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Abstract

The current road condition is a crucial factor regard-
ing road safety of the ego-vehicle and other road users.
Road condition estimation provides essential input data for
friction estimation which is used for autonomous and auto-
mated driving systems. Camera-based approaches are still
far from being practical and other sensors dominate the
�eld of friction estimation. This is due to the limited per-
formance of current approaches and the lack of datasets for
the incorporation of learning-based methods.

We propose a novel dataset for a special scenario of
road condition, the coverage with snow. It is the �rst large-
scale dataset for camera-based road classi�cation of snow-
covered roads with different types of snow coverage. The
dataset consists of road patches in bird�s eye view perspec-
tive and ground truth annotation for the current snow cov-
erage type. It is combinable with RoadSaW [4], a dataset
for road surface and wetness estimation, leading to a holis-
tic road condition dataset with 15 categories. The baseline
evaluation employs state-of-the-art, real-time capable ap-
proaches for classi�cation and uncertainty estimation with
RBF (Radial Basis Function) networks. Our experiments
demonstrate that the proposed data opens new challenges
in the �eld of camera-based road condition estimation.

1. Introduction

Advanced technologies and various types of sensors in
automated vehicles continuously improve the road safety.
These sensors include camera, light detection and ranging
(LiDAR), radar, inertial measurement unit (IMU), global
navigation satellite system (GNSS), and sonar [27, 14, 15,
10]. In terms of usability and cost, cameras are the most
popular sensors in autonomous driving vehicles [14]. Key
performance indicators of cameras are the large usability
range and the high resolution at relatively low cost.

Road conditions effected by weather events such as rain
and snow lead to decreased vehicle performance, e.g., de-
creased friction of the vehicle tires, resulting in fatal crashes
and property damage of high amount [11]. For advanced

(a) Camera View (b) Bird�s Eye View Patch

Figure 1: Camera view and corresponding bird�s eye view
(3.6m× 3.6m) of a road region computed from camera
calibration. We show Fresh Fallen Snow on the test track
(top) and Fully Packed Snow on a public road (bottom).

driver assistance systems as well as for self-driving vehi-
cles, many tasks such as navigation, self-steering, and au-
tomatic breaking can be further improved with the knowl-
edge of the current road condition [22]. Additionally, it is a
crucial factor for road safety. Thus, the knowledge of road
conditions, e.g., dry, wet, and snowy surfaces, should be
considered. In [1], signi�cant effects on the current friction
of snow-covered surfaces are derived from the surround-
ing temperature, snow density, and thickness of the snow.
While the temperature is available from in-vehicle sensors,
snow density and thickness is a road property and, thus, can
only be measured using a dedicated sensor. Three snow
states are considered [1], discharging (the mechanical re-
moval of snow), melting (changing to a liquid), and solid-
ifying (changing to a solid). From a vehicles� perspective,
a distinction into different snow classes is required for reli-
able friction estimation.
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Table 1: Comparison of related road condition datasets. The proposed dataset RoadSC3 provides three different snow classes
and Bird�s Eye View (BEV) perspective for the Regions of Interest (ROI). RoadSC15 combines RoadSaW with RoadSC3

leading to 15 categories including three snow densities and three road surface types combined with four wetness levels.

Dataset Image Source Calibration Label Resolution # Categories: Snow/Other
Khan et al. [11, 24] SHRP2 NDS � full image 2/1
Roychowdhury [21] YouTube � full image 2/4
Busch et al. [18, 3] compiled � full image / ROI 1/4
RoadSaW [4] test track � ROI, BEV 0/12
RoadSC3 (new) test track / public roads � ROI, BEV 3/0
RoadSC15 (new) test track / public roads � ROI, BEV 3/12

2. Related Work

Due to the popularity of machine learning approaches
in computer vision tasks, many datasets are available in
the automated driving scenario [5, 8, 16]. Some of them
consider adverse weather conditions [19, 7]. However,
these datasets are focused on object categories and provide
3D object labels of traf�c participants only. A few ap-
proaches handle snowy conditions as one category out of
others [18, 3]. In [21], snowy conditions are divided into
snow and slush together with two wetness levels. In [11]
two snow conditions, light snow, and heavy snow, are pro-
posed. However, these datasets only include uncalibrated
views. In Tab. 1, existing datasets targeting road surface
types including snow categories are listed. The authors
of [21] indicate the bene�t of patch segmentation for a more
detailed view on partially snow-covered road regions ob-
served from a bird�s eye view perspective. The RoadSaW,
dataset [4] includes calibrated bird�s eye view perspective.
and 12 surface and wetness categories, but no snow.

Our contribution is the construction of a novel dataset
RoadSC for snow conditions incorporating different cate-
gories for the coverage of the road with snow. The data is
recorded on eight different days on a test track and on pub-
lic roads under various snow conditions, including freshly
fallen snow, packed snow, and different levels of snow cov-
erage of the road. The scenes are recorded with a calibrated
camera setup mounted on a truck. The camera calibration
enables the computation of bird�s eye view (BEV) road im-
age patches as visualized in Fig. 1. It is the �rst dataset
providing three different snow classes together with high
resolution BEV images. Our data is compatible with the
RoadSaW dataset [4] which includes 12 classes of road
surfaces and wetness levels. The combination provides 15
categories: snow densities, wetness levels, and road sur-
face types leading to a holistic road condition estimation
dataset. We evaluate the use of deep convolutional neural
networks to estimate the road condition for the proposed
datasets. Under examination are RoadSC3 with three snow
classes and RoadSC15, the combined datasets with 15 cat-
egories. As a baseline, a real-time capable approach using

the MobileNetV2 [23] architecture and uncertainty estima-
tion with RBF networks [25] is employed. Furthermore, the
uncertainty estimation is evaluated using out-of-distribution
(OoD) datasets and a detailed investigation of the required
hyperparameters. To summarize, our contributions are:

� Unique dataset for road snow coverage estimation, in-
cluding different snow coverage categories

� Combination with the RoadSaW dataset for holistic
road condition estimation with 15 categories: snow
coverage types, surfaces types, and wetness levels

� Baseline for image-based road condition and uncer-
tainty estimation including hyperparameter study

� The dataset is available at:
https://roadsc.viscoda.com

3. RoadSC: Road Snow Coverage Dataset
The Road Snow Coverage (RoadSC) dataset was

recorded on a large-scale test track and on public roads in
Finland. The image capture was done using two cameras
(second camera served as backup) mounted in the cabin of a
truck. Eight days of data acquisition was performed result-
ing in a large-scale dataset designed for road snow classi�-
cation and uncertainty estimation. Following the approach
in [4] camera calibration is used for the extraction of bird�s
eye view (BEV) road patches of a selectable size at a certain
distance to the vehicle. In Fig. 1, examples for the recorded
camera views are shown on the left while the corresponding
extracted BEV road patches are on the right. As distance
to the vehicle d2v, 15m is selected. The BEV image reso-
lution is 900 × 900 px to keep the image data compatible
with RoadSaW [4]. Thus, both datasets can be combined
for building a larger dataset for road surface condition es-
timation including the proposed snow classes together with
the surface and wetness classes from RoadSaW.

Since snow thickness and density are the main in�uences
on the friction of tires [1], the categories are selected based
on the snow densities and the coverage of the snow on the
road.
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We de�ne three snow coverage categories as

� Fresh Fallen Snow: fresh snow surface, no road surface
visible, few drive-overs allowed (distinct skid marks),
examples in Fig. 2a

� Fully Packed Snow: surface fully covered with packed
snow, resulting from many drive-overs, no road surface
visible, examples in Fig. 2b

� Partially Covered Snow: parts of the observed region
are snow-covered, road surface is visible, examples
in Fig. 2c and Fig. 3

The different categories could be recorded due to the
following advantageous conditions: (1) the weather pro-
vided fresh-fallen snow; (2) our drivers followed speci�c
maneuvers enabling the recording of many image sequences
with the demanded categories (such as driving over as much
fresh-fallen snow as possible). The Partially Covered Snow
category includes a large variety of different coverage lev-
els. Some examples for different levels of coverage are
shown in Fig. 3.

3.1. Image Acquisition

For video recording, two redundant FLIR Black�y cam-
eras, 2048 × 1536 px resolution, were installed behind the
windscreen of the truck at 2.72m height. The image capture
was done using Nvidia Jetson Nanos. The system worked
reliably although the circumstances were challenging with
temperatures down to �20 �C/�4 °F during recording and
down to �40 �C/�40 °F during night. Before the third
recording day, fresh snow has been fallen. The drivers used
as many fresh snow regions as possible to capture enough
video data for the Fresh Fallen Snow category.

The road patch format is kept compatible with the dataset
RoadSaW [4] since a combination of the datasets is in-
tended for a holistic road condition estimation including dif-
ferent types of snow (RoadSC) together with road surfaces
types and wetness levels (RoadSaW). Using camera cali-
bration, the desired road region is selected for the ground
plane projection of image content. Following [4], BEV road
patches at 15m distance are computed with a patch size of
3.6m × 3.6m = 12.96m2 and 900 × 900 px resolution.
Camera view and BEV road patches are visualized in Fig. 1.
Patch examples of different categories are shown in Fig. 2
and Fig. 3.

3.2. Dataset Statistics and Balancing

The RoadSC dataset employs 238 image sequences di-
vided into the proposed categories Fresh Fallen Snow, Fully
Packed Snow, and Partially Covered Snow, cf. Tab. 2. The
annotation is done manually using multiple video cuts with
respect to their identi�ed category. Only images with
clearly identi�able categories are selected for the dataset,

(a) Category: Fresh Fallen Snow

(b) Category: Fully Packed Snow

(c) Category: Partially Covered Snow

Figure 2: Example bird�s eye view patches of the cate-
gories Fresh Snow, Fully Packed Snow, and Partially Cov-
ered Snow.

there are no misaligned BEVs, i.e., occluded or outside
the road. The annotation procedure results in � 186,000
road patches with imbalanced category distribution. The
data is divided into training (� 70%), validation (� 20%),
and test (� 10%) sets. Images from the same sequence are
assigned to the same set ensuring that similar images are
not used for both, training and testing. For the balancing
of classes, we randomly remove images from the set until
an equal number of images per class is achieved leading to
90,759 images in total (30,253 for each of the three cate-
gories). The resulting dataset is called RoadSC3.

For the combination with RoadSaW [4], the number of
images in the snow classes is further reduced to match
the balanced size of RoadSaW12 (2138 for each category).
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(a) Low Coverage (b) Med. Coverage (c) High Coverage

Figure 3: Examples for different snow coverage levels in-
cluded in the Partially Covered Snow category, cf. Fig. 2c

RoadSaW12 includes 12 categories combining surface types
(Asphalt, Concrete, Cobble) and surface wetness levels
(Dry, Damp, Wet, Very Wet). Thus, 15 categories are ob-
tained, each with 2138 road patches. The resulting dataset
is called RoadSC15 containing 15 • 2138 = 32070 images.

Limitations The dataset is captured on eight days in
February of 2022 during daytime (8h00-17h00). The
recording is limited to two regions: the test track and public
roads near the test track. Fresh-fallen snow could only be
recorded on one of the days (02-03) as shown in Tab. 2. The
recording on public roads is done on 02-08 only. Here, the
category Fresh Fallen Snow is not represented.

Table 2: Overview on recording days in Feb. 2022 showing
the distribution of the number of sequences by categories.

Capture Fully Partially Fresh
Day Packed Snow Covered Snow Fallen Snow
02-01 29 1 �
02-02 13 � �
02-03 � � 52
02-04 20 � �
02-05 26 18 �
02-07 9 6 �
02-08 16 28 �
02-09 17 3 �
� 130 56 52

4. Evaluation

The targeted use case of automated driving demands
small inference time of the selected algorithms. Thus, state-
of-the-art, real-time capable methods are chosen for the
classi�cation and uncertainty estimation baseline. We use
the MobileNetV2 [2, 23] as network architecture since it is
widely supported by real-time hardware, e.g., Qualcomm
QSC chipsets. The uncertainty estimation is based on RBF
(Radial Basis Function) networks [25]. The approach es-
timates uncertainty in a single forward pass. The uncer-

tainty measure is important in cases such as unknown road
surfaces or occlusion (i.e., with a car in front of the ego-
vehicle), and other visual artefacts such as wipers or rain-
drops on the windshield.

Our evaluation includes the classi�cation task together
with uncertainty estimation on RoadSC3 with three snow
classes and RoadSC15, the combination with RoadSaW [4]
as described in Sec. 3.2 including 15 road condition cate-
gories. Results can be directly compared to the evaluations
in [4] since a similar setup is used. While the RoadSC3

evaluation provides a validation of the newly constructed
dataset, RoadSC15 demonstrates a holistic Road Surface
Classi�cation (RSC) including three snow classes (Fresh
Fallen Snow, Fully Packed Snow, Partially Covered Snow)
and three road surface types (Asphalt, Concrete, Cobble)
with four wetness levels (Dry, Damp, Wet, Very Wet).

In Sec. 4.1 the evaluation setup is described. The results
are presented in Sec. 4.2. The implementation in a real ve-
hicle in described in Sec. 4.3. A discussion of the results in
Sec. 4.4 concludes the evaluation.

4.1. Evaluation Setup

The MobileNetV2 [23] network is pretrained on Ima-
geNet [6]. For uncertainty estimation, DUQ (Determinis-
tic Uncertainty Quanti�cation) [25] is employed. DUQ is
based on RBF (Radial Basis Function) networks and proved
to provide reasonable results on available datasets (Fashion-
MNIST, CIFAR-10, RoadSaW). Each class is represented
by a centroid and predictions are made by computing a
kernel function, which calculates the distance between the
feature vector of the model and the centroids. The uncer-
tainty is based on the distance to the closest centroid. To
quantify the uncertainty performance, Out-of-Distribution
(OoD) datasets are evaluated [12, 25]. This data should
receive lower con�dence scores than the images from the
original dataset. The AUROC (Area Under the Receiver
Operator Characteristic) metric is used to evaluate the OoD
performance. All experiments are repeated �ve times to
consider their mean and standard deviation as results. For
exemplary visualization of the resulting feature cluster con-
�guration, t-SNE (t-Distributed Stochastic Neighbor Em-
bedding) [26] is used.

Training For MobileNetV2, image sizes of 224 × 224
pixel are used. Standard data augmentation is applied,
i.e., random �ipping horizontally, scaling, shifting horizon-
tally and vertically, and shearing. The DUQ class cen-
troids [25] are updated after each step using an exponen-
tial moving average of data points belonging to that class.
The centroid size is set to 1280, corresponding to the size
of the feature extractor. As loss function, the categor-
ical cross-entropy, regularized with the two-sided gradi-
ent penalty [25] is employed. It is minimized using the
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RAdam [13] optimizer. Early stopping is applied to avoid
over�tting.

Hyperparameter The authors of DUQ [25] emphasize
the importance of two hyperparameters: the length scale
� and the gradient penalty �. The length scale � corre-
sponds to the standard deviations of the Gaussians in the
Radial Basis Function (RBF) kernel. The � weights the
two-sided gradient penalty in the loss function. The two-
sided gradient penalty is integrated to avoid feature col-
lapse which is effect of intersecting representation clusters,
cf. [25] for details. To determine � and �, additional exper-
iments with Out-of-Distribution (OoD) data are conducted.
For FashionMNIST [25], two different Out-of-Distribution
(OoD) datasets, MNIST and NotMNIST, are used to derive
the choice of � from the accuracy on MNIST and the AU-
ROC results on FashionMNIST vs. OoD datasets. Here,
� = 0.05 is determined as the optimal con�guration for
all datasets. For CIFAR-10, the In-Distribution (ID) un-
certainty (AUROC) is evaluated to determine a different
� = 0.5. A similar evaluation in [20] leads to � = 0 for
CIFAR-10-C and CIFAR-100-C [9]. Setting � = 0 clearly
optimizes the performance on ID, but decreases the perfor-
mance on OoD data by switching off the two-sided gradient
penalty which is designed for the detection of OoD samples
and for the avoidance of feature collapse. In [4], the ac-
curacy on the validation set is used to tune �; from the ID
AUROC, � = 0.3 is derived for RoadSaW.

To summarize, all procedures [4, 20, 25] lead to the same
length scale �, but to very different values for the gradient
weight � (cf. Tab. 3).

Table 3: Overview on the selection of the hyperparameters
(�, �) in DUQ [25] for the respective datasets with C cate-
gories and NC number of images per category.

Dataset C Nc � �
FashionMNIST [25] 10 7000 0.1 0.05
CIFAR-10 [25] 10 6000 0.1 0.5
CIFAR-10-C [20] 10 6000 0.1 0.0
CIFAR-100-C [20] 100 600 0.1 0.0
RoadSaW [4] 12 2138 0.1 0.3
RoadSC3 3 30253 0.1 0.3
RoadSC15 15 2138 0.1 0.3

For the evaluation of RoadSC3, we follow the more
elaborated procedure in [25], using two different Out-of-
Distribution (OoD) datasets for the AUROC evaluation.
Therefore, images from Cityscapes [5] serve as �rst OoD
dataset (as in [4]) while part of the RoadSaW dataset (the
category Asphalt with wetness levels Damp, Wet, Very Wet)
is used as the second OoD dataset. The intuition behind the
choice of the second OoD dataset is that the targeted ap-

plication should be able to separate snow surfaces and Par-
tially Covered Snow, cf. Fig. 3a, from uncovered asphalt.

The comparative study for the gradient penalty � on
RoadSC3 is shown in Fig. 4a. In contrast to the results
in [25], there is not an optimal � for all metrics. As ex-
pected, the In-Distribution (ID) performance is higher for
smaller �-values and decreases for larger � when the in�u-
ence of the two-sided gradient penalty increases. For larger
�, the OoD AUROC improves. The RoadSC15 results show
a similar, but less distinct trend, cf. Fig. 4b. Here, for large
�, i. e. � > 0.6, the probability of a diverging optimization
during training increases signi�cantly.

Based on our evaluations, we select � = 0.3 on both,
RoadSC3 and RoadSC15, for the results reported in the fol-
lowing Sec. 4.2.

(a) RoadSC3 evaluation with OoD data Cityscapes and RoadSaW.

(b) RoadSC15 evaluation with OoD data from Cityscapes.

Figure 4: AUROC results on ID (In-Distribution) and OoD
(Out-of-Distribution) datasets with respect to the gradient
penalty �. In our experimental results, we use � = 0.3.

4.2. Experimental Results

For the evaluation of the classi�cation and uncertainty
estimation performance, we show F1-scores for the In-
Distribution (ID) test set and the AUROC measure for ID
and Out-of-Distribution (OoD) data. We compare the re-
sults of the proposed data sets RoadSC3 and RoadSC15

with the results of RoadSaW6 and RoadSaW12 taken
from [4]. For the OoD analysis, images from the Cityscapes
dataset are used (as in [4]). The F1-score comparison is
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(a) The RoadSC3 embeddings with three snow coverage types
fresh-fallen, fully-packed, and partially-covered, visualized
with three shades of blue. The embeddings have three distinct
clusters with a transition from fresh-fallen to fully-packed.
.

(b) The RoadSC15 embeddings with distinct surface clusters Snow,
Asphalt, Cobble, and Concrete. The cluster representation indicates
feature collapse between Wet vs. Very Wet and Dry vs. Damp wetness
classes for Cobble, and Concrete.

Figure 5: Feature embedding visualizations of the RBF network DUQ on RoadSC using t-SNE

Table 4: Comparison of F1-Scores for RoadSaW [4]
(RoadSaW6 and RoadSaW12) and RoadSC (RoadSC3 and
RoadSC15. The superscript shows the number of categories.

Dataset F1-Score
RoadSaW6 90.81%– 0.64
RoadSaW12 61.60%– 0.75
RoadSC3 97.23%– 0.01
RoadSC15 70.92%– 0.03

shown in Tab. 4 while the AUROC results are shown in
Tab. 5.

The F1-scores of the new datasets RoadSC3 and
RoadSC15 are in alignment with the results of the Road-
SaW datasets. With decreasing number of categories, the
F1-scores tend to increase. However, the RoadSC15 re-
sult shows larger accuracy than those of RoadSaW12 and
provides a smaller standard deviation. While the ID AU-
ROC results (cf. Tab. 5) are on par with RoadSaW, signi�-
cantly lower scores with OoD AUROC are achieved for the

Table 5: Uncertainty estimation results for the RBF network
DUQ. We measure the AUROC score on In-Distribution
(ID) and Out-of-Distribution (OoD) datasets.

Dataset ID OoD
RoadSaW6 81.87%– 5.06 98.59%– 0.84
RoadSaW12 74.86%– 3.00 96.17%– 3.29
RoadSC3 71.87%– 0.13 76.21%– 0.21
RoadSC15 76.50%– 0.03 82.76%– 0.11

datasets RoadSC3 and RoadSC15. Better OoD AUROC of
up to 90% could be achieved with a different selection of
hyperparameters, but this comes with a performance loss
on ID data, cf. Fig. 4a.

In general, small OoD AUROC results indicate feature
collapse since there is potential for decreased discrimina-
tion in the feature representation space [25]. This is likely
to occur in the new datasets due to the smooth transi-
tion between Fresh Fallen Snow and Fully Packed Snow,
cf. Fig. 5a. For RoadSC15, the effect of feature collapse is








