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Abstract

Object detection utilizing Frequency Modulated Con-
tinuous Wave radar is becoming increasingly popular in
the field of autonomous systems. Radar does not pos-
sess the same drawbacks seen by other emission-based
sensors such as LiDAR, primarily the degradation or
loss of return signals due to weather conditions such as
rain or snow. However, radar does possess traits that
make it unsuitable for standard emission-based deep
learning representations such as point clouds. Radar
point clouds tend to be sparse and therefore information
extraction is not efficient. To overcome this, more tra-
ditional digital signal processing pipelines were adapted
to form inputs residing directly in the frequency domain
via Fast Fourier Transforms. Commonly, three trans-
formations were used to form Range-Azimuth-Doppler
cubes in which deep learning algorithms could perform
object detection. This too has drawbacks, namely the
pre-processing costs associated with performing multi-
ple Fourier Transforms and normalization. We ex-
plore the possibility of operating on raw radar inputs
from analog to digital converters via the utilization of
complex transformation layers. Moreover, we introduce
hierarchical Swin Vision transformers to the field of
radar object detection and show their capability to op-
erate on inputs varying in pre-processing, along with
different radar configurations, i.e., relatively low and
high numbers of transmitters and receivers, while ob-
taining on par or better results than the state-of-the-
art.

1. Introduction

With the capability to operate in adverse weather
conditions, the prevalence of Frequency Modulated
Continuous Wave (FMCW) radar within the field of

autonomous driving is steadily growing. Recent studies
[1] have demonstrated that radars outperform the other
sensors (LiDARs, cameras) under adverse weather con-
ditions. This is partly due to the fact that automotive
radars use a relatively large wavelength which makes
them robust to snow, fog, and rain. In addition, since
it is an active sensor operating well outside the visi-
ble spectrum, it is invariant to daylight conditions, is
not affected by direct light incidence, and can oper-
ate at night. Moreover, various deep-learning architec-
tures have been proposed to localize and classify ob-
jects within pre-processed return signals, a step beyond
traditional radar applications [2–5]. Pre-processing
generally consists of multiple Fast Fourier Transforms
(FFT), producing combinations of range, azimuth, and
Doppler information in what is known as RAD cubes.
Processing of the full RAD cube is computationally ex-
pensive, and undesirable if the intended deployment is
on low-power hardware. It is possible to utilize ‘Point-
Cloud’ (PC) representations of radar signals, in which
the peaks in the range-azimuth spectrum can be con-
verted to Cartesian reflection points. While utilizing
LiDAR point clouds within deep learning frameworks
has been successful, the task becomes much more dif-
ficult with radar given the sparsity of points. As such,
a more desirable approach is to minimize the number
of FFTs used, in which range-Doppler spectra are suit-
able candidates. Ideally, one is able to utilize raw ana-
log to digital converter (ADC) inputs and remove pre-
processing entirely. Utilizing the raw ADC values also
allows the network to potentially learn the character-
istics of the radar sensor, such as the Signal to Noise
Ratio (SNR), which could be crucial given low reso-
lution and high noise configurations. In this work we
present T-FFTRadNet, building off the prior work of
Rebut et al. [2], in which we show the robustness of
Vision Transformers [6] as feature extractors in object
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detection networks using radar inputs. Specifically, the
capability of Swin Vision Transformers to operate on
High Definition (HD) radar, Low Definition (LD) radar
and varying degrees of pre-processing, i.e., raw ADC,
range-Doppler matrices, and full RAD cubes. Exam-
ples of transformers and their applications to radar can
be found in [7, 8]. We utilize the learnable transfor-
mations from Zhao et al. [9] and show the benefits
in low-resolution radar applications. Experiments are
performed on the LD RADDet dataset [3] and the HD
RadIal dataset [2].

2. Related Works

Radar object detection generally requires some
degree of pre-processing, usually in the form of
FFTs. The utilization of multiple FFTs across Range-
Doppler-Azimuth axes allows efficient information ex-
traction in the frequency domain. Transformations
across subsequent axes also cause network complexity
to scale, i.e., when the full RAD cube is utilized. Thus,
the ideal radar network is one which reduces the num-
ber of frequency transformations required. Rebut et
al. [2] show that networks utilizing RD tensors (FF-
TRadNet) can approximate this third transformation
and efficiently extract angular information. Moreover,
they are able to further reduce complexity via the usage
of coarse RA grids and regression heads. The center of
objects are predicted within a grid 1

8 and 1
4 the native

azimuth and range resolutions. A secondary regres-
sion head then predicts fine-grained correction factors
producing localization well within the physical sensor
resolutions. Yi et al. [10] further build on this idea, uti-
lizing a Cross-Modal supervision strategy. Manual an-
notation of radar signals is difficult due to their low in-
teroperability and high noise levels. The authors in [10]
develop a novel FCN style network operating on range-
Doppler inputs, which is trained under the supervision
of radar-adapted, image segmentation networks. This
method alleviates manual annotation and is immune
to false targets due to noise. We emphasize that this
method uses ‘improved’ labels when comparisons are
presented in later sections. A further study could uti-
lize this training strategy with our network.

Object detection directly on RD maps has proven to
be fruitful, in which the task generally becomes one of
segmentation [5, 11–13]. U-Net [14] and FCN [15] like
structures are suitable candidates for such implemen-
tation backbones. While this does not provide direct
angular information, it allows the extraction of Regions
of Interest (ROIs) in the discrete range and Doppler
bins. It is then possible to perform the azimuthal FFT
over only subsets of the entire signal and extract their
angular information. Generally, the input RD maps

are integrated over the antenna axis to reduce network
complexity. It is also possible to combine this informa-
tion with RA maps [11], known as Multi-view Methods,
which are integrated over the chirp, or slow time axis.

RAD cubes contain range-Doppler and azimuth
signatures of objects, and are therefore the most
information-dense, allowing efficient object detection
[3, 16, 17]. They are also computationally expensive to
produce and the resulting networks are more complex
given the higher dimensional inputs.

The most common practice in recent years is to uti-
lize PC representations [18–23]. This is due to the
successes in LiDAR PC object detection. Radar PC
representations suffer from pre-processing costs along
with loss of information due to filtering. This creates
sparse PC representations not always suitable for ob-
ject detection tasks.

3. Proposed Approach

3.1. Hierarchical Vision Transformers as Feature
Extractors

We build off the architecture proposed in Rebut et
al. [2], in which our main contributions are the applica-
tion of vision transformers to the field of radar object
detection, along with the adaption of raw ADC as in-
put. We replace the front end of the network with
a hierarchical Swin Transformer [6]. It is well known
that the performance of vision transformers scales with
available data. Thus, we deem this research timely as
increasingly large radar datasets become available. The
overall network structure is shown in Fig.1.

Utilizing a hierarchical vision transformer should be
able to extract more prominent features, of varying res-
olution, to be fed to the network back-end. This is ac-
complished via the utilization of 2× 2 patches, signifi-
cantly smaller than 3 × 3 convolutional windows com-
monly seen in other Feature Pyramid Networks (FPN),
or FCN style networks operating on radar. Moreover,
the hierarchical nature of a Swin transformer allows
the aggregation of varying resolution features via patch
merging between consecutive transformer blocks. In
downstream Swin blocks, Windowed Multi-Head Self-
Attention (W-MHSA) allows the network to retain lin-
ear complexity with respect to the input. This is due
to the fact that self-attention is only computed in local
neighborhoods (windows), as opposed to the quadratic
complexity required by standard vision transformers
when self-attention is computed across all available
patches. Sequentially connected layers shift said win-
dows, providing connections between them [6]. Eq.1
depicts the flow of outputs between two consecutive
blocks, xk and xk+1, where x̂ and x denote the outputs
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Figure 1: Network Structure: Overall network structure utilizing raw ADC as input. RD inputs replace the
Fourier-Net with range-Doppler FFTs. RAD cube inputs replace the Fourier-Net with range-Doppler-azimuth
FFTs and remove channel swapping operations in the Range-Angle Decoder.

of the W-MHSA, Shifted Window Multi-Head Self-
Attention (SW-MHSA), LayerNorm (LN) and Multi-
layer Perceptron (MLP) modules.

x̂l =W-MHSA(LN(xl−1)) + xl−1

xl =MLP(LN(x̂l)) + x̂l

x̂l+1 =SW-MHSA(LN(xl)) + xl

xl+1 =MLP(LN(x̂l+1)) + x̂l+1

(1)

The model is designed to take primarily RD or raw
ADC matrices as input, although we show the utiliza-
tion of RAD cubes in select cases. When raw ADC
inputs are utilized, we include transformation layers
prior to the Swin transformer. These are discussed in
more detail in Sec.3.1.1. Being that transformer style
networks utilize functional embeddings, the utilization
of varying inputs (such as RD, RAD, etc.) does not
drastically increase network complexity.

The Swin transformer extracts varying resolution
features which are then sent to the back end of the
pre-existing FFTRadNet network. First, the Range-
Angle Decoder transforms these features from a com-
pressed RD representation to RA. These decoded fea-
tures then feed the output heads. The detection head
produces a binary grid in the RA coordinate system of
the radar sensor such that occupied cells represent the
center points of objects. In both HD and LD radar,
these grids are reduced representations of the physical

sensor limitations to alleviate computational complex-
ity. To compensate for the reduction, the regression
head predicts correction factors in both range and an-
gle to allow finer grain resolution for detected objects.
We train the binary detection and regression heads uti-
lizing a weighted combination of Focal (detection) and
smooth L1 loss (regression), Eq.2.

LBin(x,yb,yr) = αFocal(yb, ŷb)+

βsmooth-L1(yr − ŷr)
(2)

Where yb ∈ [0, 1]BR/n×BA/m , ŷb ∈ 0, 1BR/n×BA/m

and yr ∈ RBR/m×BA/n , in which m,n denote the range
and angular reduction factors. For HD and LD radar,
m = 4, n = 8 and m = 4, n = 2, respectively. α and β
are scaling factors set to 2 and 102.

In the case of LD radar we add an additional clas-
sification head, which produces a likelihood map con-
taining C channels, where C is the number of classes.1

Given a detection in the binary head, we can then ob-
tain the corresponding classes of detected objects by
taking the maximum argument of the likelihood maps
at the localized regions subsequent to a Softmax func-
tion. We train this head independently utilizing pixel-
wise cross-entropy loss, Eq.3. Where pjk is the proba-
bility predicted by the model of a given class k, at a

1In the case of the HD radar dataset, we do not have class
labels.
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specific pixel j. Being that the majority of values in
the likelihood masks are zeros the weighting parameter
γ must be set to a large value of 105 to produce loss
contributions on the same orders of magnitude during
training.

LClass(x,yc) =− γ
J∑
j

K∑
k

yjk log(p
j
k) (3)

For the HD radar dataset, we also utilize the seg-
mentation head to predict the free driving space avail-
able to the vehicle in a polar coordinate system. As
such, the task is defined as a pixel-wise binary classi-
fication problem in which binary cross-entropy, Eq.4,
lends itself naturally. The scale factor λ is set to 102.

LFree(yseg, ŷseg) = λ

BR
2∑
i

BA
4∑
j

BCE (y(i, j), ŷ(i, j))

(4)
The total loss contribution then becomes a linear

combination of LBin and LClass or LFree.

3.1.1 ADC Inputs - Linear Transformations

Conventional signal processing on radar relies heavily
on the Discrete Fourier Transform (DFT) algorithm,
transforming high dimensional FMCW inputs from the
time to frequency domain. This transformation also
dominates in neural network (NN) based, radar object
detection as localizing objects in the time domain is in-
creasingly difficult. DFTs allow a network, specifically
a vision-based network, to exploit the dominating fre-
quency components (seen as bright spots) caused by
object reflections in downstream tasks. However, uti-
lizing conventional DFTs possess some inherent com-
putational cost, along with the general requirement
that some normalization should be performed prior
to network injection. An ideal radar object detection
network is then one that is capable of utilizing non-
normalized inputs in the time domain and learning a
transformation suitable to the task. Zhao et al. [9] pro-
pose complex-valued linear layers, utilizing the prior
knowledge of the Fourier transform. The layers can
be seen as an M ×M matrix, where each column acts
as a learnable transformation over a slice of the input
x of size N ≤ M . Thus, mimicking the action of a
standard DFT while allowing the network to identify
potentially more optimal transformations. Note that
permutations are required between consecutive layers
to correctly orient the multiplication to mimic a DFT
over range or Doppler axis. The weights of the layer are

initialized as shown in Eq.5, with values corresponding
to a standard DFT.

w(k,m) = exp (−j
2π

N
km),

{
0 ≤ k ≤ M − 1

0 ≤ m ≤ M − 1
(5)

It is also preferred that the transformation pre-
serves the continuity of reflected objects in the learned
Doppler space, i.e., zero Doppler velocity should be
centralized. This is done by shifting the upper and
lower half of the weights and is equivalent to the com-
monly used fftshift functions. Initializing the network
in such a way provides an initial starting point that
has been shown to work well for radar object detec-
tion, yet the transformation learned through end-to-
end training is likely to no longer be Fourier [9]. In our
network, we first inject non-normalized ADC signals
to a range transformation layer, followed by a Doppler
transformation layer. Given that DFTs in general can
produce large values, we utilize a normalization layer
before injection into the Swin Transformer. We also
experiment with utilizing non-linear activation func-
tions on the outputs of the range and Doppler layers,
namely those inspired by Phase-Amplitude (PA) func-
tions which preserve the phase of the activation value.
A modified version of modReLU [24] is used, in which
we utilize a LeakyReLU to preserve negative values of
the FFT yet provide non-linearity, Eq.6, where z and
b are the input vector and bias, respectively.

f(z) = LeakyReLU(|z|+ b)
z

|z| (6)

In what follows, any experiment utilizing non-linear
activation functions on ADC data will be denoted with
an NL (Non-Linear) within the respective network title.

4. Experiments

4.1. Experimental Setting

Datasets. We utilize a single HD radar dataset, Ra-
dIal [2] in which we perform generalized object detec-
tion. No class information is produced via the model,
only a binary grid (1 being an object, 0 being no ob-
ject) in a RA coordinate system. The HD radar sensor
is composed of 12 transmitters (Tx) and 16 receivers
(Rx), in which each Tx produces 256 chirps, each sam-
pled with 512 points. The inputs to the model are ei-
ther ADC, or RD matrices in which the complex com-
ponents of the I/Q data are appended as additional
channels for the Swin Transformer, producing inputs
of shape (512,256,2Rx). This utilization of complex
components as additional channels to the Swin Trans-
former is consistent in all our experiments, except for
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RAD cubes where the norm of the cubes’ values is used,
resulting in all real-valued inputs.

For LD radar, we utilize RADDet [3]. The sensor
is composed of 2Tx and 4Rx, where the transmitters
produce 64 chirps each sampled 256 times producing
inputs of shape (256,64,Tx · Rx) where a virtual array
has been formed. Utilizing the RADDet dataset, we
show performance on ADC, RD and full RAD cube in-
puts for completeness. In LD radar the model predicts
objects and their corresponding classes. In HD and LD
datasets that utilize RD or RAD inputs, we normalize
across respective channels via Eq.7, where i, j denote
the range-Doppler bin and μk, σk are the mean and
standard deviation of the kth channel. We again note
that ADC inputs possess no prior normalization.

N(i, j, k) =
M(i, j, k)− μk

σk
(7)

We pre-process the raw ADC for the RADDet
dataset, producing RD matrices and RAD cubes in the
data-loading pipeline via the Intel® MKL numpy in-
terface. RD axes are subject to Hamming windowing
functions as shown in Eq.8, reducing side lobe profiles.
Where N and M represent the number of samples per
chirp and number of chirps, respectively. Experiments
are performed with and without windows for the RAD-
Det and RadIal datasets. Note that by default, RadIal
has performed windowing.

In both RADDet and RadIal, we perform experi-
ments with and without centering around the zero fre-
quency bin in the Doppler axis (utilizing an FFT shift).
When RAD cubes are utilized in RADDet, we also shift
the azimuth axis and remove the swapping of channels
in the decoder given that inputs are already aligned
properly with the desired output axis. Furthermore,
we must modify the convolutions slightly to account
for the symmetrically shaped output of the Swin trans-
former. The training and testing split utilized is pro-
vided in Zhang et al. [3].

WR = 0.54− 0.46 cos

(
2π

n

n− 1

)
, 0 ≤ n ≤ N

WD = 0.54− 0.46 cos

(
2π

m

m− 1

)
, 0 ≤ m ≤ M

(8)

Architecture specifications and computing
resources

We utilize PyTorch 1.12.1 [25] as the deep learn-
ing framework. All code is built upon the framework
provided by Rebut et al. [2] All training and inference
are done utilizing a single Nvidia RTX 3090 24GB card
and Intel ® i7 12700K CPU. Models are trained for
150 epochs total utilizing the Adam optimizer with an

Model Dataset FLOPs ↓ # Params. ↓
FFTRadNet [2] RadIal 288 G 3.79 M

Cross Modal DNN [10] RadIal 358 G 7.7 M
T-FFTRadNet RadIal 194 G 9.64 M
T-FFTRadNet RADDet 10 G 7.5 M

T-FFTRadNet (RAD) RADDet 26 G 8.22 M
RADDet (RAD) [3] RADDet 25G 9.59 M

Fourier Transforms
Model Dataset FLOPs ↓ # Params. ↓

Fourier-Net RadIal 12.9 G 327.68 K
RD FFT RadIal 214 M N/A

Fourier-Net RADDet 337.6 M 69.63k
RD FFT RADDet 11 M N/A

Table 1: Computational Overhead: Floating Point
Operations per second (FLOPs) and network parame-
ters. FLOPs is equated as ∼ 2· MACs (Multiply and
Accumulate Operations). Note that models utilizing
ADC inputs will be the summation of the Fourier-Net
and T-FFTRadNet.

initial learning rate of 10−4 and a decay of 0.9 every 10
epochs. The optimal model is selected via an F1 score
for the HD radar, and by maximizing performance over
both heads (classification, general object detection) for
LD radar. In both cases, this is done utilizing the val-
idation dataset. For the HD radar, a batch size of 4
is utilized, where as the LD radar we utilize batches
of size 16 on RD inputs. For the full, padded RAD
cube, we utilize batches of size 4. Table 1 contains
information regarding network complexity and compu-
tational requirements for a single inference. Values for
our architecture and FFTRadNet are calculated utiliz-
ing the DeepSpeed [26] framework, Cross Modal DNN
is taken from [10] and RADDet is calculated using Ten-
sorFlow’s [27] profiling functions.

4.2. Object Detection on RadIal (HD)

Models are evaluated on the test set given in Re-
but et al. [2], utilizing Average Precision (AP) and
Average Recall (AR) for object detection, and mean
Intersection over Union (mIoU) for free driving space
segmentation. Table 2 shows a collection of results for
comparison between other models on the same dataset.
The table also contains various renditions of our im-
plementation operating on different inputs, or different
pre-processing, i.e., windowing or no windowing. Re-
sults with the best performance are presented in bold.

From Table 2, utilization of the Swin Transformer,
on the standard RadIal data, provides significant in-
creases in AR in comparison to FFTRadNet [2] and
Cross Modal DNN [10] by ∼ 6 − 7%, although AP
generally lacks by ∼ 7%. It is interesting to note
the equivalence between the two metrics (AP and AR)
with our architecture, resulting in an F1 score on par
with the state-of-the-art (SOTA) and a more balanced
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AP (↑) AR(↑) F1(↑) Range Error(↓) Angle Error(↓) mIoU(↑)
FFTRadNet (RD) [2] 96.8% 82.2% 88.9% 0.12m 0.10° 73.98%

Cross Modal DNN (RD) [10] 96.9% 83.5% 89.7% N/A N/A 80.4%
T-FFTRadNet (RD) 89.6% 89.5% 89.5% 0.15m 0.12◦ 80.2%

T-FFTRadNet (RD - Shift) 91.3% 88.3% 89.8% 0.15m 0.12◦ 79.5%
T-FFTRadNet (No Windowing) 89.4% 87.6% 88.5% 0.16m 0.12◦ 79.3%

T-FFTRadNet (ADC) 88.2% 86.7% 87.4% 0.16m 0.13◦ 79.6%
T-FFTRadNet (ADC - NL) 88.1% 86.1% 87.1% 0.16m 0.13◦ 78.8%

T-FFTRadNet (ADC - No Shift) 88.1% 85.5% 86.7% 0.16m 0.13◦ 78.8%

Table 2: HD Radar - Architecture comparison: Transformer based FFTRadNet (T-FFTRadNet), FFTRad-
Net [2] and Cross Modal DNN [10]. Labels in brackets denote differing input types, or the addition/removal of
pre-processing steps, i.e., removal of Hamming Window or utilizing an fftshift.

model in general. This is also the case regarding free
driving space evaluation in which the mIoU is signifi-
cantly higher than FFTRadNet by ∼ 6% and on par
with Cross Modal DNN. We also note that applying a
Hamming window is an efficient method of improving
performance and is consistent with results in later sec-
tions. Centering the zero frequency bin in the Doppler
spectrum (denoted with Shift in Table 2) improves per-
formance marginally in some metrics. It is likely not
a crucial pre-processing step given that the amount of
leakage with high-resolution data will be fairly low, and
should be investigated on a case-by-case basis.

Performance decreases modestly utilizing raw ADC
for HD radar. It is possible that in cases where res-
olution is not an issue, the utilization of a standard
FFT is sufficient. Further optimization may yield pa-
rameter combinations that increase this performance.
Being that network inputs are not normalized by de-
sign, the expected range is no longer static, which in-
fluences performance. We also note that the utiliza-
tion of Non-Linear (NL) activation provides no ben-
efit in our study and in fact, slightly inhibits perfor-
mance likely due to the suppression of negative values.
In either case, the transformation learned is no longer
Fourier. The transformation contains a perturbation
from a standard FFT. We also note that the utilization
of raw ADC provides a five times decrease in inference
times. This is discussed in more detail in Sec.5.

4.3. Object Detection on RADDet (LD)

Models are evaluated on the test set given in Zhang
et al. [3], in which the metric of choice is mean Aver-
age Precision (mAP). Table 3 contains a comparison
of our implementation, utilizing various inputs and the
published results of RADDet [3] and DAROD [5].

From Table 3, utilizing the transformer-based net-
work on full RAD cubes significantly outperforms
RADDet by ∼ 4%, and marginally outperforms
DAROD utilizing RD inputs. We see a significant in-

crease in performance over RD inputs when raw ADC
is used, in terms of class-wise mAP (Table 3 top). The
model is able to learn a more optimal transformation (a
perturbed FFT), along with the sensor characteristics
of the radar sensor. The result is a model more capable
of classifying objects within the radar spectrum. For
LD radar datasets with shorter sequences in range, az-
imuth and Doppler dimensions, the resulting frequency
domain resolution, referring to the Fourier transform
main lobe widths, will be more limited. Utilizing data-
dependent NN models can perhaps learn the average
SNR of the data across each frequency and therefore
provide a benefit that can compensate for the reduced
resolution, up to some point.

Table 4 contains class-wise AP values for the models.
From this table, it is apparent that the transformer net-
work suffers specifically on the motorcycle class. This
is due to the fact that the class is underrepresented
within the dataset causing these to be commonly clas-
sified as bicycles or cars depending on their relative
position and angle with respect to the sensor.

Generalized object detection results are presented
in Table 5, utilizing the binary RA grid devised in FF-
TRadNet. The most optimal model with respect to
general detection does not correspond to the highest
mAP (all things equal), although the disparity between
them is on the order of a few percent (ADC outper-
forms RD class-wise, RD outperforms in general detec-
tion). It is possible that loss contributions and their
respective weighting play the reason for this discrep-
ancy. Although both models utilize the same weight-
ings, we have introduced additional transformation pa-
rameters with respect to ADC input. These parameters
may be influenced in such a way that they better learn
the differences between different object signatures, at
the expense of general object feature extraction. Be-
ing that pixel-wise cross-entropy is subject to sparsity
(large amounts of zeros), the loss is scaled in such a
way that it is on equal orders of magnitude throughout
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RD and ADC Inputs

T-FFTRadNet T-FFTRadNet (NL) T-FFTRadNet T-FFTRadNet Decourt et al. [5]

Input ADC ADC RD RD (No Windowing) RD
mAP(↑) 49.1% 45.6% 46.8% 44.6% 46.6%

RAD Inputs

T-FFTRadNet Zhang et al. [3]

Input RAD RAD
mAP(↑) 55.7% 51.6%

Table 3: LD Radar - RADDet Results: mean Average Precision over the six object classes. Sub-tables
correspond to models in which complexity and input structure are the same, ADC and RD (top) and RAD cube
(bottom).

T-FFTRadNet (ADC - NL)

bicycle bus car motorcycle person truck

AP 56.6% 37.5% 62.6% 0.0% 66.5% 50.5%
AR 29.4% 7.9% 43.6% 0.0% 36.9% 30.4%

T-FFTRadNet (ADC)

bicycle bus car motorcycle person truck

AP 62.5% 50.0% 63.0% 0.0% 70.7% 48.4%
AR 31.9% 10.5% 44.5% 0.0% 38.8% 31.7%

T-FFTRadNet (RD)

bicycle bus car motorcycle person truck

AP 72.6% 20.0% 65.1% 0.0% 71.8% 51.4%
AR 29.9% 5.3% 50.6% 0.0% 39.6% 35.4%

T-FFTRadNet (RD - No Windowing)

bicycle bus car motorcycle person truck

AP 62.3% 28.6% 60.6% 0.0% 70.6% 45.7%
AR 21.1% 5.3% 37.5% 0.0% 33.5% 27.1%

T-FFTRadNet (RAD)

bicycle bus car motorcycle person truck

AP 60.1% 50.0% 64.6% 33.3% 70.6% 55.9%
AR 34.8% 18.4% 50.5% 4.8% 44.9% 39.9%

Table 4: LD Radar - RADDet Classwise AP and
AR: Notice the decrease in performance across specific
classes. The cause of this is twofold, the first reason
being that certain classes are underrepresented in the
dataset, and the second is due to similar signatures in
the RD spectrum from certain objects.

training and therefore the trade-off should be partially
minimized. Optimized loss weighting schemes, or per-
haps the utilization of a different loss function could
improve overall performance.

5. Discussion

We have shown that Vision Transformers, namely
hierarchical Swin Transformers are capable of forming
the backbone for efficient object detection on radar in-
puts. Given that transformers utilize dense connec-

Architecture Input AP (↑) AR (↑)
T-FFTRadNet ADC (NL) 59.9% 54.1%
T-FFTRadNet ADC 61.8% 54.5%
T-FFTRadNet RD 64.5% 57.5%
T-FFTRadNet RD (No Windowing) 58.5% 48.4%
T-FFTRadNet RAD 64.2% 56.5%

Table 5: LD Radar - RADDet Generalized De-
tection Head Results: Results from the generalized
object detection head, utilizing IoU and NMS thresh-
olds of 0.5 and 0.3, respectively.

tions and embeddings, the computational throughput
required for a single inference pass is significantly lower
(see FLOPs in Table 1) than convolutional-based fea-
ture extractors. Moreover, the adaptation to differing
inputs, e.g., RD vs RAD, requires few network alter-
ations given fixed-sized embeddings.

Utilizing linear layers to mimic FFT response is
an efficient method of decreasing pre-processing costs
while retaining performance on par or potentially bet-
ter, depending on the task, than traditional DSP pre-
processing and normalization. The layers are able to
better encapsulate the radar sensor characteristics in
this case. This is encapsulated within the LD radar
task of object classification, in which we see the uti-
lization of raw ADC and the linear layers provide an
increased mAP. In HD radar, utilizing traditional RD
inputs performs best. In either case, we note that
the transformation learned is no longer Fourier. Fig.2
shows traditional RD FFTs (right column) along with
the learned transformation (left column) for both HD
(top row) and LD (bottom row) radar.

Being that the Fourier layers can be optimally uti-
lized on GPU, the inference time for a single event de-
creases in comparison to utilizing RD inputs. If one
takes into account the necessary time needed to per-
form standard FFTs and normalization for RD inputs
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Figure 2: Transformation Comparison: Learned
transformations (left column) and traditional RD
transformations utilizing Hamming Windows, FFTs,
and centering of zero Doppler frequency (right col-
umn). HD radar magnitude (top row) and LD radar
magnitude (bottom row).

on HD radar, the average time per one inference is
∼ 156ms, whereas with raw ADC the value is one-fifth
of this at ∼ 30ms. LD radar is similar, with the av-
erage time per one inference at ∼ 152ms with RAD
cubes, ∼ 33ms with RD inputs, and ∼ 20ms with raw
ADC inputs. Thus, the utilization of these layers allows
the transition toward real-time applications. Note the
above values were calculated utilizing an Nvidia RTX
3090 24GB card and Intel ® i7 12700K CPU in which
FFTs are allocated to the CPU.

Hamming Windows have shown increased perfor-
mance in both LD and HD radar datasets due to
their ability to reduce side lobe profiles. Centering
the zero Doppler frequency, via an fftshift, produces
performance increases for LD radar, but performance
remains approximately the same for HD radar. Due
to higher resolution, leakage from positive to negative
frequencies does not pose the same impacts as seen in
LD radar, where the centering increases performance
significantly.

6. Conclusions

Radar possesses many desirable traits in relation to
autonomous vehicles, specifically those that rely on
the localization of objects in space. The capability

to operate in adverse conditions reliably, unlike other
emission-based sensors such as LiDAR, makes radar a
must for fully autonomous systems. Traditional meth-
ods of utilizing radar point clouds fall short due to
relative sparseness in the generated clouds. To over-
come this, methods coupling traditional DSP meth-
ods combined with deep learning have been proposed.
This too poses new problems, such as the relative com-
putational costs associated with pre-processing inputs
utilizing FFTs along with the network growth as in-
put complexity scales. In this work we have shown
that we can operate on par, or better depending on
the task, utilizing raw ADC inputs via the utilization
of fully connected layers that mimic traditional FFTs,
yet utilize the efficient and fast computational power of
GPUs. These layers require no pre-processing of inputs
(including normalization) and can potentially allow the
model to learn the physical characteristics of the sen-
sor, such as the SNR. This consideration seems to be
less prominent in HD radar, where resolution is not
an issue. The utilization of dense transformation lay-
ers greatly decreases the time associated with a single
inference.

We show the novel application of vision trans-
formers, namely hierarchical Swin Transformers [6] to
radar-based object detection, utilizing various inputs.
Swin transformers utilize W-MHSA which allows the
model to retain linear complexity with respect to the
input, a strong consideration when deployment on rel-
atively low-power hardware is considered. It is also
known that vision transformers scale with training data
and as such our contribution is timely given the grow-
ing interest in the generation of radar object detection
datasets. Our architecture builds off the prior work of
Rebut et al. [2], and is capable of obtaining SOTA re-
sults across various datasets with differing sensor con-
figurations, i.e., LD and HD radar. Note that for HD
radar, the model utilizing raw ADC data could be fur-
ther optimized to obtain more optimal performance.
While large radar datasets are becoming more readily
available, they are still relatively scarce. The introduc-
tion of larger datasets coupled with the performance
scaling of transformers could further improve this as
well. The model primarily takes ADC or RD matrices
as input and approximates the angular transformation
required for object detection, but we have also shown
the capability to operate on full RAD cubes with lit-
tle network alterations, mainly due to fixed-sized em-
beddings utilized by transformers. This also promotes
minimal network growth. We believe that our work
could have a significant impact towards the produc-
tion of unified deep learning for object detection using
radar.
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et al. Multi-View Radar Semantic Segmentation. In
Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 15671–15680,
October 2021. 2

[12] Naganori Shirakata, Kenta Iwasa, Tomohiro Yui, et al.
Object and Direction Classification based on Range-
Doppler Map of 79 GHz MIMO Radar Using a Convo-
lutional Neural Network. In 2019 12th Global Sympo-
sium on Millimeter Waves (GSMM), pages 1–3, 2019.
2

[13] Arthur Ouaknine, Alasdair Newson, Julien Rebut,
et al. CARRADA Dataset: Camera and Automotive
Radar with Range- Angle- Doppler Annotations. In
2020 25th International Conference on Pattern Recog-
nition (ICPR), pages 5068–5075, 2021. 2

[14] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
U-net: Convolutional networks for biomedical im-
age segmentation. In Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2015: 18th
International Conference, Munich, Germany, October
5-9, 2015, Proceedings, Part III 18, pages 234–241.
Springer, 2015. 2

[15] Jonathan Long, Evan Shelhamer, and Trevor Darrell.
Fully Convolutional Networks for Semantic Segmenta-
tion. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June
2015. 2

[16] Andras Palffy, Jiaao Dong, Julian F. P. Kooij, and
Dariu M. Gavrila. CNN Based Road User Detection
Using the 3D Radar Cube. IEEE Robotics and Au-
tomation Letters, 5(2):1263–1270, 2020. 2

[17] Xiangyu Gao, Guanbin Xing, Sumit Roy, and Hui Liu.
RAMP-CNN: A Novel Neural Network for Enhanced
Automotive Radar Object Recognition. IEEE Sensors
Journal, 21(4):5119–5132, 2021. 2

[18] Peter Svenningsson, Francesco Fioranelli, and Alexan-
der Yarovoy. Radar-PointGNN: Graph Based Object
Recognition for Unstructured Radar Point-cloud Data.
In 2021 IEEE Radar Conference (RadarConf21), pages
1–6, 2021. 2

[19] Ramin Nabati and Hairong Qi. CenterFusion: Center-
Based Radar and Camera Fusion for 3D Object Detec-
tion. In Proceedings of the IEEE/CVF Winter Con-
ference on Applications of Computer Vision (WACV),
pages 1527–1536, January 2021. 2

[20] Leichen Wang, Tianbai Chen, Carsten Anklam, and
Bastian Goldluecke. High Dimensional Frustum Point-
Net for 3D Object Detection from Camera, LiDAR,
and Radar. In 2020 IEEE Intelligent Vehicles Sympo-
sium (IV), pages 1621–1628, 2020. 2

[21] Robert Prophet, Anastasios Deligiannis, Juan-Carlos
Fuentes-Michel, et al. Semantic Segmentation on 3D
Occupancy Grids for Automotive Radar. IEEE Access,
8:197917–197930, 2020. 2

[22] Andreas Danzer, Thomas Griebel, Martin Bach, and
Klaus Dietmayer. 2D Car Detection in Radar Data
with PointNets. In 2019 IEEE Intelligent Transporta-
tion Systems Conference (ITSC), pages 61–66, 2019.
2

[23] Michael Meyer and Georg Kuschk. Deep Learning
Based 3D Object Detection for Automotive Radar and
Camera. In 2019 16th European Radar Conference
(EuRAD), pages 133–136, 2019. 2

[24] Martin Arjovsky, Amar Shah, and Yoshua Bengio.
Unitary Evolution Recurrent Neural Networks. In
Maria Florina Balcan and Kilian Q. Weinberger, edi-
tors, Proceedings of The 33rd International Conference

4038



on Machine Learning, volume 48 of Proceedings of Ma-
chine Learning Research, pages 1120–1128, New York,
New York, USA, 20–22 Jun 2016. PMLR. 4

[25] Adam Paszke, Sam Gross, Francisco Massa, et al. Py-
Torch: An Imperative Style, High-Performance Deep
Learning Library. In H. Wallach, H. Larochelle, A.
Beygelzimer, et al., editors, Advances in Neural Infor-
mation Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. 5

[26] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase,
and Yuxiong He. DeepSpeed: System Optimizations
Enable Training Deep Learning Models with Over 100
Billion Parameters. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, KDD ’20, page 3505–3506, New
York, NY, USA, 2020. Association for Computing Ma-
chinery. 5

[27] Mart́ın Abadi, Ashish Agarwal, Paul Barham, et al.
TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems, 2015. Software available from ten-
sorflow.org. 5

4039


