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Maarten Bieshaar6 J. Marius Zöllner4,5 Bernhard Sick2 Tim Fingscheidt1

{j.breitenstein, t.fingscheidt}@tu-bs.de
{florian.heidecker, bsick}@uni-kassel.de

{maria.lyssenko, maarten.bieshaar}@de.bosch.com
{bogdoll, zoellner}@fzi.de

1Technische Universität Braunschweig 2University of Kassel 3Robert Bosch GmbH 4KIT
5FZI Research Center for Information Technology 6Bosch Center for Artificial Intelligence

Abstract

In safety-critical applications such as automated driv-
ing, perception errors may create an imminent risk to vul-
nerable road users (VRU). To mitigate the occurrence of
unexpected and potentially dangerous situations, so-called
corner cases, perception models are trained on a huge
amount of data. However, the models are typically evalu-
ated using task-agnostic metrics, which do not reflect the
severity of safety-critical misdetections. Consequently, mis-
detections with particular relevance for the safe driving task
should entail a more severe penalty during evaluation to
pinpoint corner cases in large-scale datasets. In this work,
we propose a novel metric IoUw that exploits relevance on
the pixel level of the semantic segmentation output to extend
the notion of the intersection over union (IoU) by empha-
sizing small areas of an image affected by corner cases. We
(i) employ IoUw to measure the effect of pre-defined rele-
vance criteria on the segmentation evaluation, and (ii) use
the relevance-adapted IoUw to refine the identification of
corner cases. In our experiments, we investigate vision-
based relevance criteria and physical attributes as per-pixel
criticality to factor in the imminent risk, showing that IoUw
precisely accentuates the relevance of corner cases.

1. Introduction
For automated vehicles, it is of utmost importance to

guarantee a reliable and accurate detection of vulnerable

road users (VRU). For environment perception tasks, such

as object detection and semantic segmentation, deep neu-

ral networks yield state-of-the-art performance [15]. How-

ever, evaluation metrics such as mean intersection over

union (mIoU) are designed to treat all pixels in the scene

Figure 1: Our novel relevance-adapted intersection over

union (IoUw) is based on a per-pixel relevance weighting

captured in an image-wise weight mask. The weight mask

aggregates multiple corner case relevance criteria w.r.t. vi-

sual attributes and safety. In an offline evaluation pro-

cess, these weights are applied to misdetections so that a

relevance-weighted IoU (IoUw) gives a more reliable esti-

mate of whether corner case data is relevant for the seman-

tic segmentation method.

equally [26]. For non-safety-critical applications, task-

agnostic evaluation metrics as, e.g., intersection over union

(IoU) [21], may be sufficient to identify difficult detections.

However, in automated driving, failed detections (false neg-

atives) and ghost objects (false positives) not only corrupt

the overall performance but relate to so-called corner cases
(see Fig. 1). As a consequence, those relevant and non-

predictable situations pose a great challenge to visual per-

ception [6]. For example, a VRU crossing the street is

hard to detect in a scene affected by heavy overexposure

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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or adverse weather conditions. Here, pure vision-based rel-

evance measures for corner cases do not reflect the critical-

ity of the situation as it depends on the associated physical

properties like the distance to the ego vehicle.

As corner cases often only appear in limited portions of a

scene, they reduce the misdetections’ influence on agnostic

evaluation measures like IoU. Therefore, to accentuate the

relevance of a small pixel number in a high-resolution im-

age, a rigorous definition of corner cases is required to pin-

point challenging scenarios. Recent works present a refined

categorization of corner cases on different levels [7, 17],

as exemplified in Fig. 1. Bolte et al. [6] extend the defini-

tion of detected corner cases by utilizing an object’s vertical

position as a proxy for distance-based relevance and thus,

emphasize the necessity for more elaborate relevance mea-

sures. To account for the criticality of corner cases and to

mitigate the underspecification of purely vision-based met-

rics [31], works by [32, 22, 3] include a notion of safety on

the basis of distance and time-to-collision (TTC) to identify

the safety-relevant objects for the driving task along with

the respective performance assessment. Hereby, they con-

sider the VRU’s physical properties to rate whether an oc-

curring misdetection is indeed as safety-critical corner case.

In this work, we first define relevance criteria w.r.t. both
visual attributes and safety, bridging the gap between safety

investigations and visual perception to calculate per-pixel

relevance for the semantic segmentation task. Second, we

propose a relevance-adapted version of the IoU to refine the

identification of corner cases based on the accumulated rel-

evance criteria in comparison with the ground truth. Our

novel offline evaluation regime for the semantic segmen-

tation task highlights the detection capabilities w.r.t. pre-

defined relevance criteria and thus, measures the effect of

occurring corner cases. The proposed methodology helps

to establish a link between corner case types and perception

methods, facilitating a relevance-driven data selection for

training semantic segmentation models.

The remainder of the paper is structured as follows: Sec.

2 discusses related works. Sec. 3 introduces our definition

of the relevance-adapted (weighted) IoU for semantic seg-

mentation. Sec. 4 outlines the offline evaluation procedure

for the relevance-adapted IoU using estimated corner case

weights, and Sec. 5 presents our experimental results.

2. Related Work

2.1. Corner cases in automated driving

The first definition of a corner case for automated driv-

ing was phrased by Bolte et al. [6]: “A corner case is given,

if there is a non-predictable relevant object/class in rele-

vant location”. The authors presented a corner case de-

tection system using relevance as a filtering criterion. As

this approach lacked a specific categorization, Breitenstein

et al. [7] provided a systematization of corner cases for the

camera sensor consisting of multiple levels. Their system-

atization describes external corner cases occurring in the

real world. Based on this, they were able to show a strong

link to corner case detection approaches [8], bridging the

gap between the theoretical taxonomy and practical meth-

ods. Heidecker et al. [17] extended the systematization by

not only including LiDAR and RaDAR data, but also by

simplifying it and adding a new layer for internal corner

cases introduced by malfunctions in the software, such as

false negatives. Bogdoll et al. [4, 5] have shown the appli-

cability of this taxonomy for the description and generation

of scenarios, demonstrating its maturity. As our work builds

heavily upon the systematization by Heidecker et al. [17],

we hereby provide a short overview:

• Sensor layer: Corner case introduced by sensor at-

tributes on either the hardware or physical level.

• Content layer: Corner case on a single-frame on ei-

ther the domain, object, or scene level. Respective ex-

amples are changing weather, unknown objects, and

known objects in unusual locations or quantities.

• Temporal layer: Corner case only detectable on mul-

tiple frames, i.e., scenarios, with a focus on behavior.

While previous works focused on knowledge-driven cor-

ner case types based on scene content and physical acquisi-

tion properties and have linked those types of corner cases

with sensor modalities in autonomous driving, the notion of

relevance of corner cases on a perception function has to

our knowledge not yet been explored beyond the original

concept of Bolte et al. [6]. In our work, we aim to provide

a computational model of such relevance by introducing a

weighted variant of the mIoU metric, which reflects the rel-

evance of corner cases for the scene evaluation.

2.2. Criticality measures in automated driving

Gannamaneni et al. [16] and Lyssenko et al. [21] lever-

age synthetic data to show that standard performance mea-

sures such as IoU are insensitive to important physical cues

such as distance. However, sole distance measures do not

consider the velocity or direction of motion of the VRU

needed to adequately assess the criticality of the interac-

tion. To account for criticality, Wolf et al. [32] and Bansal

et al. [3] introduced risk-aware recall versions on the ba-

sis of the direction of motion and distance, respectively.

In contrast to aggregated safety-aware performance eval-

uation, potentially critical interactions between automated

vehicles and individual pedestrian sequences can be de-

rived by a reachability-based method in combination with

TTC [22]. For semantic segmentation, per-pixel TTC es-

timation by Badki et al. [2] leveraged consecutive frames

from a mono camera to calculate a binary time-to-contact

(the time for an object to collide with the observer’s plane)
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via a series of binary per-pixel classifications to estimate

whether a vehicle may collide with the camera plane.

Varghese et al. [28] incorporated optical flow to measure

the stability of semantic segmentation between consecutive

frames, leading to a critical temporal consistency metric to

identify unstable predictions during offline evaluation. We

follow Varghese et al. [28] by combining safety investiga-

tions with visual attributes for our metric in an offline eval-

uation setting. However, instead of identifying unstable se-

mantic segmentation predictions, we use them to accentuate

scene parts affected by corner cases to determine their rel-

evance for semantic segmentation. The weighting of mIoU

has been investigated for improved training of object detec-

tors by using the weighted mIoU inside a pixel-position-

aware loss function [27, 30] and to weight the influence

of semantic classes based on their frequency of appearance

[11, 35, 1]. While we follow the intuition of weighting the

mIoU, we design our weighting to estimate the relevance of

corner cases using multiple corner case criteria instead of

just relying on class frequency or position awareness.

3. Relevance Measure for Corner Cases in Se-
mantic Segmentation

The mIoU is a widely used metric for evaluating se-

mantic segmentation, considering the overlap between the

ground truth semantic segmentation mask m ∈ SH×W and

the predicted semantic segmentation mask m ∈ SH×W ,

where S = {1, . . . , S} is the set of the S semantic classes,

and H, W ∈ N are the height and width of the masks,

respectively. The mIoU calculates the mean of the class-

specific intersection over union (IoU) values according to:

mIoU =
1

S

∑
s∈S

IoU(s). (1)

Most often, the intersection over union (IoU) is described

by the true positive (TP), false positive (FP), and false nega-

tive (FN) cases or by using the Jaccard score [19]. Here, the

overlapping area between the one-hot encoded ground truth

per class s, i.e., ys ∈ {0, 1}H×W , and the one-hot encoded

prediction per class s, i.e., ys = (yi,s)i∈I ∈ {0, 1}H×W , is

calculated and normalized by the area of the union:

IoU(s) =

∑
i∈I

TP(s, i)∑
i∈I

(TP(s, i) + FP(s, i) + FN(s, i))
(2)

=
|ys ∩ ys|
|ys ∪ ys|

=
|ys ∩ ys|

|ys ∩ ys|+ |ys � ys|
, (3)

where i ∈ I = {1, . . . , H · W} denotes the pixel index

for the semantic class s. We split the area of union ys ∪
ys = ys ∩ ys + ys � ys into two parts, where ys ∩ ys

is the intersection of both areas as in the numerator and �

denotes the symmetric difference, i.e., the union of the non-

intersecting areas of ys and ys.

In the mIoU equation (1), each classified pixel in the

image is given equal weight regardless of the class, posi-

tion, or relevance. This does not pose a problem for eval-

uating semantic segmentation models in non-safety-critical

domains. However, in safety-critical systems, some areas

in the image are too dominantly considered in the metric,

while others play a too-small role. For instance, if safety

aspects are important and corner cases are estimated accord-

ing to their criticality, the pixels of the semantic mask must

be weighted differently in the metric. We use the Jaccard

score formula (2) to compute the weighted IoU

IoUw(s) =

∑
i∈I

TP(i, s)∑
i∈I

TP(i, s) + (FP(i, s) + FN(i, s)) · w(i) .

(4)

Weighting the intersection ys ∩ ys (note that |ys ∩ ys| =∑
i∈I TP(i, s)) would not be beneficial as TP pixels do not

impose a risk (cf. (2)). Therefore, we focus on the symmet-

ric difference ys�ys, where |ys�ys| =
∑

i∈I FP(i, s)+
FN(i, s) counts the segmentation errors of class s pixels in

the ground truth. The weighted errors of class s in pixel i
are denoted as Ew(i, s) = (FP(i, s) + FN(i, s)) · w(i).

For each pixel i in (4), we multiply the corresponding

errors FP(i, s)+FN(i, s) by the pixel-wise weight, where:

w(i) =
1

N

∑
n∈N

λnωn(i). (5)

To obtain w(i), we consider N corner case criteria weights

ωn = (ωn(i))i∈I ∈ [0, 2]H×W , n ∈ N = {1, . . . , N}, de-

signed to estimate corner case relevance. The weight range

ωn(i) ∈ [0, 2] ensures that relevant pixels i (ωn(i) > 1) lead

to a larger Ew(i, s), decreasing IoUw, and irrelevant pixels

i (ωn(i) < 1) lead to a lower Ew(i, s), increasing IoUw in

(4). As corner case detection is a highly complex topic, we

do not rely on a single weighting procedure to estimate rel-

evance. Instead, we use the aggregation of multiple criteria

weights ωn(i), n ∈ N , to benefit from different aspects in

each criterion. The N different corner case criteria provid-

ing the corresponding weights ωn are introduced in detail in

Section 4.2. In (5), we apply a weighting factor λn > 0 to

emphasize the relative importance of each corner case cri-

terion similar to [30], where we choose 1
N

∑
n∈N λn = 2.

Our IoUw equals IoU if w(i) = 1 for pixel indices i ∈ I.

This can be obtained, e.g., by ωn(i) = 1/2 for all pixel

i ∈ I and criteria n ∈ N . The resulting weights w(i) in (5)

form the final weight mask w = (w(i))i∈I ∈ [0, 4N ]H×W

combining N corner case criteria.

Please note that the integration of the weight mask w in

the weighted IoU in (4) keeps the same range IoUw ∈ [0, 1],
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Figure 2: Nine examples of the same semantic masks and

the resulting IoUw (9 values) under the influence of two cor-

ner case criteria weights: distance to the camera (distance

weight) ω1(i) and class vulnerability (class weight) ω2(i).
Each example consists of two rectangles representing the

ground truth and predicted semantic mask. The intersection

is always shown in the same green color, and the weighted

error area (Ew(i, s)), is colored depending on the weight

w, calculated according to (5). For simplicity, in each ex-

ample, we assign the same weight w(i) to each pixel i.

as (FP(i, s) + FN(i, s)) ·w(i) ≥ 0 for w(i) ∈ [0, 4N ]. The

mean IoUw (mIoUw) is obtained in analogy to (1).

We visualize the benefit of IoUw in a toy example in

Fig. 2, where we present nine identical examples and show

how relevance-driven weighting can be beneficial for the

evaluation. We can see an equal symmetric difference (and

overlap) for each of the nine examples, i.e., equal IoU scores

(0.47). However, two relevance criteria w.r.t. corner cases

govern the horizontal and vertical axis: distance to the cam-

era ω1(i) and severity of misclassification of a semantic

class ω2(i), i.e., person, car, and vegetation. Each crite-

rion assigns a weight to each example in Fig. 2. We obtain

the weight w according to (5) to calculate IoUw, setting

λ1 = 1, λ2 = 1. For each example, we weight each pixel

i in Ew(i, s) using the same weights ω1(i) and ω2(i), e.g.,

for the example in the bottom left of Fig. 2, ω1(i) = 1 and

ω2(i) = 2 for all pixels i ∈ I. The values for ω1(i) and

ω2(i) are denoted on the left and lower axes of Fig. 2.

The first column represents the class “person”. As we

can see, with increasing distance weight ω1(i), IoUw de-

creases from 0.46 down to 0.37. The most safety-relevant

case for the class “person” has the highest value (ω2(i)= 2)

in this toy example. Our corner case criteria for evaluation

are introduced in Sec. 4.2. Similarly, closer distance to the

ego-vehicle corresponds to a higher distance weight ω1(i)
and thus higher criticality for the person class, i.e., this leads

to a stronger penalty on FP and FN pixels.

The same behavior can be seen in the other two columns

(representing classes “car” and “vegetation”) of Fig 2. De-

pending on the relevance of the class, i.e., class weight

ω2(i), we can see that misdetection at the same distance

criticality obtain different IoUw scores. Thus, VRUs are

treated with higher priority in this evaluation than, e.g., veg-

etation. Further, using TTC as an auxiliary weight, we are

able to extend the pure distance-based criticality weighting

by velocity information to account for criticality (see Sec.

4). Consequently, IoUw would denote greater changes to

the generic IoU for dynamic objects, e.g., cars.

4. Experimental Setup

4.1. Implementation Details

We use the Cityscapes dataset DCS [13] and train our

semantic segmentation model detailed in Section 4.1 on the

training dataset Dtrain
CS . We use the validation dataset Dval

CS for

evaluation. Furthermore, we define a subset Dcc
CS of Dval

CS cu-

rated manually to fit the definitions of corner case types [17]

consisting of three examples per corner case type. Some ex-

amples of our corner case dataset Dcc
CS are shown in Fig. 8.

As we investigate image-based semantic segmentation, cor-

ner case types defined on the temporal axis, i.e., scenario-

level corner cases, were not included.

We use OCRNet [34] for semantic segmentation in Fig.

3. It trained on Dtrain
CS using the implementation provided

by the mmsemgmentation repository [12]. Our trained

network reaches mIoU= 80.23% on Dval
CS (cf. Table 1).

4.2. Corner Case Criteria

Our proposed relevance estimate for corner cases in se-

mantic segmentation is based on criteria defined based on

corner case types in [17]. We first discuss the proposed eval-

uation procedure shown in Fig. 3. Then, we detail how we

obtain each criterion ωn in (5).

Fig. 3 shows the proposed offline evaluation proce-

dure to obtain mIoUw for an input image xt = (xt,i) ∈
[0, 1]H×W×C of given data, where t ∈ T = {1, . . . , T}
is the index of the image in the data with T image frames

and i ∈ I = {1, . . . , H · W} denotes the pixel posi-

tion in the image with height H and width W . The num-

ber of channels is denoted by C, where, for RGB images,

C = 3. The semantic segmentation method outputs the cor-

responding semantic segmentation mask mt ∈ SH×W with

S = {1, . . . , S} being the set of S semantic classes. From

the semantic segmentation mask mt and the correspond-

ing ground truth mt ∈ SH×W , we extract our pre-defined

N corner case relevance criteria ωt,n for n ∈ {1, . . . , N},

which will be detailed in the following. These criteria are

then accumulated to the weight mask wt ∈ [0, 4N ]H×W

according to (5). In the performance evaluation, we cal-

culate mIoUw according to (4). Next, we describe how to

obtain the various criteria.
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Figure 3: Our proposed evaluation procedure to measure the weighted mIoU (mIoUw) of given data x1, . . . ,xT . We obtain

the corresponding semantic segmentation mask mt for a given input image xt. Then, we calculate our corner case criteria,

which comprehensively form the weight mask wt (5). We use the weight mask to calculate the proposed mIoUw.

Figure 4: Location priors calculated on the Cityscapes

training dataset Dtrain
CS for the classes “person” (left) and

“car” (right).

4.2.1 Crowdedness of the scene

Crowded areas, i.e., with semantic classes person and rider,

are more prone to errors and/or safety issues but also gen-

erally pose a higher risk for corner cases. Thus, areas

with higher crowdedness are assigned higher weights, i.e.,

a higher relevance. To do so, we consider pixel i in the se-

mantic mask m and a neighborhood of an experimentally

chosen fixed size of 128 × 256. We count the number of

VRU appearances in this neighborhood of a pixel i. By re-

peating the procedure for all pixels, we obtain the criterion

weight ω1, which we normalize such that ω1 ∈ [0, 2]H×W .

This emphasizes crowded areas, where ω1(i) > 1/2 puts

more emphasis on pixel i, ω1(i) = 1/2 for few VRUs, and

ω1(i) < 1/2 describes areas mostly without VRUs, leading

to less relevant pixels i.

4.2.2 Confidence

This criterion applies the maximum softmax method [18].

Instead of the usual argmax function, the maximum softmax

method extracts the maximum of softmax probabilities to

obtain the probabilities associated with the predicted classes

s, i.e.,

ỹt = (ỹt,i) =

(
max
s∈S

yt,i

)
. (6)

According to [18], we interpret low maximum softmax

probabilities as uncertainties of the semantic segmentation

network, and we use the inverse of the maximum soft-

max probabilities as the criterion for the weight mask, i.e.,

ω2(i) = 1 − ỹt,i. The inverse ensures that higher values

in the weight mask ω2 are related to higher uncertainties.

We normalize so that ω2(i) ∈ [0, 2] to ensure that high un-

certainty lowers IoUw to show relevance, and low values

increase IoUw as errors are, in this case, less relevant.

4.2.3 Spatial diversity

Intuitively, we are interested in predicted classes in unusual

locations to detect certain corner case types, e.g., scene-

level corner cases. For this, we use location priors for

each class calculated on Dtrain
CS , which we assume to con-

tain mostly normal data and a negligible amount of corner

cases. These location priors then contain the information

where each class is typically located [29]. We calculate a

location prior per semantic class in the training data xt for

t ∈ Ttrain = {1, . . . , Ttrain} with Ttrain being the amount of

training data, by

P (i|s) =

∑
t∈Ttrain

yt,i,s

max
j∈I

∑
t∈Ttrain

yt,j,s
∈ [0, 1], (7)

Fig. 4 shows two example location priors for the classes

“person” and “car”. Persons are mostly observed in the

background and slightly more frequently on the right-hand

side of the ego-vehicle (probably due to right-hand traf-

fic in the recorded areas, i.e., sidewalks to the right of the

ego-vehicle). Cars are observed left and right of the ego-

vehicle, but typically not directly in front of it. During in-

ference, we obtain the criterion weight ω3 from the location

prior corresponding to the predicted semantic class s∗, i.e.,

ω3(i) = 1 − P (i|s∗). For ease of notation, we omit the
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Figure 5: Our cost matrix for four categories of seman-

tic classes: drivable, static, non-human road users (NHRU),

and VRU. We weight misclassifications based on their risk

for accidents associated with monetary costs (in $) shown

in the cost matrix together with the associated cost c.

dependence of ω3(i) on s = s∗. To denote relevance, we

normalize to ω3(i) ∈ [0, 2]. Note that ω3(i) = 1/2 if the

predicted class s appears in green colored areas of Fig. 4.

4.2.4 Time-to-collision

The Cityscapes dataset also provides depth ground truth

data. Without the given depth information, the calcula-

tion of TTC is an ongoing research field [2, 33, 20]. Since

depth information and camera intrinsics are given, we over-

approximate TTC1 while assuming a constant velocity2 of

50 km/h. For safety considerations, we assume a perception

reaction time of 2.5 s. This results in a critical distance of up

to 60 meters. We obtain the TTC by normalizing the ground

truth depth map of the Cityscapes dataset by the critical dis-

tance. We use the inverse of the normalized TTC per pixel

as an additional weight ω4, i.e., ω4(i) = 1 − TTC(i)
max
j∈I

TTC(j) ,

driven by the assumption that perception errors far in the

background are irrelevant to the driving task and that per-

ception errors become highly relevant when they appear

closer to the camera, i.e., within the critical distance. We

normalize to ω4(i) ∈ [0, 2], where ω4(i) = 1/2 if i is ap-

proximately at 3/4 of the stopping distance. Using TTC in-

stead of pure distance-based criticality weightings, we also

include velocity information that greatly impacts the result-

ing mIoUw for dynamic objects.

4.2.5 Weighted misclassification

We distinguish between different types of misclassifica-

tions: We consider four categories of semantic class types,

i.e., drivable, static, VRU, and non-human road
users, and we categorize the semantic classes of our

dataset into those four categories. We develop a cost matrix

1We define TTC similar to Badki et al. [2], i.e., as the time for an object

to collide with the observer’s plane.
2Our speed assumption is based on standard German speed limits,

which for larger urban streets is often set at 50 km/h (approx. 31 mph).

Dval
CS Dcc

CS

mIoU 80.23% 74.12%
mIoUw 80.35% 72.33%

Table 1: Results w.r.t. mIoU and weighted mIoU (mIoUw)

on the considered datasets, i.e., Dval
CS and Dcc

CS.

to punish misclassifications between the four categories.

Our costs c are based on the severity of injuries based on the

maximal abbreviated injury scale (MAIS). It ranges from

no injury (MAIS0) to critical injuries (MAIS5). We include

two additional cases: property damage only and fatal in-

jury, and relate the scales with real costs associated with

those types of accidents [24, 25, 14]. The misclassification

of VRUs as drivable area can have the most serious conse-

quences, i.e., fatal, MAIS5, and MAIS4. The cost matrix

in Fig. 5 shows our derived costs c and corresponding mon-

etary costs. The second highest cost (orange in Fig. 5) is

associated with misclassifications that can lead to serious

injuries, i.e., classifying a non-human road user such as a

car as a drivable area. We obtain the associated criterion

weight ω5 by ω5(i) = 1/2 + c with the cost c provided by

the cost matrix in Fig. 5. Misclassifications within the same

category lead to ω5(i) = 1/2.

While we produce a cost matrix sufficient for our task

and could, e.g., also be applied for Bayesian risk minimiza-

tion in semantic segmentation, it should be noted that a gen-

erally accepted and universally valid cost matrix is an active

research topic [10, 9], and not the aim of this work.

5. Experiments and Discussion

In this section, we discuss the experiments based on our

proposed evaluation procedure in Fig. 3. We evaluate our

results in terms of mIoU and mIoUw to show the benefit of

the proposed weighting to evaluate data w.r.t. corner cases.

While mIoUw has more exploitable properties as an

image-wise evaluation measure, we first show results on

the respective datasets in Table 1. We see that on Dval
CS

there is just a small increase from mIoU (80.23%) to mIoUw
(80.35%). As expected, on Dcc

CS mIoU (74.12%) decreases

to an mIoUw = 72.33%, since by design of mIoUw, not

well-segmented areas in the presence of corner cases are

punished. Since Dcc
CS is designed to contain all corner case

types, we expect errors that are punished by mIoUw.

Fig. 6 shows the effect of various criteria weights ωn

on the weight mask w. In the first row, we see the input

image xt, the ground truth mt, the segmentation predic-

tion mt, and the weight mask wt. In the bottom row, we

show (only) the four ωn with the strongest influence on wt

for this input image. The input image is atypical for DCS,

with no road straight ahead, many people close to the ego-

vehicle, and a ship in the background. The obtained weight

mask wt accentuates the relatively small area ahead where
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Figure 6: Input image xt, corresponding ground truth segmentation mask mt, segmentation mask mt and weights wt to

calculate mIoUw are shown in the top row. In the bottom row, we show the criteria weights ωt,1, . . . ,ωt,4, which have the

highest effect on the weights wt. Evaluation provides mIoUw = 57.03% and mIoU= 63.29%.

Figure 7: Input image xt and ground truth mt. We simu-

late a safety-critical situation by replacing parts of a human

in the output segmentation mt (bottom left) by the class

“road”, as can be seen in the white box. The mIoU for this

altered prediction mt is 60.67%, while mIoUw = 56.03%
represents more accurately the safety-critical prediction in

the semantic segmentation. Its weights wt (bottom right)

highlight the areas affected by the corner case.

crowdedness weights (ω1) reflect many person pixels, TTC

(ω4) weights a small distance to the ego-vehicle, spatial di-

versity (ω3) weights the VRU classes close by as these are

unusual positions for those classes (see Fig. 4) and the side-

walk. Confidence (ω2) accentuates the background with

the ship, walls, and vegetation. As the parts highlighted

by our weights wt are not well segmented in mt, we obtain

mIoUw = 57.03% compared to mIoU= 63.29%.

Fig. 7 shows the need for relevance-weighting using an

example of a safety-related corner case. On top, Fig. 7

shows the input image xt and the ground truth mt. In

the corresponding semantic segmentation mt, we simulate

a safety-critical situation: Inside the white frame, we re-

place pixels of a person with road pixel labels. This is criti-

cal since due to the higher base point, the respective person

might be located at a larger distance to the ego-vehicle. The

mIoU for the altered prediction is 60.67%, which is close

Corner cases on... mIoU mIoUw

hardware 79.48% 78.98%
physical 78.34% 79.14%
domain 54.06% 48.98%
object 80.12% 80.46%

collective 78.01% 75.71%
contextual 76.21% 74.92%

Table 2: Results in mIoU and mIoUw on Dcc
CS divided into

the different corner case levels [17]. If mIoUw < mIoU,

the semantic segmentation is much more affected by that

corner case type thereby making it relevant.

to the average mIoU per image on the Cityscapes validation

data Dval
CS (61.47%), which we use as reference for normal

data, i.e., not safety-critical. The mIoU is not affected by the

safety-relevant misclassification, as small local errors have

little effect on this global measure. However, mIoUw drops

to 56.03%. This reduced value highlights the impact of mis-

classified, safety-relevant pixels (such as person pixels) on

semantic segmentation. The light-colored weights wt show

that the areas affected by corner cases are emphasized.

As we propose mIoUw for corner cases, Table 2 shows

the mIoU and mIoUw results on Dcc
CS for six corner case

levels. We see that corner cases on physical level lead to

improved results, i.e., do not affect the semantic segmen-

tation method much (mIoU 78.34% vs. mIoUw 79.14%).

The same holds for the object level, where mIoUw increases

mIoU by 0.34% absolute. However, we observe small de-

creases for corner cases on a hardware and contextual level

(0.5%/1.29% absolute, respectively. Larger negative de-

viations can be observed for collective corner cases (2.3%
absolute) and domain-level corner cases (5.08% absolute),

making both corner cases especially relevant for our seman-

tic segmentation method. While domain-level corner cases

also have a large impact on the entire image [23], the de-

viations for collective corner cases only impact parts of the

image and are strongly emphasized by the mIoUw.
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Figure 8: Example images xt of corner case types with weights wt (higher values are visualized in brighter yellow) and

segmentation masks mt. For each image, the corner case type is shown as well as mIoU (1) and mIoUw (4).

In Fig. 8, we show six images corresponding to different

corner case types, i.e., hardware, physical, domain, object,

and two times scene level. For each image, we show the

weight wt as well as the semantic segmentation mt. We re-

port both mIoU and mIoUw per input corner case. The ex-

ample scene-level (collective) corner case has the strongest

influence on the segmentation method, where the discrep-

ancy between mIoU and mIoUw is 5.06% absolute, show-

casing that the semantic segmentation method is highly vul-

nerable to the collective scene-level corner case. Similarly,

high reductions can be witnessed for the example domain-

level corner case, where the discrepancy between mIoU and

mIoUw is 3.92% absolute, i.e., the domain-level corner case

is also relevant for the segmentation method.

The example object-level corner case leads to a decrease

by 3.55% absolute from mIoU to mIoUw as the crowded

scene containing a dog and a stroller is highlighted by the

weights wt. This area contains many FP and FN, which

are consequently weighted higher in Ew(i, s). Since no

hardware-level corner cases are available in DCS, we sim-

ulated motion blur for the hardware-level corner case. In-

terestingly, the motion blur leads to misclassifications be-

tween the pedestrians and the street which can be observed

as bright pixels in wt (best seen digitally). These misclas-

sifications cause a drop from mIoU= 54.99% to mIoUw =
52.25%. On scene level (contextual), mIoUw decreases

2.3% absolute compared to the mIoU. In the image, a per-

son is standing inside the convertible. This is also estimated

as an area of high relevance by the weight wt (more yellow,

i.e., high values). The decrease in mIoUw is likely due to the

limited-quality prediction of this context-level corner case.

The example physical-level corner case is caused by over-

exposure, resulting in heavy blending effects on the cars.

However, the segmentation method seems not visibly af-

fected by overexposure, as is also validated by an increased

mIoUw = 43.04% compared to mIoU= 41.85%. From our

examples, the physical-level corner case is irrelevant to our

semantic segmentation.

Our results show that mIoUw can estimate the relevance

of corner cases for semantic segmentation. However, for fu-

ture work, we would be interested in adapting this weight-

ing to other perception tasks, e.g., by adjusting average pre-

cision or transferring the concept into 3D space for more

actionable relevance representations.

6. Conclusion

In this work, we propose a relevance-adapted version of

the generic IoU metric, called mIoUw, to refine the identifi-

cation of corner cases during evaluation. Therefore, we pre-

define relevance criteria with respect to visual attributes and

safety to estimate a per-pixel weighting for semantic seg-

mentation evaluation. Thus, our novel metric establishes the

link between perception methods and existing definitions

of corner case types using vision-based attributes and per-

pixel criticality. Further, we measure the effect of the rel-

evance criteria showing that domain- and scene-level (col-

lective anomalies) corner cases have the highest relevance

for the semantic segmentation method w.r.t. IoUw. Our

proposed metric can be applied in future work to detect

data-driven corner cases purely based on large reductions

in mIoUw compared to mIoU. Additionally, mIoUw moti-

vates the design of novel corner case detectors by extending

the investigated corner case criteria in this work.
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