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Abstract

Intelligent sampling from simulation becomes crucial
due to storage and hardware constraints. This research fo-
cuses on developing an intelligent acquisition strategy for
synthetic data and evaluates multiple approaches to address
the limitations of existing domain adaptation methods. Se-
lecting suitable synthetic data for real-world model train-
ing presents challenges, as accurately representing the real
world remains elusive. We tackle the task of adapting from
synthetic to real-world data through unsupervised domain
adaptation, a challenging setting for perception systems.
The performance of our acquisition function is measured
by its facilitation of this adaptation.

We showcase different strategies, to assign value to syn-
thetic images. Acquisition functions either operate based
on synthetic data alone or take the given real world target
domain into account, to assign a value to synthetic images.
Leveraging assumptions from semi-supervised learning, we
identify challenging real-world images and find their coun-
terparts in the synthetic world. Evaluation is conducted us-
ing the GTA-5 dataset as the representative synthetic world
and the Cityscapes and ACDC dataset as the target do-
main. State-of-the-art unsupervised domain adaptation ap-
proaches are employed to assess the effectiveness of our ac-
quisition function.

By advancing the utilization of synthetic data in training
perception systems, this research contributes to improved
real-world performance. Our findings demonstrate the po-
tential of intelligent acquisition strategies for enhancing the
adaptation from synthetic to real-world domains.

1. Introduction
Synthetic data represents a promising building block for

training perception systems. Especially for tasks like se-

mantic segmentation, which require about 90 minutes per

frame to annotate [2], simulation is a crucial alternative for

automatically creating labeled data. Hence, the creation of

simulation engines has been the focus of the computer vi-

Figure 1. A system for creating a synthetic dataset. The simula-

tion creates images with constant large variation. The images are

written into a buffer. The acquisition function selects the synthetic

images relevant for the real world target domain. As a result a

smaller subset of relevant synthetic images is obtained.

sion community. However, the number of possible scenar-

ios and configurations such simulators can produce is still

uncountably large. Due to the constraints in storage space

and training hardware, sampling from the simulation in an

intelligent way is crucial. We do not have enough memory

to generate all necessary cases and even if we had, training

on such a dataset becomes infeasible, since convergence is

slow since, due to redundancy, important data points occur

rarely during training. Some parts of synthetic data could

even introduce a bias that negatively affects real-world per-

formance.

In this work, we introduce the research direction of find-

ing an intelligent acquisition strategy for synthetic data and

showcase the performance of different approaches. Such

acquisition functions face several challenges. Finding an

objective to select synthetic data suitable to train models

for the real world is not obvious. While realism and varia-

tion are two crucial objectives, identifying an objective that

accurately represents the real world can be elusive. The two

most commonly used Synthetic datasets, the GTA5 dataset

[18] and the SYNTHIA dataset [19], e.g., selected their

samples based on random or uniform sampling. While these

strategies provide a wide range of scenes and variations,

they may not consider important factors such as the distribu-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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tion of challenging or informative data points. Additionally,

random or uniform sampling might not effectively capture

the specific characteristics or challenges of the real-world

target domain. Therefore, there is a need for intelligent ac-

quisition strategies.

In this work, we address the limitations of such exist-

ing acquisitions. The objective is to score the value of a

simulated frame by estimating its usefulness in training per-

ception models to perform well on the real-world target do-

main. More specifically, we focus on the challenging set-

ting of adapting from the created synthetic dataset world to

the real-world use case via unsupervised domain adaptation.

By integrating unsupervised domain adaptation, we aim to

leverage the power of adaptation techniques and minimize

the need for simulation of aspects that can be effectively

covered by domain adaptation. The performance of our ac-

quisition function is hence defined by how well it facilitates

the adaption. We seek to develop an intelligent acquisition

strategy that selects synthetic data points based on their po-

tential to enhance adaptation.

We showcase the performance of several strategies. On

the one hand, we try to sample based on objectives that

are independent of the real-world target domain. We uti-

lize class uniform sampling and active learning acquisition

functions like entropy and coreset to assign a value to the

synthetic images. On the other hand, we take the assump-

tion that underlies many semi-supervised learning methods:

“Unsupervised learning performs best if correspondences

between the labeled and unlabeled sets exist”. We hence

identify challenging images in the real world and then try

to find their counterparts in the synthetic world. For re-

peatability, we choose the GTA-5 dataset to represent the

synthetic world we can sample from. The Cityscapes and

ACDC datasets represent our target domain. This setting

simulates a scenario that is demonstrated in figure 1, where

we assume that a simulation engine (e.g., CARLA [4]) pro-

duces simulation data constantly and writes it to a buffer.

We aim to acquire the optimal subset of synthetic images

from this buffer.

The paper is structured as follows: In section 2, we give

a brief insight into the relevant state of the art. Then, in

section 3, we describe our methods, which are applied to

the problem in question. In section 4, we present our setup

and experimental obtained results. Finally, in section 5, we

summarize the paper and present our future work.

2. Related Work

2.1. Simulation engines and acquisition strategies

There are several existing synthetic simulation engines

and acquisition strategies that have been used to create syn-

thetic datasets. These engines play a crucial role in generat-

ing diverse and realistic synthetic data for various applica-

tions. Here, we discuss some notable examples:

GTA5 [18] dataset was created by extracting frames from

the game Grand Theft Auto V (GTA5) and annotating them

with pixel-accurate semantic labels. Frames were recorded

during gameplay using the tool RenderDoc. Synthetic

frames were sampled by taking every 40th frame to cap-

ture diverse scenes within the game world. The dataset’s

main purpose is to provide a large-scale, pixel-level an-

notated dataset for training semantic segmentation models.

The dataset leverages the content of GTA5 to supplement

real-world images and enhance the accuracy of semantic

segmentation models.

SYNTHIA [19] dataset provides diverse synthetic frames

with semantic segmentation annotations. The dataset was

generated using a virtual city created with the Unity devel-

opment platform. The synthetic frames were sampled from

multiple camera viewpoints, incorporating dynamic objects,

illumination conditions, and textures to improve visual vari-

ability. By combining SYNTHIA with real-world data, the

dataset aims to improve the performance of the segmenta-

tion on real world data, just as the GTA5 dataset.

SHIFT [26] dataset addresses domain shifts in au-

tonomous driving. It captures various real-world conditions

using CARLA [4] as the simulation engine. The dataset

provides annotations for semantic segmentation and other

perception tasks, enabling research in adaptation strategies

and robustness assessment, specifically in autonomous driv-

ing scenarios. The dataset consists of 2,500,000 annotated

frames with fixed and continuously shifting conditions, al-

lowing the development and evaluation of semantic seg-

mentation models under diverse domain shifts.

Acquisition strategies: Synthia, GTA5, and SHIFT

datasets were sampled in a random or uniform way,

e.g. GTA5 dataset chose every 40th frame. All of them tried

to capture a wide variety of weather, viewpoint, and light-

ing conditions. However, they did not did not choose frames

w.r.t. epistemic uncertainties of existing network architec-

tures and did not select frames with regard to the real-world

target domain. There are some approaches that present so-

lutions for acquiring corner case data in the synthetic world.

For instance, the approach by Kowol et al. [11] fo-

cuses on enriching training data for AI algorithms in au-

tomated driving by generating safety-critical driving situ-

ations called “corner cases”. These were simulated and

recorded using CARLA [4]. A test rig is employed, where

one operator observes the original virtual image while an-

other operator monitors the output of a real-time semantic

segmentation network. The second operator acts as a safety
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driver, intervening when the network’s assessment is con-

sidered unsafe. The objective is to generate corner cases

that challenge the network’s perception and enhance its per-

formance in safety-critical scenarios. CARLA serves as the

simulation engine to create realistic driving scenarios and

gather data for training and testing the AI algorithms.

The approach of Möller et al. [15] proposes a novel ap-

proach to generate out-of-distribution (OOD) datasets.The

generated OOD samples are based on in-distribution

datasets using methods like Gaussian Hyperspheric Offset

and Soft Brownian Offset. The purpose is to enhance OOD

detection and validate the generalization performance of

neural networks. The use case includes applications such as

object detection, trajectory prediction, and automated driv-

ing. However, they do not use simulation engines but mod-

els like variational autoencoders.

All of the presented acquisition strategies have in com-

mon that they do not explicitly take into account the actual

real world target domain for evaluating a frame. There are,

however, some “sampling” strategies that have been devel-

oped for other tasks that do.

Strategies for transfer learning: Sun et al. [25] propose

a transfer learning method for semantic segmentation that is

relevant to our work. This method uses labels from both real

and synthetic data. It focuses on adaptively selecting simi-

lar synthetic regions to bridge the gap between insufficient

real data and abundant synthetic data. Hierarchical weight-

ing networks are introduced to score similarity at different

levels (pixel, region, and image) and guide the joint learn-

ing process. They showcase improvements when training a

segmentation model together on the real and the synthetic

world.

Kim et al. [10] focus on semi-supervised domain adapta-

tion, where a small fraction of labeled data in the real world

target domain is given. They propose the Source Domain

Subset Sampling (SDSS) method, which samples data from

the synthetic source domain. It involves pixel-level sam-

pling, where a model, pretrained on a small target domain

subset, biases the source domain data towards the target do-

main at the pixel level by removing pixels that do not match

the ground truth labels. Additionally, image-level sampling

selects a subset of the source domain data based on class

balance scoring, prioritizing images with balanced class dis-

tributions and accurate samples. By combining these sam-

pling techniques, SDSS extracts a subset of relevant syn-

thetic source domain samples to improve the adaptation pro-

cess in scenarios with limited labeled target domain data.

2.2. Unsupervised domain adaptation (UDA)

Many synthetic datasets are created to be used to en-

hance models on real world data. UDA from the synthetic

to the real world even allows training without any manual

annotation. Since we present strategies to build synthetic

datasets for adapting to the specific real world, understating

the current principles of UDA are important.

UDA in semantic segmentation is a current field of re-

search that aims to develop methods for adapting DNNs

from an annotated source domain [21] to an unlabeled tar-

get domain without human labeling effort. As shown in the

survey [21], this field has received great attention over re-

cent years. This is especially true for the synthetic to real

world domain change. Generally speaking, UDA methods

aim to align the distributions in the input (e.g., Hoffman et

al.[7], Yunsheng et al.[12], Termöhlen et al.[27] and Yang et

al.[30]), the feature (e.g., Niemeijer et al.[17, 16], Hoffman

et al.[8] and Marsden et al.[13]), or the output space (e.g.,

Vu et al.[29], Tsai et al.[28] and Zheng et al.[31]) of a neural

network. The recent state of the art is dominated by trans-

former based architectures that utilize adaptation techniques

in the feature and output space as, for instance, presented in

[9]. In our experiments, we make use of such architectures.

3. Methods

In this section, we develop an acquisition function to

intelligently select important images from the buffer filled

constantly by the simulation engine with synthetic images

of high variety. With a specified budget B of synthetic im-

ages to be acquired, the function aims to improve the perfor-

mance of the semantic segmentation network on the target

domain in a scenario where methods of unsupervised do-

main adaptation (UDA)–see section 2–are utilized during

training. All acquisition functions share the similar generic

structure shown in algorithm 1. Each sample from the cur-

rently buffered synthetic data receives a score. The score is

to reflect the value of the corresponding synthetic image for

improving the segmentation performance on the real world

target domain. In the end, we select the B images with the

largest score from the synthetic world, irrespective of the

approach used.

We propose two types of acquisition functions, which

can be distinguished by the computation of the scores.

• Correspondence-based acquisition functions leverage

synthetic and real-world data to select synthetic im-

ages representing meaningful correspondences to the

real world target domain. These acquisition functions

select synthetic samples that align well with clusters or

patterns in the real-world domain.

• Simulation-only acquisition functions focus solely on

information and statistics from the synthetic world.

The detailed computation of scores in each approach

is provided in subsections 3.1 and 3.2.
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Figure 2. We begin with an initial synthetic training set. Unsupervised Domain Adaptation (UDA) is applied to adapt the model to

the real-world target domain. Priority scores are computed for real-world images using the trained model, emphasizing those where the

segmentation performs poorly. Synthetic images with the highest correspondence to the prioritized real-world images are selected. The

chosen synthetic images are incorporated into the training dataset, enhancing its diversity and improving performance.

Algorithm 1: Acquisition function

Data: synthetic data, real world data, budget

Result: selected data

1 correspondence matrix =

compute correspondence(synthetic data,

real world data);

2 sorted real world data =

sort by priority(real world data);

3 selected data = [];

4 while len(selected data) <budget do
5 best candidate = None;

6 best score = 0;

7 foreach synthetic sample in synthetic data do
8 if synthetic sample not in selected data then
9 score =

compute score(synthetic sample,

sorted real world data,

correspondence matrix);

10 if score > best score then
11 best score = score;

12 best candidate = synthetic sample;

13 end
14 end
15 end
16 selected data.append(best candidate);

17 end

3.1. Simulation-only acquisition functions

Class uniform sampling: This acquisition function aims

to achieve a balanced synthetic set w.r.t. the class statistics

occurring in the segmentation labels. To keep track of how

often a certain class appears in our already chosen data, we

build a histogram that is incremented for a certain class if

it is present in the segmentation label of the chosen image.

During the class uniform sampling, we start with a random

selection of an image. After updating the histogram, we

compute the class with the lowest value in the histogram

and choose an image with a label map that contains that

class. The ‘compute score’ step in algorithm 1 is maximized

if the most seldom class in the histogram is present in the

synthetic image. If many images fulfill that requirement, a

random selection is applied amongst them.

Entropy [23]: Entropy acquisition is based on ideas pre-

sented in active learning literature. We compute the seman-

tic segmentation for a given simulated image and the cor-

responding pixel-wise entropy over the a-posteriori class

distributions, representing the value of ‘compute score’ in

algorithm 1. This represents the epistemic uncertainty of

the model. We chose the images with the largest epistemic

uncertainty until B is full.

CoreSet [22]: The Coreset approach selects a batch of

samples that cover the whole data distribution of the simu-

lated world. It formulates this batch selection as a robust k-

center selection problem and hence, tackles the redundancy

in the simulated world. The value of ‘compute score’ in

algorithm 1 represents how well the distribution of all syn-

thetic images is represented by the acquired batch when this

image was added.

3.2. Correspondence-based acquisition functions

According to the clustering assumption of semi-

supervised learning (SSL), if two points belong to the same

cluster, then their outputs are likely to be close and can

be connected by a short curve [1, 14]. In other words, if

the synthetic samples are aligned with clusters of the unla-

beled real-world samples, it follows the cluster assumption

4058



of semi-supervised learning. In such a case, UDA methods,

which are a variant of semi-supervised learning (the target

domain is the unlabeled data), should yield good perfor-

mance. Therefore, to maximize semi-supervised learning

performance, newly selected synthetic samples must cover

the unlabeled real-world clusters, which are not covered by

synthetic samples yet.

Figure 2 shows how we want to take advantage of the

cluster assumption. The image represents the general feed-

back loop for selection. We start with a small initial syn-

thetic set and train a DNN for segmentation while using

UDA to the real-world target domain. The UDA method

aligns the distributions of the source and target domain in

the feature space of the DNN.

Selecting the real world images: Given the clustering
assumption we now need to find the best correspondences

between target and source domain. Therefore, we first an-

alyze three ways of selecting real-world images that serve

as targets for correspondence from the synthetic world. In

algorithm 1 this is the ’sort by priority’ function:

• Global (G): Choose the synthetic images with the

largest correspondence with any real world image.

• Arbitrary (Arb): Choose the synthetic image with the

largest correspondence with a random subset of real

world images.

• Corner Case (CC): Choose images with largest corre-

spondence with a set of real world corner case images.

To determine the corner case score, we utilize the en-

tropy of the prediction on the real world images.

We assume a given similarity or distance matrix that de-

scribes the correspondence of each real-world image with

each synthetic image: Cji=correspondence(sj , ri), Where

ri∈ real world data and sj ∈ synthetic data. How we com-

pute such a correspondence matrix is shown later in the sec-

tion. If the correspondence is a distance, we compute the

set of synthetic images that minimize the sum of all cor-

respondence values with the real world target images, and

vice-versa we maximize the sum of the correspondences if

the correspondence represents similarity:

compute score(sj , ri, Cji) = min
sj

Ci,j (1)

compute score(sj , ri, Cji) = max
sj

Ci,j (2)

The value computed in ‘compute score’ in algorithm 1,

hence is the minimum distance or the maximum similar-

ity. This represents a greedy approximation to minimizing

or maximizing the sum of correspondences.

Finding a good measure for correspondence To com-

pute the correspondence matrix, we either need a measure

of similarity or dissimilarity (see equations (1) and (2)) that

captures the relevant features of the real and synthetic im-

ages for semi-supervised learning. For this, we take our

current trained model and compute the feature space repre-

sentation of the real and synthetic images. A synthetic im-

age “corresponds” to a real-world image if the embedding

is similar or if the feature space distance is small.

We use cosine similarity as a measure of similarity. A

global average pooling over the spatial dimensions reduces

the feature space to one vector. As a measure of distance,

we use the Hausdorff [5] distance or the Euclidean distance

between the Gram matrices [6] of the feature space repre-

sentations of real world or synthetic images. An essential

aspect for both is the encoder that is being used. In our

case, we use the feature space of the trained segmentation

network in most cases. For some experiments, we also em-

ployed a VGG-19 [24] ImageNet [3] encoder.

Deciding on final methods: Finally, we develop and ap-

ply different methods from the building blocks we de-

scribed:

• “CC min/max sim”: Indicates the minimization or

maximization of the cosine similarity with real world

corner case images

• “max sim I-NET”: Uses the the VGG-19 Ima-

geNet encoder to compute feature space representa-

tion/similarities.

• “Arb max sim”: Instead of maximizing the similarity

with corner case images, a random corner case score is

assigned to each real world image.

• “G max sim”: The synthetic images that represent

the pairs in the correspondence matrix with the largest

similarity

• “Gram Matrix”/“Hausdorf”: The distance of Gram

matrices or the symmetric Hausdorf distance is used

• “uni“: This prefix implies that the class uniform sam-

pling is introduced as a requirement

In some cases, we add class uniformity, as described

above, as an additional optimization criterion. In the end,

the selection of synthetic images is added to the synthetic

training set, and the model in retrained, starting the cycle

again.

4. Experiments
This section briefly describes our experimental setup and

compares the proposed methods introduced in section 3.
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4.1. Setup

During our experiments, we choose the GTA5 dataset to

represent our synthetic world. It consists of 24966 synthetic

frames (source domain). In each acquisition step, we sam-

ple a budget B = 250 frames, which represent roughly 1%

of the data, five times, which accumulates up to 5% of the

whole dataset. This setup would correspond to a system

that constantly creates synthetic data with many variations

and saves the resulting images into a buffer. Our acquisi-

tion functions would select from such a buffer and add the

resulting frames to the final set.

We employ the state-of-the-art UDA approach “DA-

Former” to adapt to the real world. The model is trained for

20,000 iterations with a batch size of two images. The real-

world target domain is represented by the Cityscapes [2]

and ACDC [20] dataset. The Cityscapes dataset represents

a very “clean” distribution with limited variations w.r.t. il-

lumination, weather, and season conditions. The ACDC

dataset represents a distribution with large variability w.r.t.

weather (e.g., fog, rain, snow) and illumination (day, night)

conditions. Experiments on multiple target domains are im-

portant since different acquisition functions might work in

different scenarios.

As introduced in section 3, we employ different acquisi-

tion functions for the synthetic world. The Entropy, Core-

set and, Class uniform acquisitions only depend on the syn-

thetic world, while the selection of synthetic data based on

real world data takes the target domain into account. For the

latter, we evaluate the variation presented in section 3. Each

variation function is evaluated by the maximum Mean Inter-

section over Union (MIoU) on the Cityscapes and ACDC

dataset and the area under the MIoU curve (AUC [14]) that

results from the acquisition steps.

4.2. Quantitative Evaluation

In our quantitative evaluation, we assessed the perfor-

mance of different acquisition functions for the synthetic

world as introduced in section 3. We analyze the given ac-

quisition functions on the two domain changes (GTA5 to

Cityscapes and GTA5 to ACDC).

GTA5 to Cityscapes Shift: Table 1 presents these values

to evaluate the segmentation trained on the GTA5 dataset

and adapted to the Cityscapes dataset. Most of the perfor-

mance can be achieved with a small amount of synthetic

data. We achieve a maxmIoU = 66.17% with 5% of

synthetic data only, which is 95.6% of the performance

achieved with 100% of the data (maxmIoU = 67.8%).

This indicates that the synthetic world contains a lot of

redundancy. Except for Entropy, Coreset, and Gram Ma-

trix, all acquisition functions performed better than ran-

dom sampling. Class uniform sampling proved crucial in

Acq Function
Metric → max AUC

- Random 64.53 2.36

S Entropy on GTA5 62.01 2.38

S Coreset on GTA5 62.93 2.39

S+R Hausdorf 62.26 2.37

S+R Gram Matrix 61.94 2.33

S+R CC min sim 65.78 2.55

S+R CC max sim 63.57 2.47

S uni sampling 66.17 2.56

S+R uni CC max sim 65.87 2.55

S+R uni CC max sim I-NET 65.47 2.54

S+R uni CC min sim 65.55 2.53

S+R uni G max sim 65.55 2.55

S+R uni Arb max sim 65.35 2.54

– 100% data 67.8 –
Table 1. Domain change from GTA5 to Cityscapes datasets. Max-

imum mean Intersection over Union (MIoU) in % and the area

under the curve after sampling from 1%-5% of the data.

Acq Function
Metric → max AUC

- Random 46.91 1.82

S+R CC min sim 46.68 1.8

S+R CC max sim 47.83 1.84

S uni sampling 47.5 1.88

S+R uni CC max sim 49.3 1.98

S+R uni G max sim 48.89 1.91

– 100% data 46.37 –
Table 2. the GTA5 to ACDC domain change. Maximum mean

Intersection over Union (MIoU) in % and the area under the curve

after sampling from 1%-5% of the data.

the GTA5 to Cityscapes domain change, as having samples

from all classes was particularly important for unsupervised

domain adaptation (UDA). Notably, the class uniform sam-

pling does not utilize information from the real world tar-

get domain but still achieves the best results. However, the

Entropy and Coreset acquisition functions that utilize un-

certainty or distribution features from the synthetic domain

perform worse than functions utilizing the information from

the real world domain. W.r.t. the latter class of acquisi-

tion functions the Hausdorff and Gram matrix distance as a

measure of correspondence performed worse than utilizing

the cosine similarity. Interestingly, similarity minimization

works better than maximization on GTA5 to Cityscapes do-

main change if corner case images are chosen for comput-

ing correspondences, and no class uniformity is enforced.

Introducing the class uniformity requirement does help all

acquisition strategies to be on par with the class uniform

sampling, which is the best strategy for this domain change.

Additionally, to class uniformity introducing a priority for

real world corner case images during the computation of
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correspondences does not improve the results. Finally, uti-

lizing the VGG-19 ImageNet encoder does not results in a

more meaningful correspondence score as the results do not

improve (e.g. ’uni CC max sim I-NET’ compared to uni

’uni CC max sim’).

GTA5 to ACDC Shift: Table 2 presents the GTA5 to

ACDC use case results. For this domain shift using 100%

of the data seems to decrease performance compared to

all acquisition functions, including the random sampling,

even though only 1%-5% of the data is sampled. That even

indicates that some images may introduce a bias into the

model that makes unsupervised learning on the real world

more difficult. On the GTA5 to ACDC domain change, the

uniform sampling did not give the best performance but

still offered an improvement in combination with similar-

ity maximization. Finally, we can observe that, other than

in the GTA5 to Cityscapes shift, assigning priority for real

world corner case images during correspondence computa-

tion (’uni CC max sim’) is introducing a benefit in the GTA5

to ACDC domain change (better than ’uni CC max sim’).

Comparison: For both domain shifts, very little data

achieves similar or better performance on the respective real

world target domain. These results highlight the need for

more effective acquisition strategies, saving memory and

training time, and avoiding a bias in the data that introduces

a worse performance despite having more data. The latter

problem, which is present in the GTA5 to ACDC shift, prob-

ably is due to the fact that the dataset distributions do not

overlap as well as the GTA5 and Cityscapes datasets (see

figure 5). We conjecture that either ’wrong’ information is

introduced (image information represents a different label)

or that the imbalance of little corresponding relevant and

lots of non-corresponding irrelevant data causes the model

to assign less weight to the former. We further conjecture

that this is part of the reason why similarity maximization

combined with class uniformity has the advantage in this

domain shift, given that it picks only corresponding infor-

mation between the domains.

4.3. Qualitative evaluation

Figure 5 displays the TSNE representations of the syn-

thetic and the real world images in the feature space of

VGG-19 encoders and the trained segmentation net. The

TSNE plots are generated for both the GTA5 to Cityscapes

domain change and the GTA5 to ACDC domain change.

We can observe that the number of correspondences, i.e.,

yellow and purple data points close to each other, is sparse

in all domain changes and for encoders. This effect even

increases in the case of the GTA5 to ACDC domain change.

This can be interpreted in different ways. For one, it could

be that our encoders do not capture the features important

Figure 3. Class-wise IOU over the acquisition steps. The bottom

bar is the first iteration the top bar the last. The Cityscapes dataset

is the target domain. Class uniform sampling used.

Figure 4. Class wise IOU over the acquisition steps. The bottom

bar is the first iteration the top bar the last ACDC is the target

domain: Class uniform sampling + similarity maximization used.

for similarity well. On the other hand, it could be a hint that

the GTA5 dataset is not ideal for capturing the Cityscapes or

ACDC domain. There appears to be more overlap between

the Cityscapes and the GTA-5 than between the GTA5 and

the ACDC datasets, which could further explain the lower

absolute MIoU values obtained in the latter domain change.

Given that most of the samples do not overlap between the

two domains, this could also be a reason why sampling

100% of the GTA5 data introduces a bias and works worse

than sampling 1-5%.

When comparing the ImageNet VGG-19 encoder with

the Segmentation network encoder based on their feature

representations, the overlap seems to be slightly larger when
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Figure 5. TSNE plots of feature representations: GTA5 to Cityscapes domain change based on Segmentation network (left); GTA5

to Cityscapes domain change based on VGG-19 Image-Net encoder (middle); GTA5 to ACDC domain change based on Segmentation

network (right); Feature represenstations of GTA5 are purple and both Cityscapes and ACDC representations are yellow

using the VGG19 encoder. Generally speaking, using the

feature representations of the segmentation network en-

coder makes sense since the displayed distribution is the

same that the classification is performed on. Hence sim-

ilarity in this feature space indicates the similarity of two

images w.r.t. the segmentation task.

4.4. Limitations and discussion

The difference in the performance of the studied acqui-

sition functions depending on the domain change has to be

analyzed more deeply. Analyzing factors contributing to

the varying performance could give us a direction to im-

prove the current functions. We conjecture that enhancing

the similarity function, possibly by utilizing a different fea-

ture space embedding, could be crucial for better results.

Moreover, investigating how particular images or subsets

create biases that lead to sub-optimal performance on the

target domain is essential to eliminate such issues. As fig-

ures 3 and 4 show, even using the current best acquisition

functions in the respective domain shift lead to a fluctuation

in the class wise IoU values, showing that not all informa-

tion added over the iterations is having a positive influence.

Given the different behaviors of acquisition functions in dif-

ferent domain shifts, the real-world applicability in improv-

ing actual perception systems still requires more validation

across various real-world scenarios.

5. Conclusion
In this work, we addressed and, to our knowledge, in-

troduced the research question of how to construct a syn-

thetic dataset that facilitates unsupervised adaptation to a

specific target domain. Our experiments demonstrated that

by sampling a small portion of the synthetic data (1-5%),

a performance quite close to or better than achieved with

the entire dataset can be obtained. Moreover, we discovered

that training on the complete synthetic dataset can introduce

a bias and degrade performance when the synthetic domain

poorly represents the real-world domain. Through an exten-

sive study of different acquisition functions, we identified

their benefits in enhancing adaptation. The findings pre-

sented in this paper can be leveraged to create a synthetic

dataset tailored to specific real-world target domains.

We propose utilizing the CARLA simulation engine to

generate a stream of data and iteratively select the most rel-

evant samples, as demonstrated in this work. The insights

gained from this research contribute to advancing the field

of synthetic data utilization and have implications for im-

proving perception systems in real-world applications.

A deeper investigation of the acquisition functions’ un-

derlying mechanisms is warranted in future work to gain

a more comprehensive understanding of their effectiveness

across diverse real-world scenarios. Further refinement

and optimization of the similarity function, potentially by

exploring alternative feature space embeddings, could en-

hance the acquisition function’s performance. Additionally,

conducting large-scale validation experiments on various

real-world camera systems would validate the applicability

and robustness of the proposed approach, thereby paving

the way for its wider adoption in practical settings.
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