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Abstract

Prior work in 3D object detection evaluates models us-
ing offline metrics like average precision since closed-loop
online evaluation on the downstream driving task is costly.
However, it is unclear how indicative offline results are of
driving performance. In this work, we perform the first em-
pirical evaluation measuring how predictive different detec-
tion metrics are of driving performance when detectors are
integrated into a full self-driving stack. We conduct exten-
sive experiments on urban driving in the CARLA simulator
using 16 object detection models. We find that the nuScenes
Detection Score has a higher correlation to driving perfor-
mance than the widely used average precision metric. In
addition, our results call for caution on the exclusive re-
liance on the emerging class of ‘planner-centric’ metrics.

1. Introduction
Ever since the first object detection benchmark chal-

lenges like the PASCAL VOC [12] became popular, mean

average precision (mAP) has been used as the standard met-

ric for evaluating the performance of detection models. Re-

cent works [19, 9, 17] have criticized mAP for its task-

agnostic design as the metric assigns equal importance to all

objects, which does not reflect real-world priorities for self-

driving. Therefore, different task-specific modifications of

mAP [9, 3, 13, 32] and planner-centric approaches to de-

tection evaluation [19, 17, 21] have been proposed. These

offline metrics are useful because they are quick, cheap, and

safe to evaluate compared to online tests. However, relying

solely on offline evaluation is only useful if it strongly cor-

relates with the actual driving performance. With the influx

of new detection metrics, it has become unclear which met-

ric researchers should rely on and how the metrics compare.

In this work1, we provide the first empirical evidence of

how predictive detection metrics are of downstream driv-

ing performance. We train 16 modern 3D detectors, inte-

grate them into a self-driving pipeline, and evaluate their

performance in the CARLA simulator [11]. This allows us

to study how strongly these metrics correlate with driving

1To read the full-length report, please visit: https://t.ly/CsIrt.

Figure 1. Summary of findings. nuScenes Detection Score is

most predictive of driving performance in an extensive empirical

study on the CARLA simulator.

outcomes. We find that even though mAP is highly cor-

related with driving performance, the nuScenes Detection

Score [3], a task-specific variation, is even more predic-

tive. Furthermore, the planner-centric metrics we exam-

ine, which measure the impact of inaccurate detections on

planner outcomes, are significantly less indicative of driving

performance. Our key findings are summarized in Fig. 1.

2. Related Work

Task-specific Detection Metrics. To track algorithmic ad-

vancements, researchers compare object detection models

on dataset-based competitions [3, 5, 32, 16, 13] using the

mAP metric [24], which does not take the egocentric na-

ture and task-specific characteristics of driving into account.

Therefore, prior work has proposed task-specific object de-

tection metrics for self-driving [19, 32, 21, 2, 17]. One

approach is taking mAP and adapting it to self-driving.

mAPH, the principal metric of the Waymo challenge [32]

and the Average Orientation Similarity (AOS) [13] are both

designed to account for the importance of correct heading

estimation for behaviour planning and weigh detections ac-

cordingly. Similarly, Deng et al. [9] suggest evaluating de-

tections from an egocentric perspective and introduce the

Support Distance Error (SDE).

Another approach focuses on evaluating the effects of

perception errors on the planning module. The planning-

KL-divergence (PKL) [23] measures the KL-divergences

between distributions of waypoint locations conditioned ei-

ther on noisy perception or ground truth object annotations.

Li et al. [21] emphasize the importance of understand-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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ing the internal reasoning of a planner, as some detection

failures do not cause immediate behaviour change. How-

ever, their approach focuses on model-based planners and

does not apply to neural architectures. Ivanovic and Pavone

[17] describe an approach where local gradients of a hand-

crafted planning function are used to assign object weights.

None of these prior works have provided quantitative re-

sults demonstrating that the metric they propose is more

closely related to measures of driving performance than the

standard mAP metric. We seek to address this gap in the lit-

erature by comparing offline evaluations with online tests.

Online and Offline Evaluation. Deep neural networks for

self-driving applications are commonly first tested offline

with the use of a pre-recorded dataset [26]. Offline results

are used as proxy performance indicators for online evalua-

tions, which are more expensive to conduct. It is often un-

clear how offline measurements relate to system-level func-

tionality in embedded systems. Haq et al. [14] evaluate

the correlations between online and offline performance of a

camera-based end-to-end lane-keeping model. The authors

conclude that offline evaluations cannot be used for safety

testing in the context of steering prediction. However, a re-

cent replication of this study with improved methodology

obtains a tighter relationship between online and offline re-

sults [31]. In similar experiments, prior work has found

little to no correlation when comparing online driving per-

formance to offline prediction accuracy for agents in the

CARLA [7] and nuPlan [8] simulators.

Contrary to these efforts, we do not focus on steering

prediction but aim to evaluate the effects of detection errors

on driving outcomes. We aim to provide the first quantita-

tive evidence comparing detection metrics for self-driving

to help the community choose relevant metrics.

3. Modular Pipeline for Autonomous Driving

In this section, we present our driving agent. We intro-

duce the problem setting and describe the modular structure

of our agent. Next, we discuss the modules for object de-

tection, tracking, and motion planning.

Task and Setup. We address the task of urban driving with

the objective of navigating safely along a predetermined

route while adhering to traffic regulations. The agent pre-

dicts steering and throttle from sensor inputs. While all traf-

fic participants need to be recognized via a LiDAR-based

object detector, our agent has privileged access to simulator

information concerning the ego lane and traffic light states.

Pipeline. At every timestep, the point cloud of a 360◦ Li-

DAR sensor is processed by a 3D object detector which

produces a set of oriented bounding box predictions of traf-

fic participants in the scene. Detections are tracked over

time to yield consistent predictions and speed estimates for

detected objects. Given its high-level navigation goal, the

planner then uses these predictions to decide on an appro-

priate set of target waypoints that encode the planned trajec-

tory. A PID controller then processes the waypoints to com-

pute appropriate lateral and longitudinal controls. To study

the effects of the performance of specific object detectors on

the downstream task of driving, all pipeline elements except

the detector are constant across experiments.

Detection and Tracking. For our experiments, we consider

eight different LiDAR-based 3D object detection architec-

tures. To cover a breadth of architectures in our analysis,

we include voxel-based detectors [10, 33], a pillar-based

detector [27], and approaches that also incorporate point-

based information from the point cloud [20, 28, 29, 28, 30].

This array of detection architectures further includes a mix

of anchor-based and anchor-free detection heads as well as

single-stage and two-stage approaches. In our setup, detec-

tions are associated across frames using Hungarian match-

ing [18]. The speed of tracked objects is approximated via

a simple heuristic: per object track, the bounding box cen-

ters of the last two timesteps are projected to the ground

plane. The L2 norm between these points is divided by the

timestep length to approximate speed.

Planning. For our experiments, we choose PlanT [25] for

motion planning. PlanT is a transformer-based planner with

state-of-the-art performance in the CARLA simulator.

4. Metrics
This section introduces the metrics we use in our ex-

periments: the online metrics that quantify driving perfor-

mance, the mAP metric, its task-specific variations, and fi-

nally two planner-centric metrics.

Online Metrics. Online evaluations provide the most reli-

able estimates of system-level performance. In this work,

we use the CARLA Driving Score, the official metric for

the CARLA leaderboard [1], and the number of collisions.

Driving Score. The CARLA Driving Score (DS) is a com-

posite metric combining route completion with the infrac-

tion score. The route completion (RC) describes the per-

centage of the route the agent completed and the infraction

score (IS) measures collisions or violations of traffic rules.

Collision Count. As a second metric, we count the total

number of collisions per evaluation (#Col.) in which the

ego vehicle is involved. This metric exclusively focuses on

safety since it does not depend on the route completion.

Average Precision based Metrics. Average precision is the

standard metric to measure performance on detection tasks.

It is defined as the area under the precision-recall curve.

Following the KITTI protocol [13], we use an intersection

over union (IoU) threshold of 70% as the true positive crite-

rion and compute the integral using a 40-point interpolation

with equidistant recall values.

Average Orientation Similarity. As the original mAP metric
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does not account for a notion of heading, we have included

the average orientation similarity metric (AOS) [13] in our

analysis. AOS modifies AP by weighting true positive de-

tections according to the accuracy of their heading predic-

tions. The heading angles of vehicles in the scene provide

essential information for motion forecasting and behavior

planning [13, 3, 32].

Inverse Distance weighted AP. Another approach for mod-

ifying AP is weighting detections by their inverse distance

to the ego vehicle [9]. Closer objects are inherently more

safety-critical than those far away. Thus, one should expect

the weighting of AP by the inverse distance (ID-AP) to pro-

duce a metric that better reflects the ego-centric nature of

detection for self-driving.

nuScenes Detection Score. The nuScenes Detection Score
(NDS) [3] is a popular task-specific detection metric that

uses mAP as a starting point. It relies on center distance

in birds-eye view (BEV) for the true positive criterion in-

stead of the standard IoU-based approach. Here, we use a

fixed center distance of 1 meter to not confound our results

by averaging across thresholds (the authors suggest averag-

ing over four thresholds). By relying on center distances,

the authors decouple mAP from object size and orientation,

which they account for separately. They argue that center

distance covers objects of different sizes more evenly be-

cause smaller volume objects like pedestrians can quickly

achieve an IoU of zero if predictions have minor transla-

tion errors. NDS also includes five explicit detection qual-

ity measures for all true positive detections. These mea-

sures are weighted equally and are, in total, given as much

weight as average precision in the NDS. The five true pos-

itive metrics are (1) Average Translation Error (ATE): Eu-

clidean center distance in BEV in meters; (2) Average Scale

Error (ASE): Calculated as 1 - IOU after aligning centers

and orientation; (3) Average Orientation Error (AOE): The

smaller yaw angle between GT and prediction in radians;

(4) Average Velocity Error (AVE): Absolute velocity error

in m/s; and (5) Average Attribute Error (AAE): (1-Acc) for

the prediction accuracy of additional attributes. We do not

include the AAE in our experiments, as the additional at-

tributes are specific to the nuScenes dataset.

Similar to mAP, NDS does not account for an object’s

distance to the ego vehicle. We thus also test an inverse

distance-weighted version of the NDS (ID-NDS).

Planner-Centric Detection Metrics. Several authors have

recently pursued a novel approach to detection metrics for

self-driving: focusing on the planner instead of evaluat-

ing object detections directly [23, 21, 17]. To evaluate the

planner-centric metrics, we first compute the planner’s out-

put for a scene given the ground truth object information.

We then also calculate the planner’s output given the noisy

output of the perception stack (detection + tracking) and

analyse how the two predicted trajectories (i.e., the sets of

waypoints) differ. This approach naturally down-weights

distant and less relevant objects in the metrics as they bear

little significance to planning.

We use the average and final displacement errors [4]

to quantify differences in trajectories. The average dis-
placement error (ADE) at timestep t is the average of the

point-wise L2 distances between the predicted waypoints

based on ground truth detections and the predicted way-

points based on noisy detections. We define the ADE for

a route as the mean of all frame-based ADEs in that route.

Similarly, we define the final displacement error (FDE) as

the L2 distance between the final waypoints of two trajec-

tories, averaged over all frames of a route.

5. Experiments

This section discusses our setup for online evaluation

and explains how we train and configure the object detec-

tion models. We then present the results of our analysis.

Online Evaluation. We base our experiments on the

CARLA simulator (Version: 0.9.10) [11]. Within CARLA,

we gauge online performance for the detection models by

integrating them into our modular pipeline to test driving

performance. We use the Longest6 benchmark [6] as an

online evaluation protocol. Longest6 contains 36 ∼1.5km

long routes with high traffic density across six towns.

While evaluating the agents on Longest6, we log detailed

ground truth bounding box information about the objects in

the scene, the perception stack’s predictions, and the sensor

information. Based on the resulting logs, we compute the

offline detection metrics for every route. This enables us to

compare the observed driving outcomes for a given route

with the associated offline detection performance measures.

Implementation. We train eight detection architectures

using the open-source LiDAR detection framework Open-

PCDet [22] and the default hyperparameter configurations it

provides. All architectures are trained for 72 hours on eight

NVIDIA GeForce RTX 2080TIs. We include two check-

points per architecture to increase the number of data points

in our analysis. To ensure variance in checkpoints’ behav-

ior, the first is extracted after only 36 hours of training and

the second after 72 hours. In total, this results in 16 models.

We generate the training data via the CARLA simulator

by observing the driving behaviour of an expert algorithm

[6] with privileged access to ground truth information. At

every frame, we record 360◦ LiDAR data with a rotation

frequency of 20 Hz. We set the minimum confidence thresh-

old for detections to 0.3, apply non-maximum suppression

with an IoU threshold of 0.2 and only present object tracks

to the planner that are tracked for four consecutive frames.

Metric Evaluation Protocol. After we evaluate the driving

performance for all 16 models on the Longest6 benchmark,

we average scores across the benchmark’s 36 routes to at-
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Metric Correlation: DS Correlation: #Col.

nuScenes Detection Score [3] 0.852 0.907
Average Precision [15] 0.805 0.903
Avg. Displacement Error [4] 0.784 0.770
Avg. Orientation Similarity [13] 0.742 0.894
Final Displacement Error [4] 0.703 0.653

Table 1. Pearson correlation between online and offline met-
rics. Absolute values are shown for clarity.

tain one data point per detector for every metric. For the

16 detector-wise data points, we then calculate Pearson’s

correlation coefficients between offline and online metrics.

For ease of comparison and interpretation, we provide all

Pearson’s r correlation coefficients as absolute values.

Correlation Results. Table 1 presents the correlation co-

efficients for the base metrics. Note that we only discuss

Pearson correlation here for the sake of conciseness but

found very similar relations when computing Spearman co-

efficients. The first clear result from the analysis is that all

offline metrics correlate highly to driving outcomes. NDS

achieves the highest correlation values, with the standard

mAP value in second place. The planner-centric metrics

achieve less impressive results than their AP-based alterna-

tives. The strength of the correlation indicates that offline

metrics can provide reasonable heuristics for a detector’s

performance in online tests. Offline metrics thus seem to be

a reliable proxy for rougher comparisons among models and

quick hypotheses testing. This insight is significant as the

computational cost for online tests is high. The offline met-

rics only take around four minutes to evaluate, while test-

ing a single model on Longest6 using an NVIDIA GeForce

RTX 2080Ti takes three days.

nuScenes Detection Score Ablation. Table 1 shows that

NDS correlates more to the CARLA Driving Score than the

standard mAP metric (0.85 vs. 0.80). Both metrics have

similar correlations to the number of collisions (0.90).

In the original NDS metric, all detection quality mea-

sures are given equal importance, and their sum is given as

much weight as mAP. We find that even though all detec-

tion quality metrics contribute a little bit toward the strong

correlation, switching all of them off also produces a metric

that correlates more with the Driving Score than mAP (0.82
vs. 0.80). This suggests that the center distance approach is

indeed preferable to an IoU based TP-criterion.

Inverse Distance Weighting. We include inverse distance

weighted variations for mAP and NDS. We observe that

the correlation to Driving Score drops for both metrics

(comparing triangles with circles in Figure 2). In contrast,

the correlation to the number of collisions increases com-

pared to the original metrics. The fact that inverse dis-

tance weighting increases predictive power for collisions is

expected. Many collisions likely occur when the percep-

Figure 2. Correlation analysis summary. The plot marks corre-

lation coefficients for planner-centric metrics with a star symbol.

The inverse distance weighted metrics are marked with triangles.

tion stack misses traffic participants directly in front of the

ego. However, inverse distance weighting rewards defen-

sive agents, that achieve less route completion. ID-MAP is

especially tightly connected to the collision count, with a

Pearson’s r coefficient of 0.955.

Planner-Centric Metrics. Our results show that ADE

marks a better indicator for driving performance than FDE.

While the planner-centric ADE does correlate to Driving

Score and collision count (0.78 & 0.77, respectively), these

correlations pale in comparison to those of the mAP-based

metrics (see Figure 2). The significant discrepancies in

correlations we observe between the approaches, therefore,

contra-indicate a reliance on planner-centric metrics alone

when evaluating object detection for self-driving.

6. Conclusion
In this work, we demonstrate that common metrics for

3D object detection are highly correlated with online driv-

ing performance. Our extensive evaluation shows that the

nuScenes Detection Score is more predictive of closed-loop

outcomes than the standard mean average precision. While

we find the standard mAP score to yield strong correlation

nonetheless, our results invoke skepticism regarding detec-

tion benchmarks that exclusively rely on planner-centric ap-

proaches or use a strong focus on heading accuracy.

There are two important limitations that constrain the de-

gree to which one can generalize from our results. First, we

base all our experiments on the same neural planning archi-

tecture. In our experiments, PlanT acts as a mediator be-

tween the detection performance and the driving outcomes.

Different planners might focus on other object cues for mo-

tion forecasting and behavior planning. Second, the online

metric Driving Score is a relatively simple heuristic for eval-

uating overall driving performance, and more accurate on-

line metrics might yield different correlation outcomes.
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