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Abstract

The current road condition is a crucial factor regard-

ing road safety of the ego-vehicle and other road users.

Road condition estimation provides essential input data for

friction estimation which is used for autonomous and auto-

mated driving systems. Camera-based approaches are still

far from being practical and other sensors dominate the

field of friction estimation. This is due to the limited per-

formance of current approaches and the lack of datasets for

the incorporation of learning-based methods.

We propose a novel dataset for a special scenario of

road condition, the coverage with snow. It is the first large-

scale dataset for camera-based road classification of snow-

covered roads with different types of snow coverage. The

dataset consists of road patches in bird’s eye view perspec-

tive and ground truth annotation for the current snow cov-

erage type. It is combinable with RoadSaW [4], a dataset

for road surface and wetness estimation, leading to a holis-

tic road condition dataset with 15 categories. The baseline

evaluation employs state-of-the-art, real-time capable ap-

proaches for classification and uncertainty estimation with

RBF (Radial Basis Function) networks. Our experiments

demonstrate that the proposed data opens new challenges

in the field of camera-based road condition estimation.

1. Introduction

Advanced technologies and various types of sensors in

automated vehicles continuously improve the road safety.

These sensors include camera, light detection and ranging

(LiDAR), radar, inertial measurement unit (IMU), global

navigation satellite system (GNSS), and sonar [27, 14, 15,

10]. In terms of usability and cost, cameras are the most

popular sensors in autonomous driving vehicles [14]. Key

performance indicators of cameras are the large usability

range and the high resolution at relatively low cost.

Road conditions effected by weather events such as rain

and snow lead to decreased vehicle performance, e.g., de-

creased friction of the vehicle tires, resulting in fatal crashes

and property damage of high amount [11]. For advanced

(a) Camera View (b) Bird’s Eye View Patch

Figure 1: Camera view and corresponding bird’s eye view

(3.6m× 3.6m) of a road region computed from camera

calibration. We show Fresh Fallen Snow on the test track

(top) and Fully Packed Snow on a public road (bottom).

driver assistance systems as well as for self-driving vehi-

cles, many tasks such as navigation, self-steering, and au-

tomatic breaking can be further improved with the knowl-

edge of the current road condition [22]. Additionally, it is a

crucial factor for road safety. Thus, the knowledge of road

conditions, e.g., dry, wet, and snowy surfaces, should be

considered. In [1], significant effects on the current friction

of snow-covered surfaces are derived from the surround-

ing temperature, snow density, and thickness of the snow.

While the temperature is available from in-vehicle sensors,

snow density and thickness is a road property and, thus, can

only be measured using a dedicated sensor. Three snow

states are considered [1], discharging (the mechanical re-

moval of snow), melting (changing to a liquid), and solid-

ifying (changing to a solid). From a vehicles’ perspective,

a distinction into different snow classes is required for reli-

able friction estimation.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Table 1: Comparison of related road condition datasets. The proposed dataset RoadSC3 provides three different snow classes

and Bird’s Eye View (BEV) perspective for the Regions of Interest (ROI). RoadSC15 combines RoadSaW with RoadSC3

leading to 15 categories including three snow densities and three road surface types combined with four wetness levels.

Dataset Image Source Calibration Label Resolution # Categories: Snow/Other

Khan et al. [11, 24] SHRP2 NDS � full image 2/1

Roychowdhury [21] YouTube � full image 2/4

Busch et al. [18, 3] compiled � full image / ROI 1/4

RoadSaW [4] test track � ROI, BEV 0/12

RoadSC3 (new) test track / public roads � ROI, BEV 3/0

RoadSC15 (new) test track / public roads � ROI, BEV 3/12

2. Related Work

Due to the popularity of machine learning approaches

in computer vision tasks, many datasets are available in

the automated driving scenario [5, 8, 16]. Some of them

consider adverse weather conditions [19, 7]. However,

these datasets are focused on object categories and provide

3D object labels of traffic participants only. A few ap-

proaches handle snowy conditions as one category out of

others [18, 3]. In [21], snowy conditions are divided into

snow and slush together with two wetness levels. In [11]

two snow conditions, light snow, and heavy snow, are pro-

posed. However, these datasets only include uncalibrated

views. In Tab. 1, existing datasets targeting road surface

types including snow categories are listed. The authors

of [21] indicate the benefit of patch segmentation for a more

detailed view on partially snow-covered road regions ob-

served from a bird’s eye view perspective. The RoadSaW,

dataset [4] includes calibrated bird’s eye view perspective.

and 12 surface and wetness categories, but no snow.

Our contribution is the construction of a novel dataset

RoadSC for snow conditions incorporating different cate-

gories for the coverage of the road with snow. The data is

recorded on eight different days on a test track and on pub-

lic roads under various snow conditions, including freshly

fallen snow, packed snow, and different levels of snow cov-

erage of the road. The scenes are recorded with a calibrated

camera setup mounted on a truck. The camera calibration

enables the computation of bird’s eye view (BEV) road im-

age patches as visualized in Fig. 1. It is the first dataset

providing three different snow classes together with high

resolution BEV images. Our data is compatible with the

RoadSaW dataset [4] which includes 12 classes of road

surfaces and wetness levels. The combination provides 15

categories: snow densities, wetness levels, and road sur-

face types leading to a holistic road condition estimation

dataset. We evaluate the use of deep convolutional neural

networks to estimate the road condition for the proposed

datasets. Under examination are RoadSC3 with three snow

classes and RoadSC15, the combined datasets with 15 cat-

egories. As a baseline, a real-time capable approach using

the MobileNetV2 [23] architecture and uncertainty estima-

tion with RBF networks [25] is employed. Furthermore, the

uncertainty estimation is evaluated using out-of-distribution

(OoD) datasets and a detailed investigation of the required

hyperparameters. To summarize, our contributions are:

• Unique dataset for road snow coverage estimation, in-

cluding different snow coverage categories

• Combination with the RoadSaW dataset for holistic

road condition estimation with 15 categories: snow

coverage types, surfaces types, and wetness levels

• Baseline for image-based road condition and uncer-

tainty estimation including hyperparameter study

• The dataset is available at:

https://roadsc.viscoda.com

3. RoadSC: Road Snow Coverage Dataset

The Road Snow Coverage (RoadSC) dataset was

recorded on a large-scale test track and on public roads in

Finland. The image capture was done using two cameras

(second camera served as backup) mounted in the cabin of a

truck. Eight days of data acquisition was performed result-

ing in a large-scale dataset designed for road snow classifi-

cation and uncertainty estimation. Following the approach

in [4] camera calibration is used for the extraction of bird’s

eye view (BEV) road patches of a selectable size at a certain

distance to the vehicle. In Fig. 1, examples for the recorded

camera views are shown on the left while the corresponding

extracted BEV road patches are on the right. As distance

to the vehicle d2v, 15m is selected. The BEV image reso-

lution is 900 × 900 px to keep the image data compatible

with RoadSaW [4]. Thus, both datasets can be combined

for building a larger dataset for road surface condition es-

timation including the proposed snow classes together with

the surface and wetness classes from RoadSaW.

Since snow thickness and density are the main influences

on the friction of tires [1], the categories are selected based

on the snow densities and the coverage of the snow on the

road.
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We define three snow coverage categories as

• Fresh Fallen Snow: fresh snow surface, no road surface

visible, few drive-overs allowed (distinct skid marks),

examples in Fig. 2a

• Fully Packed Snow: surface fully covered with packed

snow, resulting from many drive-overs, no road surface

visible, examples in Fig. 2b

• Partially Covered Snow: parts of the observed region

are snow-covered, road surface is visible, examples

in Fig. 2c and Fig. 3

The different categories could be recorded due to the

following advantageous conditions: (1) the weather pro-

vided fresh-fallen snow; (2) our drivers followed specific

maneuvers enabling the recording of many image sequences

with the demanded categories (such as driving over as much

fresh-fallen snow as possible). The Partially Covered Snow

category includes a large variety of different coverage lev-

els. Some examples for different levels of coverage are

shown in Fig. 3.

3.1. Image Acquisition

For video recording, two redundant FLIR Blackfly cam-

eras, 2048 × 1536 px resolution, were installed behind the

windscreen of the truck at 2.72m height. The image capture

was done using Nvidia Jetson Nanos. The system worked

reliably although the circumstances were challenging with

temperatures down to −20 ◦C/−4 °F during recording and

down to −40 ◦C/−40 °F during night. Before the third

recording day, fresh snow has been fallen. The drivers used

as many fresh snow regions as possible to capture enough

video data for the Fresh Fallen Snow category.

The road patch format is kept compatible with the dataset

RoadSaW [4] since a combination of the datasets is in-

tended for a holistic road condition estimation including dif-

ferent types of snow (RoadSC) together with road surfaces

types and wetness levels (RoadSaW). Using camera cali-

bration, the desired road region is selected for the ground

plane projection of image content. Following [4], BEV road

patches at 15m distance are computed with a patch size of

3.6m × 3.6m = 12.96m2 and 900 × 900 px resolution.

Camera view and BEV road patches are visualized in Fig. 1.

Patch examples of different categories are shown in Fig. 2

and Fig. 3.

3.2. Dataset Statistics and Balancing

The RoadSC dataset employs 238 image sequences di-

vided into the proposed categories Fresh Fallen Snow, Fully

Packed Snow, and Partially Covered Snow, cf. Tab. 2. The

annotation is done manually using multiple video cuts with

respect to their identified category. Only images with

clearly identifiable categories are selected for the dataset,

(a) Category: Fresh Fallen Snow

(b) Category: Fully Packed Snow

(c) Category: Partially Covered Snow

Figure 2: Example bird’s eye view patches of the cate-

gories Fresh Snow, Fully Packed Snow, and Partially Cov-

ered Snow.

there are no misaligned BEVs, i.e., occluded or outside

the road. The annotation procedure results in ≈ 186,000
road patches with imbalanced category distribution. The

data is divided into training (≈ 70%), validation (≈ 20%),

and test (≈ 10%) sets. Images from the same sequence are

assigned to the same set ensuring that similar images are

not used for both, training and testing. For the balancing

of classes, we randomly remove images from the set until

an equal number of images per class is achieved leading to

90,759 images in total (30,253 for each of the three cate-

gories). The resulting dataset is called RoadSC3.

For the combination with RoadSaW [4], the number of

images in the snow classes is further reduced to match

the balanced size of RoadSaW12 (2138 for each category).
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(a) Low Coverage (b) Med. Coverage (c) High Coverage

Figure 3: Examples for different snow coverage levels in-

cluded in the Partially Covered Snow category, cf. Fig. 2c

RoadSaW12 includes 12 categories combining surface types

(Asphalt, Concrete, Cobble) and surface wetness levels

(Dry, Damp, Wet, Very Wet). Thus, 15 categories are ob-

tained, each with 2138 road patches. The resulting dataset

is called RoadSC15 containing 15 · 2138 = 32070 images.

Limitations The dataset is captured on eight days in

February of 2022 during daytime (8h00-17h00). The

recording is limited to two regions: the test track and public

roads near the test track. Fresh-fallen snow could only be

recorded on one of the days (02-03) as shown in Tab. 2. The

recording on public roads is done on 02-08 only. Here, the

category Fresh Fallen Snow is not represented.

Table 2: Overview on recording days in Feb. 2022 showing

the distribution of the number of sequences by categories.

Capture Fully Partially Fresh

Day Packed Snow Covered Snow Fallen Snow

02-01 29 1 �

02-02 13 � �

02-03 � � 52

02-04 20 � �

02-05 26 18 �

02-07 9 6 �

02-08 16 28 �

02-09 17 3 �

Σ 130 56 52

4. Evaluation

The targeted use case of automated driving demands

small inference time of the selected algorithms. Thus, state-

of-the-art, real-time capable methods are chosen for the

classification and uncertainty estimation baseline. We use

the MobileNetV2 [2, 23] as network architecture since it is

widely supported by real-time hardware, e.g., Qualcomm

QSC chipsets. The uncertainty estimation is based on RBF

(Radial Basis Function) networks [25]. The approach es-

timates uncertainty in a single forward pass. The uncer-

tainty measure is important in cases such as unknown road

surfaces or occlusion (i.e., with a car in front of the ego-

vehicle), and other visual artefacts such as wipers or rain-

drops on the windshield.

Our evaluation includes the classification task together

with uncertainty estimation on RoadSC3 with three snow

classes and RoadSC15, the combination with RoadSaW [4]

as described in Sec. 3.2 including 15 road condition cate-

gories. Results can be directly compared to the evaluations

in [4] since a similar setup is used. While the RoadSC3

evaluation provides a validation of the newly constructed

dataset, RoadSC15 demonstrates a holistic Road Surface

Classification (RSC) including three snow classes (Fresh

Fallen Snow, Fully Packed Snow, Partially Covered Snow)

and three road surface types (Asphalt, Concrete, Cobble)

with four wetness levels (Dry, Damp, Wet, Very Wet).

In Sec. 4.1 the evaluation setup is described. The results

are presented in Sec. 4.2. The implementation in a real ve-

hicle in described in Sec. 4.3. A discussion of the results in

Sec. 4.4 concludes the evaluation.

4.1. Evaluation Setup

The MobileNetV2 [23] network is pretrained on Ima-

geNet [6]. For uncertainty estimation, DUQ (Determinis-

tic Uncertainty Quantification) [25] is employed. DUQ is

based on RBF (Radial Basis Function) networks and proved

to provide reasonable results on available datasets (Fashion-

MNIST, CIFAR-10, RoadSaW). Each class is represented

by a centroid and predictions are made by computing a

kernel function, which calculates the distance between the

feature vector of the model and the centroids. The uncer-

tainty is based on the distance to the closest centroid. To

quantify the uncertainty performance, Out-of-Distribution

(OoD) datasets are evaluated [12, 25]. This data should

receive lower confidence scores than the images from the

original dataset. The AUROC (Area Under the Receiver

Operator Characteristic) metric is used to evaluate the OoD

performance. All experiments are repeated five times to

consider their mean and standard deviation as results. For

exemplary visualization of the resulting feature cluster con-

figuration, t-SNE (t-Distributed Stochastic Neighbor Em-

bedding) [26] is used.

Training For MobileNetV2, image sizes of 224 × 224
pixel are used. Standard data augmentation is applied,

i.e., random flipping horizontally, scaling, shifting horizon-

tally and vertically, and shearing. The DUQ class cen-

troids [25] are updated after each step using an exponen-

tial moving average of data points belonging to that class.

The centroid size is set to 1280, corresponding to the size

of the feature extractor. As loss function, the categor-

ical cross-entropy, regularized with the two-sided gradi-

ent penalty [25] is employed. It is minimized using the
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RAdam [13] optimizer. Early stopping is applied to avoid

overfitting.

Hyperparameter The authors of DUQ [25] emphasize

the importance of two hyperparameters: the length scale

σ and the gradient penalty λ. The length scale σ corre-

sponds to the standard deviations of the Gaussians in the

Radial Basis Function (RBF) kernel. The λ weights the

two-sided gradient penalty in the loss function. The two-

sided gradient penalty is integrated to avoid feature col-

lapse which is effect of intersecting representation clusters,

cf. [25] for details. To determine σ and λ, additional exper-

iments with Out-of-Distribution (OoD) data are conducted.

For FashionMNIST [25], two different Out-of-Distribution

(OoD) datasets, MNIST and NotMNIST, are used to derive

the choice of λ from the accuracy on MNIST and the AU-

ROC results on FashionMNIST vs. OoD datasets. Here,

λ = 0.05 is determined as the optimal configuration for

all datasets. For CIFAR-10, the In-Distribution (ID) un-

certainty (AUROC) is evaluated to determine a different

λ = 0.5. A similar evaluation in [20] leads to λ = 0 for

CIFAR-10-C and CIFAR-100-C [9]. Setting λ = 0 clearly

optimizes the performance on ID, but decreases the perfor-

mance on OoD data by switching off the two-sided gradient

penalty which is designed for the detection of OoD samples

and for the avoidance of feature collapse. In [4], the ac-

curacy on the validation set is used to tune σ; from the ID

AUROC, λ = 0.3 is derived for RoadSaW.

To summarize, all procedures [4, 20, 25] lead to the same

length scale σ, but to very different values for the gradient

weight λ (cf. Tab. 3).

Table 3: Overview on the selection of the hyperparameters

(σ, λ) in DUQ [25] for the respective datasets with C cate-

gories and NC number of images per category.

Dataset C Nc σ λ

FashionMNIST [25] 10 7000 0.1 0.05
CIFAR-10 [25] 10 6000 0.1 0.5
CIFAR-10-C [20] 10 6000 0.1 0.0
CIFAR-100-C [20] 100 600 0.1 0.0
RoadSaW [4] 12 2138 0.1 0.3
RoadSC3 3 30253 0.1 0.3
RoadSC15 15 2138 0.1 0.3

For the evaluation of RoadSC3, we follow the more

elaborated procedure in [25], using two different Out-of-

Distribution (OoD) datasets for the AUROC evaluation.

Therefore, images from Cityscapes [5] serve as first OoD

dataset (as in [4]) while part of the RoadSaW dataset (the

category Asphalt with wetness levels Damp, Wet, Very Wet)

is used as the second OoD dataset. The intuition behind the

choice of the second OoD dataset is that the targeted ap-

plication should be able to separate snow surfaces and Par-

tially Covered Snow, cf. Fig. 3a, from uncovered asphalt.

The comparative study for the gradient penalty λ on

RoadSC3 is shown in Fig. 4a. In contrast to the results

in [25], there is not an optimal λ for all metrics. As ex-

pected, the In-Distribution (ID) performance is higher for

smaller λ-values and decreases for larger λ when the influ-

ence of the two-sided gradient penalty increases. For larger

λ, the OoD AUROC improves. The RoadSC15 results show

a similar, but less distinct trend, cf. Fig. 4b. Here, for large

λ, i. e. λ > 0.6, the probability of a diverging optimization

during training increases significantly.

Based on our evaluations, we select λ = 0.3 on both,

RoadSC3 and RoadSC15, for the results reported in the fol-

lowing Sec. 4.2.

(a) RoadSC3 evaluation with OoD data Cityscapes and RoadSaW.

(b) RoadSC15 evaluation with OoD data from Cityscapes.

Figure 4: AUROC results on ID (In-Distribution) and OoD

(Out-of-Distribution) datasets with respect to the gradient

penalty λ. In our experimental results, we use λ = 0.3.

4.2. Experimental Results

For the evaluation of the classification and uncertainty

estimation performance, we show F1-scores for the In-

Distribution (ID) test set and the AUROC measure for ID

and Out-of-Distribution (OoD) data. We compare the re-

sults of the proposed data sets RoadSC3 and RoadSC15

with the results of RoadSaW6 and RoadSaW12 taken

from [4]. For the OoD analysis, images from the Cityscapes

dataset are used (as in [4]). The F1-score comparison is
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(a) The RoadSC3 embeddings with three snow coverage types

fresh-fallen, fully-packed, and partially-covered, visualized

with three shades of blue. The embeddings have three distinct

clusters with a transition from fresh-fallen to fully-packed.

.
(b) The RoadSC15 embeddings with distinct surface clusters Snow,

Asphalt, Cobble, and Concrete. The cluster representation indicates

feature collapse between Wet vs. Very Wet and Dry vs. Damp wetness

classes for Cobble, and Concrete.

Figure 5: Feature embedding visualizations of the RBF network DUQ on RoadSC using t-SNE

Table 4: Comparison of F1-Scores for RoadSaW [4]

(RoadSaW6 and RoadSaW12) and RoadSC (RoadSC3 and

RoadSC15. The superscript shows the number of categories.

Dataset F1-Score

RoadSaW6 90.81%± 0.64
RoadSaW12 61.60%± 0.75
RoadSC3 97.23%± 0.01
RoadSC15 70.92%± 0.03

shown in Tab. 4 while the AUROC results are shown in

Tab. 5.

The F1-scores of the new datasets RoadSC3 and

RoadSC15 are in alignment with the results of the Road-

SaW datasets. With decreasing number of categories, the

F1-scores tend to increase. However, the RoadSC15 re-

sult shows larger accuracy than those of RoadSaW12 and

provides a smaller standard deviation. While the ID AU-

ROC results (cf. Tab. 5) are on par with RoadSaW, signifi-

cantly lower scores with OoD AUROC are achieved for the

Table 5: Uncertainty estimation results for the RBF network

DUQ. We measure the AUROC score on In-Distribution

(ID) and Out-of-Distribution (OoD) datasets.

Dataset ID OoD

RoadSaW6 81.87%± 5.06 98.59%± 0.84
RoadSaW12 74.86%± 3.00 96.17%± 3.29
RoadSC3 71.87%± 0.13 76.21%± 0.21
RoadSC15 76.50%± 0.03 82.76%± 0.11

datasets RoadSC3 and RoadSC15. Better OoD AUROC of

up to 90% could be achieved with a different selection of

hyperparameters, but this comes with a performance loss

on ID data, cf. Fig. 4a.

In general, small OoD AUROC results indicate feature

collapse since there is potential for decreased discrimina-

tion in the feature representation space [25]. This is likely

to occur in the new datasets due to the smooth transi-

tion between Fresh Fallen Snow and Fully Packed Snow,

cf. Fig. 5a. For RoadSC15, the effect of feature collapse is
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(a) Classification (top) for RoadSC15 with 15 cate-

gories, including 14: Partially Covered, 13: Fully

Packed Snow, and 12: Fresh Fallen Snow with the

respective confidences (bottom).

(b) Nine selected frames (f72, f148, f157, f167, f266, f347, f450, f589, f599)
from the evaluation in (a) with the respective confidences

(0.99, 0.55, 0.48, 0.21, 0.32, 0.96, 0.48, 0.28, 0.35)

Figure 6: Evaluation of an additional example sequence, not included in the dataset. The adversarial examples with wipers

occluding the region of interest receive low confidence scores (f148, f157, f167, f266, f589, f599) because of their absence in

the dataset. The frames f266, f450 receive low confidence scores because their feature representations are in-between two

classes. The estimations for f72 and f347 have high confidence.

visualized in Fig. 5b. The feature representation clusters of

(Concrete, Dry) vs. (Concrete, Damp), (Cobble, Dry) vs.

(Cobble, Damp), and (Cobble, Wet) vs. (Cobble, Very Wet)

intersect. Thus, misclassifications between these categories

are to be expected. The confusion between Dry vs. Damp

and Wet vs. Very Wet may not be too harmful for the appli-

cation, but nevertheless, leads to low accuracy scores of the

classifier and therefore to low OoD accuracy.

4.3. In-Vehicle Implementation

The approach is implemented on a Jetson Nano TX2

with Nvidia-Jetpack v.4.6, torchvision v.0.9, libtorch v.1.8,

and Linux Ubuntu 18.04. For the image capture, FLIR

Blackfly cameras (3.2MP) are used, same as for dataset

generation. The classification and uncertainty estimation

results are transferred to the in-vehicle system using a USB-

CAN interface. The inference time for the real-time relevant

batch size of 1 with MobileNetV2 provides 28.5 fps.

The overall system running time including image cap-

ture, preprocessing (BEV, scaling), inference, and message

passing via the CAN-interface is 15Hz leading to a practi-

cal, real-time capable solution for road condition classifica-

tion and uncertainty estimation.

4.4. Discussion

The evaluations show reasonable results in most cases,

but also misclassifications between visually similar cate-

gories. For RoadSC3, a transition between Fresh Fallen

Snow and Fully Packed Snow is visible (Fig. 5a). For

RoadSC15, feature representation clusters intersect, e.g.,

Dry vs. Damp for the Cobble and Concrete surface types

(Fig. 5b). The collapsing categories contain images of vi-

sual appearance with a seamless transition between them.

We infer, that the reason for these failure cases is due to

the coarse discretization of the category labels. A higher

resolution for the labels Wetness and Snow Density is de-

sirable. The two-sided penalty is not able to prevent the

feature collapse, even with carefully selected hyperparam-

eters (cf. Sec. 4.1). The authors of [20] indicate that de-

terministic uncertainty methods suffer from suboptimal cal-

ibration and that DUQ has issues regarding its convergence

for complex classification problems, shown on CIFAR-100-

C [9]. Additionally, recent works show that feature space

fitting is possible without finetuning on OoD data [17]. We

also observed convergence issues on the proposed dataset,

especially for large gradient penalty weights λ. Thus, the

new dataset provides new challenges and requires improved

models for classification and uncertainty estimation. There

is substantial potential for accuracy improvements.

Nevertheless, the RBF network determines large uncer-

tainties for Out-of-Distribution data. In Fig. 6 and Fig. 7,

result examples are visualized. Fig. 6 demonstrates the con-

fidence estimation when wipers occlude the scene. As ex-

pected, all images with wiper occlusion receive low con-
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(a) Classification (top) for RoadSC15 with 15 cat-

egories, including 14:Partially Covered, 13:Fully

Packed Snow, and 12:Fresh Fallen Snow with the

respective confidences (bottom).

(b) Nine selected frames (f10, f86, f130, f189, f232, f286, f322, f352, f450)
from the evaluation in (a) with the respective confidences

(0.99, 0.16, 0.38, 0.63, 0.88, 0.83, 0.19, 0.99, 0.99)

Figure 7: Evaluation of an additional example sequence, not included in the dataset. The occlusions of the region of interest

with a car in 7 of the 9 images shall lead to low confidence scores. This is the case in the frames (f86, f130, f189), and f322,

but not for f232, f286). Here, the visual appearance if close to Partially Covered Snow with a homogeneous region in the

center and snow to the left and right borders.

fidence scores. Two images show low confidence because

their feature representation is located between two feature

clusters in the feature space. The first effect (OoD) is due

to large epistemic uncertainty, the latter is due to aleatoric

uncertainty [25]. A distinction of aleatoric and epistemic

uncertainty would be helpful to distinguish between these

situations [17].

In Fig. 7, the preceding vehicle occludes the evaluated

Region Of Interest (ROI). Again, low confidence scores are

expected. Indeed, most of the images receive low con-

fidence scores (f86, f130, f189, f322), sometimes together

with devious classification Concrete, Damp. For the frames

(f232, f286) a high confidence is estimated which is due

to the similarity of the ROI to Partially Covered Snow al-

though the car occludes the road. The classification is com-

prehensible since snow is present at the left/right borders

with a rather homogeneous region in-between. It is ques-

tionable if we can consider this classification correct since

main parts of the considered region are from the car roof.

Nevertheless, these examples demonstrate the usability of

the uncertainty estimation for unknown situations.

5. Conclusions

We propose the novel RoadSC (Road Surface Coverage)

dataset for camera-based road surface condition estimation.

The dataset focuses on snow coverage of the road with three

different coverage categories. It includes 90,759bird’s eye

view patches recorded on a test track as well as on public

roads. It is combinable with the RoadSaW (Road Surface

and Wetness) dataset leading to a comprehensive dataset in-

cluding three snow classes and three road surface types with

four wetness levels. Thus, a holistic computer vision road

condition dataset with 15 categories and high-quality bird’s

eye views is provided for development and evaluation.

The baseline evaluation shows that current real-time ma-

chine learning based approaches are not accurate enough

for an optimal solution, even with carefully selected hy-

perparameters. For visually similar categories, feature col-

lapse occurs leading to suboptimal performance on Out-

of-Distribution data. Nevertheless, the significance of the

approach is demonstrated with natural application-relevant

scenarios. Thus, the dataset provides the possibility to de-

velop and benchmark new models for Road Condition Esti-

mation, an important application for automated driving.
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