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Abstract

Semantic segmentation for autonomous driving should
be robust against various in-the-wild environments. Night-
time semantic segmentation is especially challenging due
to a lack of annotated nighttime images and a large do-
main gap from daytime images with sufficient annotation. In
this paper, we propose a novel GPS-based training frame-
work for nighttime semantic segmentation. Given GPS-
aligned pairs of daytime and nighttime images, we perform
cross-domain correspondence matching to obtain pixel-
level pseudo supervision. Moreover, we conduct flow esti-
mation between daytime video frames and apply GPS-based
scaling to acquire another pixel-level pseudo supervision.
Using these pseudo supervisions with a confidence map, we
train a nighttime semantic segmentation network without
any annotation from nighttime images. Experimental re-
sults demonstrate the effectiveness of the proposed method
on several nighttime semantic segmentation datasets.

1. Introduction
Semantic segmentation, which classifies each pixel of an

image into a semantic class, is a fundamental problem in

computer vision and has been widely used in various appli-

cations, including autonomous driving, robotic navigation,

and medical imaging. In particular, for autonomous driv-

ing applications, it is necessary to design a segmentation

method that is robust against domain changes such as il-

lumination and weather changes. In order to design such

a method, especially with convolutional neural networks

(CNNs), a large amount of pixel-level annotated data is re-

quired for supervised learning. However, acquiring pixel-

level annotation in poor illumination environments such as

nighttime is very challenging beyond the cost of annota-

tions. Therefore, most semantic segmentation datasets fo-

cus primarily on daytime environments [2,7], but a semantic

segmentation model trained on these datasets fails in night-
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Figure 1: Visual comparison of the nighttime semantic seg-

mentation results between the PSPNet [47] without domain

adaptation and our proposed GPS-GLASS.

time semantic segmentation, as shown in Fig. 1. Although

some datasets [3, 45] provide nighttime image annotations,

their quantity and quality are insufficient to be used for se-

mantic segmentation network training. In this paper, we

propose a training methodology for nighttime image seman-

tic segmentation networks without requiring pixel-level an-

notation of nighttime scenes.

Several methods have been developed to adapt daytime

segmentation networks to nighttime scenes without using

annotated nighttime images. For example, the twilight do-

main between daytime and nighttime has been introduced

for gradual domain adaptation [3, 28, 29]. Image transla-

tion has also been attempted to obtain synthetic annotations

of nighttime images that can help train semantic segmenta-

tion networks [26, 32]. However, these methods require ad-

ditional training data in the twilight domain or several pre-

processing stages. Several recent methods [39,43] have pre-

sented pseudo-supervised loss terms using coarsely aligned

daytime and nighttime image pairs. These recent methods

require neither additional domain data nor pre-processing

stages, but they have not attempted to align daytime and
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nighttime image pairs precisely.

In this paper, we present a novel Global Positioning

System (GPS)-Guided Learning Approach for nighttime

Semantic Segmentation (GPS-GLASS), as illustrated in

Fig. 2. Similar to DANNet [39], GPS-GLASS uses image

relighting and semantic segmentation modules and two dis-

criminators for the daytime and nighttime domains. Unlike

DANNet, GPS-GLASS extracts image features obtained

during the segmentation process to estimate the correspon-

dence from the daytime to nighttime and vice versa. More-

over, observing that nighttime images are located between

daytime image frames, GPS-GLASS applies intra-domain

correspondence matching to daytime image frames and per-

forms GPS-based flow scaling. From these inter-domain

and intra-domain correspondences, we construct pseudo-

labels for training a nighttime semantic segmentation net-

work. In addition, due to the cross-domain correspondence

matching the proposed GPS-GLASS well generalized to

both daytime and nighttime.

Our contributions are summarized as follows:

• We introduce a framework called GPS-GLASS that

performs inter-domain correspondence matching to

construct a pseudo-label for training a nighttime se-

mantic segmentation network.

• We propose to perform intra-domain correspondence

matching using daytime video frames and scale the

estimated flow field using GPS data, yielding another

pseudo-label.

• By combining the two pseudo-labels with a confidence

map, GPS-GLASS shows state-of-the-art performance

on several nighttime image datasets. Ablation stud-

ies also verify the effectiveness of each component of

GPS-GLASS.

2. Related Work
2.1. Unsupervised Domain Adaptation for Night-

time Semantic Segmentation

Supervised training of semantic segmentation networks

requires pixel-level annotation, which is laborious and time-

consuming to obtain. Because ground-truth annotation is

publicly available only for some limited domains, e.g.,

Cityscapes [2] for daytime road scenes and GTA5 [25] for

synthetic scenes, unsupervised domain adaptation (UDA)

has received significant interest. There have been several

approaches [19, 36] to achieve the goal of UDA for seman-

tic segmentation. However, these approaches are focused

on reducing the domain gap between synthetic and real.

The existing datasets developed for semantic segmenta-

tion of road scenes are biased toward daytime scenes [2, 7],

segmentation networks trained without considering UDA

tend to fail in handling nighttime scenes. Consequently, ef-

forts have been made to reduce the domain gap between

daytime and nighttime scenes.

Motivated by the widely studied image style transfer [12,

13, 21], one can try translating daytime scenes to night-

time scenes. Earlier studies along this direction [26, 32]

were overly interested in the auxiliary task of the image

style transfer rather than the main semantic segmentation

task. Sakaridis et al. [28] constructed the Dark Zurich
dataset, which contains daytime and nighttime images that

are coarsely matched with GPS information. These day-

time and nighttime image pairs are helpful in guiding the se-

mantic segmentation of nighttime scenes, resulting in many

follow-up studies, including their guided curriculum model

adaptation (GCMA). Sakaridis et al. [29] proposed an im-

proved version of GCMA that uses depth and camera pose

information. Wu et al. [39] proposed a multi-target domain

adaptation network for nighttime semantic segmentation via

adversarial learning. Xu et al. [43] proposed nighttime do-

main gradual self-training and patch-level prediction guid-

ance methods. Gao et al. [6] proposed a correlation distilla-

tion approach for cross-domain between synthetic and real

nighttime.

However, the above methods [28, 29, 39, 43] have not at-

tempted to precisely align daytime and nighttime images

because such an alignment can even be a more difficult task

than semantic segmentation. Xu et al. [40] aligned the day-

time and nighttime images using an additional optical flow

estimation network. However, the above method requires

additional datasets and training stages for the optical flow

estimation network. We notice that the invaluable informa-

tion of GPS is obtainable when constructing datasets such

as Dark Zurich. Consequently, in this paper, we propose to

use the GPS information of daytime and nighttime images

to guide the correspondence matching for nighttime seman-

tic segmentation network training.

2.2. Optical Flow and Correspondence Matching

Various studies are being conducted to find a matching

point between two images e.g., stereo matching [22,24,44],

optical flow estimation [5, 10], and semantic correspon-

dence [17, 18]. In the case of learning-based optical flow

estimation approaches, Dosovitskiy et al. [5] introduced

an end-to-end optical flow estimation method with CNNs.

Ranjan et al. [23] proposed a spatial pyramid network that

predicts flow in a coarse-to-fine manner. Sun et al. [31]

proposed a method of warping the spatial feature pyra-

mid and calculating the cost volume from the warped fea-

tures. Teed et al. [34] proposed a recurrent unit for grad-

ual flow refinement, demonstrating high performance with

fewer network parameters. Recent transformer [37]-based

optical flow models [14,41,42] further improved the optical

flow estimation performance.
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Figure 2: The overview of the proposed GPS-GLASS. The same colored networks share weights, and the correlation layer has

no weights that require training. w© represents the backward warping operator, and the red and blue dotted arrows indicate

supervision by the ground-truth and pseudo-labels, respectively. Only the networks inside the purple box are used at the

inference stage.

Although the above methods have contributed to the de-

velopment of optical flow estimation technology, they are

still suffering from correspondence matching between dif-

ferent domains. Recently, Zhou et al. [48] estimated optical

flow to match and align two images captured under different

weather conditions. Zhang et al. [46] proposed a method to

train an image translation network by warping images from

different domains. Lee et al. [17, 18] introduced a model

called SFNet that predicts bidirectional correspondence be-

tween different instances of the same object or scene cate-

gory. Inspired by the superior performance of SFNet, we

propose a dense corresponding matching method in differ-

ent domains for nighttime semantic segmentation. A simple

correlation layer trains the segmentation network to extract

features that are invariant to the domain gap, e.g., between

daytime and nighttime.

3. Proposed Methods

3.1. Framework Overview

Our method involves a source domain S and two tar-

get domains Td and Tn, where S, Td, and Tn correspond

to Cityscapes (daytime) [2], Dark Zurich-D (daytime), and

Dark Zurich-N (nighttime) [28] datasets in our case study,

respectively. Note that only the source domain has ground-

truth segmentation labels, and the two target domains are

coarsely paired according to GPS locations. As shown

in Fig. 2, our GPS-GLASS consists of a single weight-

sharing relighting network (GR), a single weight-sharing

semantic segmentation network (GS), and two discrimi-

nators (Dd and Dn), where we used the same architec-

ture of DANNet [39] for these network components. Let

Is, In, and Id denote image samples corresponding to S,

Td, and Tn, respectively. These images are fed to GR to

make GS less sensitive to illumination changes [39]. The

segmentation results are obtained as Ps = GS (GR (Is)),
Pd = GS (GR (Id)), and Pn = GS (GR (In)). Only Ps

has its corresponding ground-truth segmentation labels P ∗
s ,

and the other two results Pd and Pn are supervised by the

pseudo-label.

Specifically, the proposed training framework called

GPS-GLASS obtains the pseudo-label by estimating dense

correspondence between the daytime and nighttime images,

where the correlation layer is applied to the intermediate

features of the segmentation network. In addition, since

the dense correspondence between daytime and nighttime

images can be inaccurate, GPS-GLASS obtains another

pseudo-label by estimating dense correspondence between

the daytime images and applying GPS-based flow scaling.

By using the two different sources for acquiring the pseudo-
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label, GPS-GLASS trains the nighttime semantic segmen-

tation network without any annotation from nighttime im-

ages. The details of GPS-GLASS will be explained in the

following subsections.

3.2. GPS-guided Learning Approach

3.2.1 Correspondence matching using inter-domain

Our key idea is to align Pd and Pn such that the aligned

segmentation result can be used as the pseudo-label. To this

end, inspired by SFNet [18], the correlation layer is adopted

to compute the dense correspondence of the image features

between two different domains. A simple correlation layer

without trainable parameters allows the segmentation net-

work to extract features that are robust to domain changes,

such as daytime and nighttime. Let fd =
{
fd
l , f

d
g

}
be the

set of the local and global features extracted from the se-

mantic segmentation network for the input Id. In the case of

PSPNet [47], which is our chosen architecture for semantic

segmentation, fd
l and fd

g are extracted before and after pass-

ing through the PSPmodule of PSPNet, respectively, and

have the same dimension of H ×W ×D. fn =
{
fn
l , f

n
g

}
is extracted similarly from the semantic segmentation net-

work for the input In. Then, the correlation layer computes

the correlation between fd and fn as follows:

cx (p,q) =

(
fd
x (p)

‖fd
x (p)‖

)� (
fn
x (q)

‖fn
x (q)‖

)
, x ∈ {l, g} ,

(1)

where � is the transpose operator, ‖·‖ measures L2 norm,

p and q represent 2D coordinates, and fd
x (p) and fn

x (q)
are the D-dimensional vectors at p and q, respectively. We

combine the correlation volumes obtained from the local

and global features by c = cl � cg , where � represents

element-wise multiplication. Instead of using the standard

argmax function to obtain the correspondence from c, we

use soft-argmax [9, 15] to allow backpropagation through

the correlation layer as follows:

c′ (p,q) =
exp (α · c (p,q))∑

q′∈Q

exp (α · c (p,q′))
, (2)

where Q is the set of 2D positions in fn, and α is the

temperature parameter. Note that soft-argmax converges to

argmax as α increases, but an excessively high value of α
can lead to unstable gradient flow during training. From the

grid search of α, we chose α = 104 in our experiments.

The optical flow field from the daytime to nighttime Fd→n

is obtained as

Fd→n (p) =
∑
q∈Q

c′ (p,q) · q. (3)

The optical flow field from the nighttime to daytime Fn→d

is obtained in a similar manner by switching p and q in Eqs.

Figure 3: Examples of the segmentation results and warped

pseudo-labels obtained during training. (a) and (e) are the

input images, and (b) and (f) are the corresponding segmen-

tation results. (c), (g) and (d), (h) are the results using the

corresponding matching in the inter and intra domains, re-

spectively.

Figure 4: Illustration of the nighttime, daytime, and daytime

reference images with their corresponding GPS positions.

(1)-(3). Finally, the semantic segmentation map warped

from nighttime to daytime, denoted as Pn→d, is obtained

using Fd→n and Pn by backward warping. Similarly, the

semantic segmentation map warped from daytime to night-

time, denoted as Pd→n, is obtained using Fn→d and Pd.

Fig 3 shows some examples of Pn→d and Pd→n. Although

these warped predictions are imperfect, Pn→d (Pd→n) is ex-

pected to be close to Pd (Pn). Therefore, we can use Pn→d

and Pd→n for the nighttime semantic segmentation network

training.

3.2.2 Pseudo-supervision using intra-domain match-
ing

Due to the suboptimal performance of the relighting net-

work, dense correspondence matching between daytime

and nighttime is still challenging. Observing that most ex-

isting semantic image segmentation datasets [2, 7, 29] pro-

vide video frames, we propose to use another daytime ref-

erence image, denoted as Idr, for generating an additional
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pseudo-label. In the Dark Zurich dataset, In is the near-

est nighttime image of Id, but the neighboring frames of Id
along the forward and backward directions, denoted as I+d
and I−d , are also available. From the GPS positions of these

images, we can determine Idr as either I+d or I−d .

Specifically, let xd, x+
d , x−

d , and xn denote the GPS po-

sitions of Id, I+d , I−d , and In, respectively. Here, each GPS

position is given as a 2D vector containing the latitude and

longitude. Then, Idr is determined as follows:

Idr =

⎧⎨
⎩

I+d , if CS
(
xd − xn,x

+
d − xn

)
< CS

(
xd − xn,x

−
d − xn

)
,

I−d , otherwise,
(4)

where CS measures the cosine similarity. In other words,

as illustrated in Fig. 4, if In is located along the forward di-

rection of Id, I+d is chosen as Idr. Otherwise, I−d is chosen

as Idr.

Given Id and Idr, we obtain the optical flow field from

the daytime to daytime reference, denoted as Fd→dr, by

following the same procedure of Eqs. (1)-(3) but with the

features fd and fdr, where fdr =
{
fdr
l , fdr

g

}
is the fea-

ture extracted from Idr. The optical flow field from the

daytime reference to daytime Fdr→d is obtained similarly.

For the generation of the pseudo-label for the nighttime se-

mantic segmentation network training, another pair of the

optical flow fields are obtained as F
′
d→n = λFd→dr and

F
′
n→d = λFdr→d. The scale factor λ is chosen as

λ =
HD

(
xd,x

⊥
n

)
HD (xd,xdr)

, (5)

where HD measures the Haversine distance of two posi-

tions [11], and x⊥
n represents the position projected onto

the line joining xd and xdr, as illustrated in Fig. 4. Finally,

the semantic segmentation map warped from nighttime to

daytime, denoted as P
′
n→d, is obtained using F

′
d→n and Pn

by backward warping. Similarly, the semantic segmentation

map warped from daytime to nighttime, denoted as P
′
d→n,

is obtained using F
′
n→d and Pd. Fig 3 shows some examples

of P
′
n→d and P

′
d→n. We now have four warped segmenta-

tion maps, i.e., Pn→d, Pd→n, P
′
n→d, and P

′
d→n, which are

used for the nighttime semantic segmentation network train-

ing.

3.2.3 Confidence map

The first pair of the warped predictions, i.e., Pn→d and

Pd→n, can be inaccurate due to imperfect relighting and

flow estimation. The second pair of the warped predictions,

i.e., P
′
n→d and P

′
d→n, can also be inaccurate because xn is

generally not lying on the line joining xd and xdr, and thus

the simple scaling by λ can lead to imprecise flow fields.

Moreover, GPS positions are not always precise. We thus

define a 2D confidence map such that only consistent pre-

dictions are used for pseudo-supervision. Specifically, the

confidence map for the nighttime to daytime warping, de-

noted as Mn→d, is defined as follows:

I(p)=
{
i| argmax (Pn→d (p))=argmax

(
P

′
n→d (p+i)

)}
,

(6)

Mn→d (p) =

{
1, if ∃I(p) ∈ Ω,
0, otherwise,

(7)

where Ω is a set of positions in the 3×3 kernel. Pn→d (p)
extracts the C-dimensional vector at p, where C is the num-

ber of semantic classes. The confidence map for the day-

time to nighttime warping, denoted as Md→n, can be de-

fined in a similar manner. These binary confidence maps

are used when training the nighttime semantic network.

3.3. Objective Functions

We use five loss terms for GPS-GLASS: light loss Llight,

semantic segmentation loss Lseg , adversarial loss Ladv , dis-

criminator loss Ldis, and warping loss. Because we use the

same loss functions defined in DANNet for the first four

terms [39], we only detail the warping loss in this subsec-

tion.

We now have Pn→d and Pd→n and their confidence

maps Mn→d and Md→n, which can be used to supervise

the training of the nighttime semantic segmentation net-

work. Note that P
′
n→d and P

′
d→n are integrated to Pn→d

and Pd→n since only consistent predictions are used by

the confidence maps. First, we use Pd→n for the pseudo-

supervision of Pn. Specifically, the first warping loss term

Ld→n is defined as follows:

H(Pd→n(q), Pn(q))=
∑
k∈C

Eo(Pd→n (q; k))logPn (q; k),

(8)

Ld→n=− 1

Np · C
∑

q∈Q−
Md→n(q)H(Pd→n(q), Pn(q)),

(9)

where H measures the cross entropy, Eo denotes the one-

hot encoding [39], C is a set of all semantic segmentation

classes, Np is the number of pixels. Pn (q; k) represents the

probability of the k-th object class at the position q of Pn.

Note that the cross-entropy loss is measured only for the

reliable prediction with Md→n (q) = 1. Here, we define a

set of ignore indexes, Q̃, as follows:

Q̃=

{
q

∣∣∣∣ argmax (Pn (q))∈Cdyn,
argmax (Pn (q)) �=argmax (Pd→n (q))

}
,

(10)

where Cdyn is a set of dynamic semantic classes, including

cars, people, etc. Then, Q− in Eq. (10) is defined as Q− =
Q ∩ Q̃c. We found this special handling is necessary to

prevent undesirable pseudo-supervision of dynamic object

classes.
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The second warping loss Ln→d is defined as follows:

Ln→d=− 1

Np · C
∑

p∈P−
Mn→d(p)H(Pd(p), Pn→d(p)),

(11)

where P− is defined in a similar manner as Q−. In other

words, Pd is used as the pseudo-supervision of Pn→d for

the nighttime segmentation network training.

The objective functions for the target daytime and night-

time domains, LTd
and LTn , and the source domain LS are

defined as:

LTd
= μ1Llight + μ2Ladv, (12)

LTn
= μ1Llight + Ln→d + Ld→n + μ2Ladv, (13)

LS = μ1Llight + μ3Lseg + μ4Ldis, (14)

where μ1, μ2, μ3, and μ4 are empirically chosen as 0.01,

0.01, 1, and 1, respectively, following the baseline method

DANNet [39]. In every training iteration of GPS-GLASS,

we sequentially optimize LTd
, LTn

, and LS for daytime,

nighttime, and source domains, respectively.

4. Experimental Results
4.1. Datasets

The Cityscapes dataset [2] includes 5,000 images taken

in street scenes with pixel-level annotations for a total of 19

categories. We used the training set (2,975 images) as the

labeled source domain S in the GPS-GLASS training stage.

The Dark Zurich dataset [28] includes 2,416 nighttime

images, 2,920 twilight images and 3,041 daytime images

for training, which are all unlabeled with the size of

1,920×1,080. The images across different domains are

coarsely paired according to the GPS distance-based near-

est neighbor assignment. Consequently, most of these im-

ages share many image contents that are valuable for do-

main adaptation in semantic segmentation. Following the

previous works [39, 43], we only used 2,416 day-night im-

age pairs in the training stage of GPS-GLASS as the unla-

beled target domains, Td and Tn. For the quantitative per-

formance evaluation, the Dark Zurich dataset provides 50

finely annotated nighttime images, which are also used for

our ablation study.

The ACDC-night dataset [30] is an extended version of the

Dark Zurich dataset, including 1006 nighttime images (400,

106, and 500 images for training, validation, and test). The

dataset also provides finely annotated nighttime images as

the Dark Zurich dataset. The performance evaluation on the

ACDC-night dataset was conducted on a test set using an

online evaluation website [27].

The NightCity+ dataset [4] is an extended version of the

NightCity dataset [33] that re-annotates incorrectly labeled

regions of the validation set. We used the NightCity+ val-

idation dataset (1,299 images) only for the performance

evaluation.

Figure 5: Visual comparison of our GPS-GLASS with other

state-of-the-art methods on ACDC-night.

4.2. Implementation Details

We implemented GPS-GLASS using PyTorch. The

training was performed with a single Nvidia Titan RTX

GPU. Following [1], we trained our network using the

stochastic gradient descent optimizer with a momentum of

0.9 and a weight decay of 5 × 10−4. We used Adam opti-

mizer [16] for training the discriminators with β of 0.9 and

0.99. The initial learning rate of the generator and discrimi-

nators was set to 2.5× 10−4 and then reduced to the power

of 0.9 using the poly learning rate policy. For data augmen-

tation, random cropping of the size 512 × 512 was applied

with a scale factor between 0.5 and 1.0 for the Cityscapes

dataset, and random cropping of the size 960× 960 was ap-

plied with a scale factor between 0.9 and 1.1 for the Dark

Zurich dataset. In addition, we applied random horizontal

flips for training. We used PSPNet [47] as the segmentation

network model, which has shown state-of-the-art perfor-

mance in nighttime semantic segmentation. We pre-trained

PSPNet on the Cityscapes dataset for 150K iterations using

Lseg . Then, we set the batch size to 2 and trained the model

for 100K iterations.

4.3. Performance Comparisons

4.3.1 Comparison on ACDC-night and Dark Zurich

We compared GPS-GLASS with several state-of-the-art

domain adaptation-based nighttime semantic segmenta-

tion methods, including DANNet [39], DANIA [40],

MGCDA [29], GCMA [28], DMAda [3], and CCDistill [6].

For the comparison with the other techniques, BDL, Adapt-

SegNet, ADVENT [20, 35, 38] were also evaluated, where

they were trained to adapt from Cityscapes to Dark Zurich.

We report the mean intersection over union (mIoU) as the

evaluation metric. For accurate performance comparison,

we used ACDC-night, an extended version of Dark Zurich,

which provides a large number of images with difficult ob-

ject classes to be segmented. Table 1 reports the mIoU re-

sults on ACDC-night. All of these compared methods used

the common ResNet-101 [8] as a backbone. We used DAN-

Net and DANIA with PSPNet [47] for a fair comparison
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Table 1: Performance comparison on ACDC-night. The best and second-best results are boldfaced and underlined, respec-

tively.

Method
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s

tr
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n

m
o

to
cy

cl
e

b
ic

y
cl

e

mIoU

PSPNet 75.5 16.3 47.3 14.5 10.4 23.2 29.0 22.8 40.5 10.8 12.0 39.2 15.3 44.3 2.6 23.0 37.5 13.8 27.9 26.6

DMAda 74.7 29.5 49.4 17.1 12.6 31.0 38.2 30.0 48.0 22.8 0.2 47.0 25.4 63.8 12.8 46.1 23.1 24.7 24.6 32.7

GCMA 78.6 45.9 58.5 17.7 18.6 37.5 43.6 43.5 58.7 39.2 22.5 57.9 29.9 72.1 21.5 56.3 41.8 35.7 35.4 42.9

MGCDA 74.5 52.5 69.4 7.7 10.8 38.4 40.2 43.3 61.5 36.3 37.6 55.3 25.6 71.2 10.9 46.4 32.6 27.3 33.8 40.8

DANNet 90.7 61.2 75.6 35.9 28.8 26.6 31.4 30.6 70.8 39.4 78.7 49.9 28.8 65.9 24.7 44.1 61.1 25.9 34.5 47.6

DANIA 91.0 60.9 77.7 40.3 30.7 34.3 37.9 34.5 70.0 37.2 79.6 45.7 32.6 66.4 11.1 37.0 60.7 32.6 37.9 48.3

CCDistill 90.0 60.7 75.6 42.0 28.3 27.5 29.2 32.2 67.7 36.0 77.4 46.7 24.2 69.7 48.2 45.4 53.9 40.5 36.0 49.0

GPS-GLASS 91.8 65.0 76.4 38.1 30.0 35.8 38.5 37.6 69.2 41.4 79.8 45.8 31.2 69.6 38.0 59.9 45.7 24.9 37.2 50.3

Table 2: Performance comparison on Dark Zurich-val and

NightCity+.

Method
mIoU

Dark Zurich-val NightCity+

PSPNet 12.28 19.04

GCMA 26.65 -
MGCDA 26.10 -
DANNet 36.76 29.93
DANIA 38.14 28.92

GPS-GLASS 38.19 31.81

with our GPS-GLASS.

GPS-GLASS achieved a 1.3% performance improve-

ment in terms of the mIoU over the second-best method,

CCDistill. Note that GPS-GLASS does not increase the

number of network parameters or processing time com-

pared to DANNet because the same architecture of PSPNet

is used in the inference stage. The performance improve-

ments are significant in several categories, such as road,

sidewalk, terrain, and sky, which are difficult to identify

in nighttime scenes. Meanwhile, due to pixel-level aligned

pseudo-supervision, improvements are also noticeable in

small-scale classes such as poles, lights, and sign, compared

to the baseline method, DANNet. Consistent results were

obtained from Dark Zurich-val as shown in Table 2. These

results indicate that our approach effectively performed the

domain adaptation from the daytime to nighttime. Fig. 5

shows several results for visual comparison.

4.3.2 Generalization Ability for Nighttime

To show the generalization ability of our proposed method,

we tested our model trained on Dark Zurich to NightC-

ity+. As shown in Table 2, GPS-GLASS achieved a 1.88%

Figure 6: Performance comparison of daytime and night-

time semantic segmentation results for our GPS-GLASS

and other state-of-the-art methods.

performance improvement in terms of the mIoU over the

second-best method, DANNet. This result demonstrates

that the proposed GPS-GLASS trained on Dark Zurich gen-

eralizes well to another challenging nighttime dataset.

4.3.3 Generalization Ability for Daytime

One of the technical challenges of nighttime domain adap-

tation is the generalization ability for daytime. To this

end, we compared the proposed GPS-GLASS with PSP-

Net [47] (trained on Cityscapes) as well as DANNet and

DANIA (pre-trained on Cityscapes and then trained with

Dark-Zurich via UDA). As shown in Fig. 6, DANNet and

DANIA showed noticeable performance drops from PSP-

Net on Cityscapes. However, our proposed GPS-GLASS

achieved state-of-the-art performance at nighttime at the

sacrifice of a 0.4% performance reduction at daytime. We

consider that the correlation layer of GPS-GLASS enabled

the segmentation network to extract domain-invariant fea-

tures through correspondence matching, resulting in high

performance across two domains.

We conducted additional analysis for dense correspon-
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Figure 7: Comparisons of the correspondence matching re-

sults obtained by the proposed GPS-GLASS, DANNet, and

DANIA.

Table 3: Ablation study on several model variants of our

method on Dark Zurich-val.

Method mIoU Gain

w/o pseudo-supervision 24.68 -

DANNet 36.76 +12.08

inter-intra mixing
avg 35.92 +11.24

max 35.70 +11.02

warping loss
Ln→d 33.90 +9.22

Ld→n 36.06 +11.38

feature matching
local 37.45 +12.77

global 36.67 +11.99

matching domain
inter 34.86 +10.18

intra 36.21 +11.53

GPS-GLASS 38.19 +13.51

dence matching between nighttime and daytime images. To

this end, we computed the cosine similarity between the

feature of the nighttime image at the red cross position,

as shown in Fig. 7, and the features of the daytime im-

age, where the features were obtained before the last layer

of the segmentation network. The pixels with similarity

score higher than the threshold are colored in red, where

the threshold was set to 0.25 for all methods and scenes.

As shown in Fig. 7, GPS-GLASS assigned high similarities

for the pixels with the semantic class. However, DANNet

and DANIA resulted in high similarities for many pixels

belonging to different semantic classes (e.g., building, sky,

sidewalk, and road). These results indicate that the corre-

lation layer drives the segmentation network to extract fea-

tures with high similarities to the pixels with the same se-

mantic classes between daytime and nighttime images.

4.4. Ablation Study

In order to demonstrate the effectiveness of individual

components of GPS-GLASS, several modified models of

GPS-GLASS were trained, and the best performances in

Dark Zurich-val are reported in Table 3. GPS-GLASS

without any pseudo-supervision serves as a naive baseline,

which leads to the lowest mIoU of 24.68. Due to the static

loss [39], DANNet achieved a 12.08% mIoU increase com-

pared to the baseline. We applied other inter-intra pseudo-

label mixing methods: taking the average of two pseudo-

labels or taking the label with the higher probability for

each pixel. For Dark Zurich-val, these two methods, de-

noted as avg and max in Table 3, increased the mIoU by

11.24% and 11.02%, respectively, which are worse than

the performance improvement obtained using the confi-

dence map (13.51%). Both warping loss terms, Ln→d and

Ld→n, were found to be essential compared to their single-

use. In addition, because we obtained the integrated cor-

relation volume by element-wise multiplication of the cor-

relation volumes from the local and global features, we

evaluated the performance obtained without using the lo-

cal or global feature. The use of both features resulted

in 0.74% or 1.52% higher mIoU compared to the single-

use of the local or global feature, respectively. Last, be-

cause GPS-GLASS obtains pseudo-supervision from both

intra-matching and inter-matching, we evaluated the perfor-

mance without applying intra-matching or inter-matching

and obtained 3.33% or 1.98% lower mIoU compared to

GPS-GLASS, respectively.

5. Conclusions
In this paper, we proposed GPS-GLASS, a novel training

methodology for nighttime semantic segmentation based

on unlabeled daytime-nighttime image pairs and their GPS

data. GPS-GLASS obtains pixel-level aligned pseudo-

supervision through bidirectional correspondence match-

ing between the daytime and nighttime. To address

the difficulty of correspondence matching between differ-

ent domains, GPS-GLASS also acquires another pseudo-

supervision through correspondence matching in the same

daytime domain using the GPS data. The confidence map

is used to exclude pseudo-supervision of less reliable pre-

dictions. Our GPS-GLASS does not increase the num-

ber of network parameters or inference time compared to

the adopted baseline model. Experimental results on the

ACDC-night, Dark Zurich-val, and NightCity+ datasets

demonstrate the effectiveness of the proposed method.
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