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Abstract

Ensembles of independently trained deep neural net-
works yield uncertainty estimates that rival Bayesian net-
works in performance. They also offer sizable improve-
ments in terms of predictive performance over single mod-
els. However, deep ensembles are not commonly used in
environments with limited computational budget – such as
autonomous driving – since the complexity grows linearly
with the number of ensemble members. An important ob-
servation that can be made for robotics applications, such
as autonomous driving, is that data is typically sequential.
For instance, when an object is to be recognized, an au-
tonomous vehicle typically observes a sequence of images,
rather than a single image. This raises the question, could
the deep ensemble be spread over time?

In this work, we propose and analyze Deep Ensembles
Spread Over Time (DESOT). The idea is to apply only a
single ensemble member to each data point in the sequence,
and fuse the predictions over a sequence of data points. We
implement and experiment with DESOT for traffic sign clas-
sification, where sequences of tracked image patches are to
be classified. We find that DESOT obtains the benefits of
deep ensembles, in terms of predictive and uncertainty es-
timation performance, while avoiding the added computa-
tional cost. Moreover, DESOT is simple to implement and
does not require sequences during training. Finally, we find
that DESOT, like deep ensembles, outperform single models
for out-of-distribution detection.

1. Introduction
In safety-critical applications, such as autonomous driv-

ing (AD), both the predictive performance and the uncer-

tainty quantification performance of neural network models

are essential [1]–[5]. For example, the posterior probabili-

ties produced by a perception model are required to contain

all the information needed for the downstream decision-

making systems to make safe and efficient driving deci-

sions. Even for a seemingly mundane task such as traffic

sign classification one can imagine the problem that could

result from a model misidentifying a speed limit sign for

a stop sign on the highway, while nevertheless outputting

a high confidence. The general problem of overconfidence

for certain types of neural networks [3] is particularly trou-

blesome in safety-critical applications.

When it comes to modeling uncertainty, it is often di-

vided into two types of uncertainty – aleatoric uncertainty

and epistemic uncertainty [6]. Aleatoric uncertainty is due

to inherent randomness in the process that generates the

data. It is therefore not possible to decrease this type of

uncertainty by improving the model. On the other hand,

epistemic uncertainty is that which is caused by a lack of

data or knowledge about the underlying process [7]. One

example is to predict the outcome of a biased dice throw.

It is impossible to predict what side the dice will land on

for certain, no matter how accurate the model is. This con-

stitutes irreducible aleatoric uncertainty in the prediction.

However, more data can help us identify the bias of the

dice and improve the model, thereby decreasing the epis-

temic uncertainty. A larger number of models reduces epis-

temic uncertainty, while a larger number of frames reduces

aleatoric uncertainty.

Non-Bayesian neural networks often display great pre-

dictive performance, but struggle with generating high-

quality epistemic uncertainty estimates [3], [8], [9].

Bayesian neural networks on the other hand often yield

high-quality epistemic uncertainty estimates but are difficult

to train [10]. One way to improve on the epistemic uncer-

tainty estimation of regular neural networks while improv-
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(c) Deep ensemble spread over time.

Figure 1: Visualization of the different strategies in an example with three time steps and three ensemble members. The temporal fusion

blocks combine predictions produced at each time step using some combination rule. At time step t, t ∈ {1, 2, ..., T} with T = 3 in this

example, the temporal fusion block produces a prediction based on the predictions at time steps 1 through t. The ensemble fusion block

combines individual ensemble member predictions into a final ensemble prediction at each time step.

ing predictive performance is to use ensembles [8], [9]. It

has long been known that ensembles of neural networks can

quantify uncertainty in their predictions [11] and increase

the predictive performance compared to single models [12],

[13]. Lakshminarayanan et al. [10] show that neural net-

work ensembles can produce uncertainty estimates that out-

perform Bayesian models, while also achieving high pre-

dictive performance. This allows for a practical and high-

performance alternative to Bayesian methods. This type

of ensemble is commonly referred to as Deep Ensembles

(DEs) [9], [14], [15], and has been verified by other authors

to produce high-quality uncertainty estimates [8], [9].

As previously mentioned, ensembles typically also im-

prove predictive performance over single models. This

is mathematically proven in the classification setting by

Hansen and Salamon [12] under the assumption of inde-

pendent classification errors between ensemble members.

They show that if each model achieves an accuracy greater

than 50%, adding more models results in perfect classifica-

tion performance in the limit. The assumption of indepen-

dent classification errors does not typically hold in the real

world, but the intuition is valid. There are also other poten-

tial advantages of using ensembles. Wasay and Idreos [16]

show empirically that for a set model parameter budget, us-

ing ensembles results in shorter training times and higher

accuracy compared to single models.

Because of all the benefits of DEs outlined above, ap-

plications of them in safety-critical systems, such as AD,

would clearly be desirable. However, an important limiting

factor for AD applications is the requirement for low la-

tency, real-time processing on resource-limited embedded

hardware – a fact that is typically incompatible with the lin-

ear compute increase of DEs in the number of members.

In this paper, we leverage the fact that the sensor data

in AD systems are in general sequential in nature and pro-

pose Deep Ensembles Spread Over Time (DESOTs). In-

stead of applying all ensemble members to the sensor data

at each time step, as would be the procedure for a conven-

tional DE, DESOT only applies one member at each time
step, but different members at different consecutive time
steps. Hence, DESOT uses the same number of compu-

tations as a single model, but the same amount of mem-

ory as a DE with an equal number of members. We illus-

trate the DESOT method by extensively studying the task of

traffic sign classification with sequences of tracked patches

containing the traffic signs. We choose this task due to its

importance in AD applications and its simple formulation,

but the method is applicable to a wide range of settings

and tasks that use sequence data. We show that DESOTs

are competitive with traditional DEs in our setting, both in

predictive performance and uncertainty quantification per-

formance. We also show that they outperform both single

models and MC-dropout models.

In summary, our contributions are the following:

(i) We propose Deep Ensembles Spread Over Time

(DESOT), an approach applicable to sequences that brings

the benefits of Deep Ensembles (DE) without the additional

computational cost.

(ii) We thoroughly analyze the proposed approach on traffic

sign classification, where a sequence of tracked patches are

fed as input to the model. DESOT obtains the benefit of

DEs at the computational cost of a single model.

(iii) We thoroughly analyze the out-of-distribution detection

performance, based on the entropy of the predictions, and

find that DESOT, like deep ensembles, substantially outper-

forms a single model.

2. Related Work

Deep ensembles: Deep ensembles have been shown to

be superior to any other ensemble method in uncertainty

quantification given a fixed computational budget [9]. Ova-

dia et al. [8] also showed that DEs are some of the best-

performing models in uncertainty estimation. The intuition

behind why this might be is that ensembling is a variance
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reduction technique, and therefore useful for increasing the

quality of epistemic uncertainty estimates [17]. Further-

more, they have additional advantages in their simple im-

plementation and high predictive performance.

Though deep ensembles have been used for decades,

Lakshminarayanan et al. [10] show that they produce state-

of-the-art uncertainty estimates. DEs are simple to train,

with three basic steps involved: (i) ensure that a proper

scoring rule is used as loss function; (ii) optionally use ad-

versarial training to increase robustness; and (iii) train the

ensemble using randomized initialization of model parame-

ters to increase variety in the ensemble [10]. Many common

loss functions, such as cross-entropy loss, are strictly proper

scoring rules and can therefore be used in the deep ensemble

framework. In practice, adversarial training is often omit-

ted if improved robustness is not strictly necessary. Lak-

shminarayanan et al. [10] also demonstrate that the model

has the attractive property of decreasing its certainty of pre-

diction in out-of-distribution examples, which was demon-

strated using an ensemble trained on the MNIST dataset on

examples from the NotMNIST dataset which contains let-

ters instead of digits. It has later been verified that DEs are

the SotA for UQ on OOD data [8], [9]. For these reasons,

and that training time is not critically limited in the same

way as computational capacity upon test-time inference, we

chose DEs as the framework for generating our ensemble.

It should be noted that we are not the first to attempt lever-

aging ensembles while keeping the test-time inference time

down. Wortsman et al. [18] propose to average the weights

of ensemble members into a single model. Havasi et al. [19]

propose to divide a given neural network into sub-networks,

which essentially constitute an ensemble.

Monte Carlo dropout: Dropout was first introduced by

Srivastava et al. [20] as a regularization measure during

training to limit overfitting and increase the generalizability

of the learned representation. With dropout, each neuron

is turned off at random during training according to a pre-

specified probability, or dropout rate, p. This helps the net-

work not to overfit, and therefore generalize better, as it has

to create a more robust representation when any neuron can

be dropped at any time. Recognizing that using an ensem-

ble of a set of models is usually beneficial for model perfor-

mance, Srivastava et al. [20] show that using dropout dur-

ing inference is equivalent to sampling from an exponential

set of possible smaller models, which yields higher overall

performance. Gal and Ghahramani [21] later showed that

performing a number of forward passes through a model

with dropout enabled and averaging the results can be seen

as a Bayesian approximation. They chose to call this MC-

dropout and claimed that it enables superior uncertainty es-

timation performance in both regression and classification

tasks compared to vanilla models. Of note is that since the

introduction of MC-dropout, Ovadia et al. [8], Ashukha et

al. [9], and Lakshminarayanan et al. [10], have all claimed

that deep ensembles are superior in uncertainty quantifica-

tion. However, MC-dropout remains widely used due to its

simple implementation and general improvement of perfor-

mance compared to vanilla single models. This makes it a

relevant mode of comparison for our proposed model.

Traffic sign recognition: We evaluate the proposed method

on Traffic Sign Recognition (TSR), a field with a decades-

long history of development [22]. Lately, TSR has become

an important part of AD systems, and high and reliable per-

formance is important for safety. This makes it an interest-

ing application for DESOT.

There are two main subproblems of TSR, traffic sign de-

tection and traffic sign classification [23]. This research

concerns itself with the latter and assumes that regions of

interest in the image have already been identified by an-

other system (in this specific case, human annotators) ear-

lier in the ML pipeline. The domain is characterized by a

large number of classes with an imbalanced class distribu-

tion. Additionally, variations in illumination, perspective,

and occlusions are common [22], making the problem dis-

tinctly long-tailed. Furthermore, many of the classes are

very similar in shape and color, but with important differ-

ences in meaning, such as speed limit signs. Deep learning

has recently started revolutionizing this domain, with many

models achieving accuracies of over 95% in research set-

tings [24]. This means that any differences in predictive per-

formance between the models tested are likely to be small

in absolute terms, and performance benefits might instead

lie in the performance of the models on difficult examples

such as short sequences or obscured scenes.

3. Deep Ensembles Spread over Time

In this section, we introduce Deep Ensembles Spread

Over Time (DESOT), a method to obtain the benefits of

a Deep Ensemble (DE) without additional computational

cost. In many real-world scenarios, the input data is a se-

quence of frames. In the literature, it is then common to

apply a single model and average the predictions [25]. This

strategy is illustrated in Fig. 1a. It is well-known that replac-

ing the single model with a DE improves both predictive-

and uncertainty estimation performance (Fig. 1b). Unfortu-

nately, this multiplies the computational cost with a factor

M , where M is the number of ensemble members. DESOT

(Fig. 1c) instead divides the ensemble over time, running

one ensemble member per frame, and thus has the same

computational cost as a single model. We hypothesize that

DESOT still provides, despite the cheap computational cost,

the benefits of DEs.
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(a) Single frames.

(b) Sequences dataset.

Figure 2: Examples of training and validation data. Training data is cropped from ZOD, and sequences are created by additional tracking

across time using adjacent frames.

3.1. Image Classification on Sequences

We will now introduce the application of a single model

or DE to image classification on sequences 1. First, both the

ensemble fusion block and the time fusion block are sim-

ple averaging operations. This is how Lakshminarayanan

et al. [10] implement ensemble fusion for deep ensem-

bles in the classification setting. Now, define a sequence

x ∈ R
T×H×W×3 as T distinct still images, each with a

height of H pixels, a width of W pixels, and three separate

color channels. We will consider classification problems

where a model should produce a categorical output distribu-

tion across C classes for such a sequence x. Assume there

is a set of M different neural networks, each of which can

conduct this classification. A single model m ∈ {1, ...,M}
produces a categorical output distribution pm(xt) for each

single image xt at time step t ∈ {1, ..., T} in the sequence

x. Then, the final output distribution for model m is defined

as

pm(x) =
1

T

T∑

t=1

pm(xt) , (1)

which is the element-wise (class-wise) average across the

output distributions for each image in the sequence at dif-

ferent time steps. This setup is what we will refer to as a

single model (SM).

Now imagine that all M models are used for classify-

ing each image in the sequence, such that the final output

distribution for the sequence is

pDE(x) =
1

M

M∑

m=1

pm(x) =
1

MT

M∑

m=1

T∑

t=1

pm(xt) , (2)

1Note that image classification on sequences is different from video

classification, as the former does not need to model the dynamics of the

scene.

which is how we choose to apply deep ensembles (DEs)

[10] to sequences – averaged across the images of the se-

quence x. DEM will be used to denote an M -member deep

ensemble.

3.2. DESOT

Our proposed method, which we call DESOT, instead

uses a single model m ∈ {1, ...,M} for each image xt,

t ∈ {1, ..., T}, to produce a categorical output distribution,

but the models are alternated such that any given model

m is used on average T/M times for a certain sequence

of T images. Analogously to the notation used for DEs,

DESOTM will denote an M -member deep ensemble spread

over time. We let σ(t) denote the (repeated) mapping be-

tween each time step t and one of the ensemble members

m ∈ {1, ...,M}, and write the final output distribution pro-

duced by DESOT across time steps, ensemble members,

and classes as

pDESOT(x) =
1

T

T∑

t=1

pσ(t)(x
t) , (3)

As is clear from this definition, let us again stress that the

DESOT method can only be applied to sequences since it

fundamentally relies on alternating the ensemble member in

use between neighboring frames. If DESOT was to be used

on a sequence length of one, the model would be equivalent

to a standard single model.

In the real world, one would have a continuous stream

of frames from the cameras of the car. In such a case, a

set window size might be used such that equations 1-3 each

constitute a moving average across some previous images.

Due to the shortness of the sequences we use in this paper,

which are only 11 frames, we have chosen to use the aver-

age across the entire sequence for a model.
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4. DESOT for Traffic Sign Recognition

We apply DESOT to traffic sign classification, a chal-

lenging image classification problem that is a cornerstone

to autonomous driving. While traffic sign classification is

oftentimes studied as a single-frame problem, autonomous

vehicles will in practice obtain a sequence of frames.

4.1. Data

We use the Zenseact Open Dataset (ZOD) [26], a multi-

modal dataset collected by the autonomous driving software

company Zenseact. The data has been collected across a

number of countries in Europe. For this work, we use the

single-frame data in ZOD, which has high-quality annota-

tions for 446k unique signs. Using the annotations, the traf-

fic signs are cropped and saved separately. The majority

of these signs are withheld for single-frame training and

validation. Due to the lack of temporal sign annotations,

30k randomly selected signs are extended into sequences

of crops using an off-the-shelf tracker on the 10 preceding

frames, sampled at 15 Hz. These sequences are only used

for testing. See Figure 2 for samples from the datasets.

4.2. Architecture and training

We use Resnet18 as the base for all our models tested.

Note however that, just like DEs, our approach is architec-

ture agnostic. In addition to the single model and traditional

DE, we compare DESOT to an MC-dropout implementa-

tion. We use a dropout layer after each non-linearity with

a dropout rate of 0.2. The dropout-version is run once on

each frame in a sequence and then aggregated by averag-

ing in the same way as for the other models. All models

are trained for 30 epochs using the AdamW optimizer [27]

with a learning rate of 0.0005. Cosine annealing is used

for more stable convergence. A batch size of 256 is used.

Classes with fewer than 10 occurrences in the training- and

validation datasets are omitted from training and evaluation,

as well as crops smaller than 16 pixels along any dimension.

In line with the definition of deep ensembles by Lakshmi-

narayanan et al. [10], all models are trained independently

using a proper scoring rule. We use cross-entropy loss.

For comparisons on uncertainty quantification (UQ), all

models are temperature scaled. We use the procedure first

introduced by Guo et al. [3] where a separate validation

set is used to find the temperature that optimizes negative

log-likelihood. The validation set in question is a separate

subset of single frames from ZOD. For the deep ensemble,

a joint temperature scaling scheme is employed where the

ensemble is treated as a single model with one temperature

parameter. This was found to be superior to creating an en-

semble of single models of perfect temperature. This find-

ing agrees with research by Rahaman and Thiery [28]. We

adopt the same temperature scaling for DESOT.

5. Results
Our study comprises an analysis of predictive perfor-

mance (Sec. 5.1) and out-of-distribution uncertainty quan-

tification (Sec. 5.2). The latter is divided into two parts, fo-

cusing firstly on real out-of-distribution examples and sec-

ondly on systematically increasing the severity of augmen-

tations for in-distribution examples.

5.1. Predictive performance

We assessed the predictive performance of various mod-

els on the sequence dataset. Throughout the later epochs, all

models achieved high accuracy, yet DESOT5 and DE5 par-

ticularly outperformed their counterparts in early epochs.

Importantly, DESOT matched the performance of tradi-

tional DEs, with both models slightly surpassing a single

model with temporal fusion (SM). Comprehensive perfor-

mance details are documented in Table 1. When assessed

via F1-score, DESOT maintained parity with DEs, creating

a wider gap to SM looking at averages across runs. How-

ever, do note that variance also increases compared to ac-

curacy. The inclusion of MC-dropout in the single model

significantly diminished its performance. Notably, all mod-

els, including SM, significantly outperformed our baseline

– a single-frame model operating on a randomly selected

sequence frame without temporal fusion.

We also evaluated the calibration of each model using

Brier reliability and Expected Calibration Error (ECE). No-

tably, a considerable gap emerged between the single model

operating on a single frame and the one fused over the entire

sequence. This disparity could be linked to the single-frame

temperature scaling procedure used, and the tendency of av-

eraging predictions over multiple images to reduce overall

confidence, thereby negatively impacting calibration. How-

ever, both DESOT and DE substantially improved sequence

calibration, even though they still fell significantly short of

the single-frame calibration. These findings suggest the po-

tential value of a sequence-aware fine-tuning step to create

better-calibrated models for sequences.

An essential aspect of traffic sign recognition, and by

extension, classification, is the long-tailed distribution of

classes. The fact that high performance on all classes is

important accentuates the significance of performance on

rare classes within the aggregated performance metrics. To

evaluate the models’ performance on these rare classes, we

removed classes with more than 500 samples in the training

dataset, leaving us with 625 sequences to evaluate perfor-

mance on. The predictive performance results for this fil-

tered dataset can be found in Table 2. Due to the smaller

dataset (both in training and validation) the results are sig-

nificantly more noisy. Nevertheless, the results indicate that

both ensembling approaches improve performance for these

difficult and rare cases.

Overall, our method notably outperforms a single model
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Table 1: Performance of each strategy on the ZOD sequence dataset. The results include ± one standard deviation of performance over 5

runs. All models are temperature scaled. Deep Ensemble (DE) improves over the single model (SM) in terms of predictive- and uncertainty

estimation performance, but by multiplying the computational cost with the number of ensemble members. Our DESOT, in contrast, obtains

the DE benefits while avoiding the added computational cost.

Model Accuracy ↑ F1-score ↑ Brier reliability ↓ ECE ↓
SM (single frame) 94.85 ± 0.06 70.42 ± 1.27 0.0069 ± 0.0007 0.21 ± 0.06

SM 97.34 ± 0.06 81.12 ± 1.75 0.0124 ± 0.0003 2.88 ± 0.06

DESOT5 97.60 ± 0.03 83.26 ± 0.93 0.0108 ± 0.0002 2.25 ± 0.05

DE5 97.64 ± 0.01 82.73 ± 1.01 0.0108 ± 0.0002 2.25 ± 0.05

MC-dropout 97.10 ± 0.09 76.79 ± 2.71 0.0165 ± 0.0004 4.03 ± 0.07

Table 2: Predictive performance on a minority class version of

the ZOD sequence dataset. Without extra computational cost be-

yond the single-model baseline, DESOT substantially outperform

the single model. In contrast to the full dataset, the single-frame-

single-model strategy yields competitive performance.

Model Accuracy ↑ F1-score ↑
SM (single frame) 87.42 ± 0.97 46.49 ± 3.03

SM 87.70 ± 0.58 43.65 ± 2.84

DESOT5 89.53 ± 0.71 47.53 ± 1.58
DE5 89.41 ± 0.38 46.57 ± 2.19

MC-dropout 85.52 ± 0.87 36.50 ± 0.71

with a similar computational footprint, while matching the

performance of DE5, which has a five-fold larger compu-

tational footprint. This superior performance could be at-

tributed to the ensemble members collectively offering a

more expressive representation of potential traffic signs than

a single model. The distinct advantage of DESOTs lies in

their capacity to leverage this richer representation while

minimizing computational demands.

5.2. Out-of-distribution uncertainty quantification
performance

In the real world, ML systems often encounter data ab-

sent from the training set, known as Out-of-Distribution

(OOD) data. Thus, it’s critical to evaluate how a system

performs under such circumstances. Particularly, since ma-

chine learning systems can fail silently, confidently mis-

classifying OOD examples [1], we aim to characterize the

behavior of various systems when confronted with OOD

data. This is achieved by testing gradual OODness via

augmentations, akin to Ovadia et al. [8], and by assessing

performance on completely unseen data, as per Lakshmi-

narayanan et al. [10]. This enables us to simulate common

scenarios (e.g., rotated signs or changing lighting) and iden-

tify changes in output distribution for OOD detection.

5.2.1 Complete out-of-distribution data

The Zenseact Open Dataset includes a class named

NotListed, representing traffic signs not included in any

other class, such as destination signs and rare special signs.

This class serves as an unseen set of mixed traffic signs for

OOD data testing. Since the models were not trained on

this OOD data, previously used metrics like accuracy, F1-

score, Brier score, and ECE aren’t applicable. Instead, we

use entropy as a metric to quantify if the models ’know what

they don’t know’. Higher entropy of the output distribution

suggests higher model uncertainty.

The results are illustrated via graphs showcasing the en-

tropy scores of different models. The effect of varying en-

semble sizes can be seen in Figure 3, whereas different

approaches are more easily compared in Figure 4. As ex-

pected, all models exhibit a drastic increase in entropy for

OOD data compared to in-distribution data. The single-

frame model shows limited adjustment to its uncertainty on

OOD data. On the contrary, single-frame DE5 and DE10

demonstrate a substantial entropy increase on OOD data,

which is consistent with previous research [9], [10]. Inter-

estingly, the increase from 5 to 10 ensemble members is

relatively minor, suggesting a saturation effect.

When evaluated over a sequence, the entropies of DEs

and DESOTs exhibit remarkable similarity, with a slight

advantage towards DEs. Surprisingly, the entropy distribu-

tion of single models, when aggregated over a sequence,

nearly mirrors that of single-frame ensembles. Further,

MC-dropout also escalates its entropy in a manner consis-

tent with DEs and DESOTs, contradicting the findings of

Lakshminarayanan et al. [10]. However, we must empha-

size that the adoption of MC-dropout results in degraded

predictive performance, as highlighted in our prior results.

Next, we used a simple thresholding strategy on the

output entropy to test each model’s OOD detection poten-

tial, rewarding methods that clearly separate in- and out-

of-distribution entropy distributions. We fitted a threshold

to each model using half of the available sequences to de-

tect in- or out-of-distribution samples. The other half of the

sequences dataset was then used to evaluate OOD detec-

tion performance for each model, with results presented in

Table 3, including the entropy threshold value and metrics

such as accuracy, precision, recall, and F1-score.

While the optimal threshold value varied widely between

models, the OOD detection performance of all models was

relatively high. In a standard setting, DESOT and DE per-
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Figure 3: Histogram of the entropy for OOD data (red) and in-distribution data (blue) for the ZOD sequence dataset. We run various

ensemble sizes M ∈ {1, 5, 10}, which are differentiated by color shade. Again, note that DE1 and DESOT1 are special cases that are

equivalent to a single model. The vertical dashed lines are the mean entropy for the model of the same color. Like standard deep ensembles,

DESOT increases its entropy on OOD data as additional ensemble members are added.

Figure 4: Histogram of the entropy for OOD data for the single-frame test dataset (left) and the sequences dataset (right). The +T suffix

denotes temperature scaling. Similar to deep ensembles, DESOT increases the entropy for OOD data, facilitating OOD detection.

form closely and clearly outperform the single model across

all metrics. The introduction of temperature scaling, typi-

cally used to enhance the calibration of classification mod-

els, alters this picture. It marginally impacts the ensembles

but dramatically improves the single model’s performance,

almost entirely closing the gap with the ensembles. Surpris-

ingly ensembles usually outdo temperature scaling in OOD

detection. As our focus is the comparison between DESOTs

and DEs, we do not further explore temperature scaling.

We also acknowledge insights from other research [29],

highlighting potential pitfalls of this simple experiment,

such as the risk of misidentifying ambiguous in-distribution

samples as OOD – a problem we also encountered. Despite

this, these tests offer a fundamental benchmark for more

sophisticated OOD detection strategies, thereby illustrating

the effectiveness of even such a straightforward method.

5.2.2 Shifted out-of-distribution data

We generate increasingly out-of-distribution data by esca-

lating the severity of augmentations, inspired by the works

of Hendrycks and Dietterich [30] and Ovadia et al. [8]. This

experiment involved six distinct augmentations, each with

a specific intensity range. As we increase the augmenta-

tion’s intensity, we anticipate a decrease in model accuracy.

Ideally, the models should adjust their certainty to corre-

spond with this accuracy drop, thereby maintaining calibra-

tion. Reliable model uncertainty estimates offer actionable

Table 3: Results from applying an entropy threshold for OOD

detection on the sequences dataset. Note that DEs and DESOTs

perform the best out of all models. When subject to temperature

scaling (rows with +T suffix), the difference in performance de-

creases.

Threshold Accuracy Precision Recall F1

SM 0.709 0.895 0.811 0.905 0.855

DESOT5 1.048 0.919 0.852 0.922 0.886
DE5 1.071 0.919 0.856 0.919 0.886
MC-dropout 1.428 0.910 0.845 0.900 0.872

SM + T 1.463 0.916 0.856 0.906 0.880

DESOT5 + T 1.143 0.919 0.850 0.928 0.887

DE5 + T 1.178 0.920 0.853 0.925 0.888
MC-dropout + T 1.610 0.914 0.842 0.921 0.880

insights to downstream users.

However, when augmentation intensities are high, cal-

ibration may not provide a meaningful measure of uncer-

tainty quantification. Since accurate sequence classifica-

tion often becomes challenging under intense augmenta-

tions, it’s more crucial to identify such samples as out-

of-distribution rather than obtaining a well-calibrated class

distribution, as the ground truth class loses its relevance.

Hence, we have also recorded the mean entropy across the

dataset for each model and augmentation severity.

Figure 5 illustrates how various augmentations affect ac-

curacy, Brier reliability [31], [32], and mean entropy of

models in sequence settings at different intensity levels.

Lower Brier reliability indicates better model calibration,

while higher mean entropy suggests increased model un-
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Figure 5: Uncertainty quantification performance for each model on augmented data of increasing intensity. The performance is measured

in accuracy, Brier reliability, and mean entropy. Tested on the sequences dataset. All approaches tend to increase their entropy as aug-

mentations become stronger. For some augmentations, the single model without temperature scaling and the MC-dropout increase entropy

much more or much less than the other approaches.

certainty. For brevity, we omit results for the single-frame

setting.

Observing the graphs, we notice a trend where a decrease

in model accuracy corresponds with an increase in the Brier

reliability score. This suggests that models become less

calibrated as the data turns more out-of-distribution. Fur-

thermore, entropy appears to rise with augmentation inten-

sity, inversely correlating with accuracy. The strange trends

in the rotation augmentation graphs are attributed to many

signs having less than 360◦ rotational symmetry.

Examining the results from augmented OOD data, it ap-

pears that all models show comparable robustness to the

augmentations in terms of predictive performance, deteri-

orating at similar rates for increased intensities. However,

there’s a greater variation in model calibration upon aug-

mentation. Single models struggle to maintain calibration at

higher augmentation intensities, particularly for rotations,

hue, motion blur, and Gaussian noise, a phenomenon also

observed by Ovadia et al. [8]. As in the earlier OOD study,

MC-dropout delivers convincing robustness, albeit at the

expense of predictive performance. It is important to note

that our study and that of Ovadia et al. [8] are performed on

distinct datasets – our more complex sequence data versus

their simpler MNIST dataset.

In general, DEs and DESOTs seem to offer similar cal-

ibration performances, measured in Brier reliability, for a

given augmentation intensity, outperforming single models.

Post temperature scaling, the disparity between the ensem-

bling methods and single models is not as pronounced. An

exception is Gaussian noise corruption, where single mod-

els distinctly fail to maintain calibration compared to others.

6. Conclusions
We have introduced Deep Ensembles Spread Over Time

(DESOT), a novel approach that distributes ensemble mem-

bers across a sequence, achieving the predictive power and

out-of-distribution robustness of running a full deep ensem-

ble at each time step, with the computational cost of a single

model. We extensively demonstrate the viability of this ap-

proach on the task of traffic sign classification, a highly rel-

evant task where misinterpretations can lead to catastrophic

outcomes and out-of-distribution signs are prevalent.

Looking ahead, we see exciting potential for DESOTs in

more complex scenarios, such as 3D object detection where

one could use a Kalman Filter for temporal fusion. We be-

lieve that our work opens up an avenue for new research on

high-performing resource-efficient models, by demonstrat-

ing that ensembles can indeed be spread over time.

Limitations: The proposed strategy, DESOT, is applica-

ble only for sequence processing problems. Although, in

theory, the computational resources should match those re-

quired for a single model, it’s practical to anticipate that

at least two members of the ensemble might need concur-

rent loading into memory. This scenario could potentially

double the memory requirements. Moreover, while the im-

provements of DESOT (and deep ensembles) over SM are

significant, we were surprised to see the large benefits of

SM over the single-frame-single-model. A similar obser-

vation can be made for the out-of-distribution detection,

where the effect of temperature scaling almost equals that

of DESOT or deep ensembles. Though, combining DESOT

or DEs with temperature scaling provides the best perfor-

mance. We also note that the model calibration is actually

better on a single frame than it is for multiple frames. One

potential future research direction is thus to investigate how

temperature scaling is best applied to the image classifica-

tion on sequences problem.
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