new green sports car”’). The overall purpose of the top row is to control object attributes such as color
(but also other types of textures or for instance, dirty-vs-clean could be controlled this way). [Bottom,1st from left] The
generated synthetic image is then again segmented, and the background is removed using SAM. [Bottom, 2nd from left]
The segmented object is then rotated using Zero-1-to-3 [22] by an externally specified rotation angle. Importantly, rotation
does not require a 3D model of the object, just a segmented 2D view. Rotation can be around the axis left-right and top-
bottom in principle (shown is only left-right). To improve image quality during the outpainting, we use Stable Diffusion x4
upscaler (SD x4) [32]. Object detectors under investigation can be evaluated on these intermediate results for a plain color
background (which reduces dependencies on background cues). [Bottom, 3rd from left] The size and position of the object
can be controlled by downsampling and translating the segmented object. [Bottom, 4th from left] The white background can
finally be “outpainted” by conditioning a text-to-image model on the object and a text prompt like “sports car is driving on
snowy street”. We propose to do the outpainting using the fine-tuned model using LoRA [11] and starting from the SD-v1.5
inpainting model as described in Section 3. The object detector under investigation can then be tested on the resulting image
such that for instance systematic errors on realistic object backgrounds can be identified.

ject as can be seen in Fig. 3 (please note how the bound- and BDD100k (note that only 8.000 images from the
ary of the “car” object in middle image is not preserved whole BDD100k dataset have instance segmentations).
and the object is transformed into a bigger one). We use  During training, some objects in the segmentations
LoRA fine-tuning [11] of the SD-v1.5 inpainting model on ~ masks are randomly dropped with probability 0.5 if
the joint dataset of COCO [20] and BDD100k [39], with other objects cover at least 10% of the area of the im-
the following training details: number of training steps is age. More precisely, x; = &; - m; fori € {1,..., N},
15.000 , LoRA rank is 32, batch size is 8, and learning rate where m; is a random binary mask obtained as de-
is 1074, The dataset (X,C, X) with N = 19721 samples  scribed above. This is done to increase the diversity

has the structure as described below. of the dataset by increasing the number of combina-
* Labels during LoRA fine-tuning: Ground truth orig-  tions of the masked objects shown on the image that
inal images X' = (&;)}L;. are taken as an input. We consider objects from the fol-

* Inputs during LoRA fine-tuning: Ground truth seg- lowing COCO classes as relevant to automated driving

mented objects X = (z;)X, provided from COCO
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applications: car, person, truck, bus, traffic light, bi-
cycle, motorcycle; respectively from BDD100k: rider;
car, truck, bus, train, motorcycle, bicycle.
 Inputs during LoRA fine-tuning: Captions C =
(¢;)N_;, automatically generated using BLIP-2, OPT-
2.7b model [15] f@,BLIP2' Thatis, ¢; = f@’BL[pg (JA%)
Using this fine-tuned model, we can outpaint a realis-
tic background, where the scene integrates the main object
meaningfully, also generating shadows and reflections as
can be seen in Fig. 4, 6 and 7.

4. Evaluation

We make use of the SCROD pipeline described in Sec-
tion 3 to test the 3 best object detectors from torchvision
[23] according to the Box MAP on COCO val2017 (By):

¢ FasterRCNN_ResNet50_FPN_V2 (FasterRCNN2)[17]

¢ RetinaNet_ResNet50_FPN_V2 (RetinaNet2) [41]

e FCOS_ResNet50_FPN (FCOS) [34]

4.1. Color background

We start by varying the background colors and show-
ing the systematic errors of object detectors when evaluated
on the images generated with our pipeline and 11 different
background colors over 16 seeds, when randomizing single
view generation with Zero-1-to-3, for the generated object.
In Tab. 1 we show some of the combinations of attributes
for each of the object detectors with the highest error rate.
An example of a systematic error and how minor changes to
the underlying attributes can remove it is shown in Fig. 5.

By using our SCROD pipeline, we can find consistent
and detector-specific systematic errors - that they occur pre-
dominantly for a single detector indicates that they are not
caused by the generation process itself (for example, for the
systematic error described in the first row of Tab. 1, images
show cars and not airplanes, as is shown in Fig. 5). Also, we
can highlight that systematic errors occur only in very spe-
cific subgroups and minor changes remove them. Lastly,
the average error rates of detectors across all subgroups re-
ported in the last row of Tab. 1 show that the object detectors
can deal well with our synthetic images.

4.2. Realistic background

Moreover, we show systematic errors with a more com-
plex (outpainted) background. Here we fix one seed for the
generated object and vary the seed for the outpainted back-
ground. As can be seen from the reflections and shadows
on images in Fig. 6 and 7, our proposed pipeline together
with the custom model for outpainting allows us to gener-
ate scenes that look more natural and cannot be achieved by
simply pasting an object into an existing background.

A more detailed analysis requires varying all possible
single attributes and observing, which other combinations

of the attributes can lead to the same systematic error, and
which smallest changes of them can remove the systematic
error. One example of such observation can be seen in Fig. 6
(c) and (d). From it, we can see that systematic errors are
brittle and occur only under very controlled conditions.

By using our SCROD pipeline, we can easily identify
such systematic errors of the object detector “FCOS” as a
dependance on the scale of the object or on the angle of
rotation of the object not only on the plain color background
but also on a natural background, when outpainted using our
LoRA fine-tuned model. This can be seen in Fig. 6. Here,
we use 16 seeds when randomizing the outpainting.

1. In Fig. 6, (a) and (c), a purple SUV on the background
outpainted using the prompt “purple SUV is driving
on beach, foggy, idyllic, lush detail.” is incorrectly de-
tected as bus for all 16 seeds in (a). By changing the
downscaling factor from 4.5 to 2.0, for 13 out of 16
seeds, objects are correctly detected as car (c).

2. In Fig. 6, (b) and (d), a purple coupe car on the back-
ground outpainted using the prompt “purple coupe car
is driving on street, foggy, in the morning, bright, stun-
ning environment, sharp focus” is incorrectly detected
as suitcase for all 16 seeds in (b). By changing the
rotation angle from —80° to —70°, for 16 out of 16
seeds, objects are correctly detected as car (d).

Similarly, as displayed in Fig. 7, we can easily identify an-
other systematic error of the object detector “RetinaNet2”
as a dependence on the color of the object.

5. Conclusions

Summary. In this paper, we introduce a novel pipeline
called SCROD, designed to automatically identify system-
atic errors in object detectors applied to synthetic street
scenes. Our pipeline incorporates a custom outpainting
model, enabling comprehensive error analysis in both plain
color and natural backgrounds. We show the brittleness of
even state-of-the-art object detectors from torchvision [23],
highlighting the need for improved evaluation protocols.

Limitations. While SCROD provides extensive control
over relevant attributes, the quality of control is still subject
to the existing models’ limitations. Additionally, our cur-
rent implementation is object-centric and checks if a single
object is detected correctly, potentially leaving out certain
testing scenarios such as two objects occluding each other.

Outlook. Our SCROD pipeline is modular and build-
ing blocks such as ControlNet, Zero-1-to-3, or Outpainting
can easily be replaced once better alternatives become avail-
able. So we expect the quality of our object detector test-
ing pipeline SCROD will improve in the future. We leave
it for future research to extend SCROD to handle multiple
objects and occlusions within the scene. Additionally, de-
veloping more efficient non-brute-force search procedures
is a promising direction.
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Attributes Error rates
scale  angle (0] BG type YOLOvV5n FCOS RetinaNet2 FasterRCNN2 YOLOvV5x6
- —90.0  black  blue sports car 98% (airplane) 90% (mouse) 96% (mouse) 94% (kite) 83% (giraffe)
6.0 —50.0 - grey sports car | 70% (airplane) 50% (kite) 4% (airplane) 100% (airplane) 0%
2.0 0.0 yellow grey sports car | 94% (motorcycle)  31% (motorcycle)  100% (motorcycle) 0% 50% (motorcycle)
2.0 —90.0 pink - smart car 100% (truck) 100% (train) 55% (truck) 19% (kite) 38% (truck)
6.0 0.0 - blue sedan 100% (airplane) 8% (clock) 0% 0% 0%
Average Error Rate 59% 30% 17% 27% 7%

Table 1: Combinations of attributes scale, angle, object color, background color, and car type (column ‘“Attributes”
on the left) that have the highest error rate across seeds and marginalized attributes (if any) in the corresponding
group for 3 selected object detectors (column “Error rates” on the right). For each error rate, the class with the largest
count of wrong predictions is displayed in parentheses for the object detector with the highest error rate. Here, we select the
combinations of attributes that result in a significantly smaller error rate for the other 2 object detectors, to highlight that these
systematic errors are detector-specific. When we marginalize one of the attributes, we put - in the respective subcolumn of
the column “Attributes”. For each object detector, we report additionally the respective Box MAP on COCO val2017 (By).
In the last row, we report average error rates per object detector across all subgroups. It shows that object detectors can deal

well with our synthetic images.

Figure 5: Systematic error for the object detector “FasterRCNN2” motivated by the selected entry from the Tab. 1
(highlighted in blue). On the left, is the image, which is detected as the class airplane. This happens for the same attributes
and same object detector across all 16 seeds when randomizing single view generation with Zero-1-to-3. Attributes used
during the generation are the same as in the selected entry in the table. On the right, is the image for the same seed, but where
the downscaling factor is decreased from 6.0 to 4.0 and the background color is changed to black.
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(a) Systematic error into the class bus for the prompt “purple
SUV is driving on beach, foggy, idyllic, lush detail”. Here, the
image is downscaled by a factor of 4.5 before inputting it into
the object detector and the rotation angle is 10°.

(c) Changing the prediction from the class bus to the correct
class car for the prompt “purple SUV is driving on beach,
foggy, , idyllic, lush detail” by changing the downscaling fac-
tor from 4.5 to 2.0 before inputting it into the object detector.
Here the rotation angle is 10°.

(b) Systematic error into the class suitcase for the prompt
“purple coupe car is driving on street, foggy, in the morning,
bright, stunning environment, sharp focus”. Here, the image is
downscaled by a factor of 2.0 before inputting it into the object
detector and the rotation angle is —80°.

a " ' ¥ 3

o

(d) Changing the prediction from the class suitcase to the cor-
rect class car for the prompt “purple coupe car is driving on
street, foggy, in the morning, bright, stunning environment,
sharp focus” by changing the rotation angle from —80° to
—T70°. Here, the image is downscaled by a factor of 2.0 be-
fore inputting it into the object detector.

Figure 6: Subfigures (a) and (b) show detector-specific systematic errors for the object detector “FCOS”. Subfigures
(c) and (d) show that minor changes in object pose and scale result in correct predictions, which justifies that fine-granular
control over image synthesis is required for identifying systematic errors. While all of the objects in (a) and (b) are detected
as a wrong class with the object detector “FCOS” (error rate is 100%),“RetinaNet2” has error rates 13% (a), 25% (b), and
“FasterRCNN2” - 0% in both cases.
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(a) Systematic error into the classes truck and bus for the
prompt “orange smart car is driving on lawn, rainy, in the
morning, bright, lush vegetation, HQ”. Here, the image is
downscaled by a factor of 4.0 before inputting it into the object
detector and the rotation angle is —30°.

(c) Changing the prediction from the classes truck and bus to
the correct class car for the prompt “black smart car is driving
on lawn, rainy, in the morning, bright, lush vegetation, HQ”
by changing the color from “orange” to “black”. Here, the
image is downscaled by a factor of 4.0 before inputting it into
the object detector and the rotation angle is —30° .

(b) Systematic error into the class bus for the prompt “pink
coupe car is driving in city, thundery, in the morning, bright,
landscape, HQ”. Here, the image is downscaled by a factor of
5.0 before inputting it into the object detector and the rotation
angle is— 30°

(d) Changing the prediction from the class bus to the correct
class car for the prompt “black coupe car is driving in city,
thundery, in the morning, bright, landscape, HQ” by changing
the color from “pink” to “black”. Here, the image is down-
scaled by a factor of 5.0 before inputting it into the object de-
tector and the rotation angle is —30°,

Figure 7: Subfigures (a) and (b) show detector-specific systematic errors for the object detectors “RetinaNet2”” and
“FCOS”. Subfigures (c) and (d) show that minor changes in object color result in correct predictions, which justifies that
fine-granular control over image synthesis is required for identifying systematic errors. While all of the objects in (a) and all
but 1 in (b) are detected as a wrong class with the object detector “RetinaNet2” (error rate is 100% and 94% respectively),
and all are detected as a wrong class with the object detector “FCOS”, detector “FasterRCNN2” has error rate 0% in both
cases.
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