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Abstract

Within the context of autonomous driving, encountering
unknown objects becomes inevitable during deployment in
the open world. Therefore, it is crucial to equip standard
semantic segmentation models with anomaly awareness.
Many previous approaches have utilized synthetic out-of-
distribution (OoD) data augmentation to tackle this prob-
lem. In this work, we advance the OoD synthesis process by
reducing the domain gap between the OoD data and driving
scenes, effectively mitigating the style difference that might
otherwise act as an obvious shortcut during training. Ad-
ditionally, we propose a simple fine-tuning loss that effec-
tively induces a pre-trained semantic segmentation model to
generate a “none of the given classes” prediction, leverag-
ing per-pixel OoD scores for anomaly segmentation. With
minimal fine-tuning effort, our pipeline enables the use of
pre-trained models for anomaly segmentation while main-
taining the performance on the original task.

1. Introduction
Detecting unknown objects, referred to as Out-of-

Distribution (OoD) objects, is vital in safety-critical appli-

cations such as autonomous driving. Anomaly segmenta-

tion, combined with standard semantic segmentation, offers

precise per-pixel identification of OoD objects in addition to

segmenting the in-distribution pixels of the training classes.

The main challenge with anomaly segmentation lies in the

vast number of potential OoD objects, far exceeding the

limited number of training classes. Furthermore, in driving

scenes, OoD objects frequently coexist with various known

objects, a large difference compared to data in image clas-

sification which typically has a single salient object in the

center of an image. Class imbalance poses yet another chal-

lenge in driving scenes: road pixels often comprise a large

part of the training data and bias the network towards pre-

dicting road. Due to such imbalances in the training data,

networks often exhibit a tendency to predict the majority

class for OoD objects found on the road with high confi-

dence, as illustrated in Fig. 1, a critical error that carries a

(a) Confusion Rate (b) Confidence of Error Prediction

Figure 1: A standard semantic segmentation model, i.e.,

DeepLabv3+ [5] with a ResNet101 backbone, is trained

on Cityscapes [8] and tested on the anomaly segmentation

benchmark Fishyscapes Lost & Found [3]. The OoD pixels

(anomalies) are frequently misclassified as “road” with very

high confidence. This leads to the highest level of risk for

autonomous driving.

high level of risk.

A particularly successful technique in the literature for

anomaly segmentation is a form of outlier exposure [15].

While we do not have access to potential OoD scenarios

at inference time, there are many ready-to-use data, dif-

ferent to the training data, which could serve as poten-

tial OoD exemplars during training. For instance, MS

COCO [19] and ADE20K [36] are popular choices for

training semantic segmentation on Cityscapes [8], e.g., in

[4, 2, 30, 23, 25, 11]. Earlier work directly added these

datasets to the training set [4], whereas subsequent work

discovered that it is more effective to copy and paste ob-

jects from them into the training samples of the semantic

segmenter, e.g., AnomalyMix in [30]. Prior works mostly

focused on losses and/or architecture changes to incorporate

the OoD data during training and fine-tuning, as naively us-

ing them can lead to performance degradation [23].

In this work, we discover the benefit of improving the

OoD data with simple style transfer. In autonomous driving,

the collected training data is often specialized by the camera
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Figure 2: Visual examples of style transferring from Cityscapes [8] samples to MS COCO [19] objects, using an off-the-shelf

ISSA model [17].

model, which varies across different vendors. The misalign-

ment between OoD objects from natural images and driving

scenes creates a shortcut cue at training, compromising the

effectiveness of synthetic OoD data. We thus propose to

first align the style before AnomalyMix. Specifically, we

utilize ISSA [17] to transfer the driving scene data style to

OoD objects; see examples in Fig. 2. It was initially pro-

posed to improve domain generalization via style mixing

among different training samples.

Equipped with the style-aligned OoD data, we further

derive a novel fine-tuning loss to adapt the final classifica-

tion head of a standard semantic segmentation model for

anomaly segmentation, i.e., to output a per-pixel OoD score

in addition to the predicted semantic label map. Specifi-

cally, we cast per-pixel multi-class classification in semantic

segmentation as a set of one vs. the rest (OvR) binary clas-

sifications at fine-tuning, i.e., one for each class. The OvR

loss allows the prediction of “none of the given classes”,

which is the natural ground truth for unknown objects. By

considering the top-K losses among the training classes, we

specifically optimize for the hard cases and maintain com-

parably low logit responses from all classes. The loss has a

simple form with no hard-to-tune hyperparameters.

After fine-tuning, we leverage per-pixel OoD scores de-

rived from the logit outputs of the semantic segmenter for

anomaly segmentation. Besides the widely used maximum

logit [13] and energy-based OoD score [30], a new per-pixel

OoD score is investigated in this work. It subtracts the max-

imum logit by the minimum logit. We find such logit differ-

ence helpful to tell apart OoD pixels (comparably low logits

across all classes) from uncertain in-distribution pixels (e.g.,

boundary pixels with low maximum logit, but much lower

minimum logit).

Empirically, our proposal delivers impressive im-

provements on the anomaly segmentation benchmark

Fishyscapes Lost & Found [3]. On another real-world

anomaly benchmark Road Anomaly [21], we hypothesize

that the domain shift is a key bottleneck when adapting

the semantic segmenter pre-trained only on Cityscapes [8].

While unknown objects and domain shifts are often sep-

arately tackled in the literature, they can jointly manifest

in the real world. This co-occurrence is an interesting yet

under-explored topic, awaiting for further investigation.

2. Related work
There are two prevalent avenues of approach to tackle

anomaly segmentation. The first relies on reconstruction,

e.g., [20, 31, 32], assuming that a poor reconstruction indi-

cates something not well understood by the network. The

other avenue adapts semantic segmentation models. Our

work aligns with the latter approach. Being different to

prior art such as [1, 23], we attempt to enable anomaly

awareness without model architecture changes.

Synthetic OoD Augmentation Mixing up data samples,

despite not necessarily appearing realistic, has proven to be

an effective data augmentation strategy, e.g., CutOut [9],

Mixup [34] and CutMix [33] for image classification, as

well as copy-paste [10] and X-paste [35] on object detection

and segmentation. For the anomaly segmentation task, prior

work primarily focused on designing the loss and modify-

ing the architecture to make use of the synthetic OoD data.

Both [4] and [30] adopted a uniform label distribution as

the ground-truth label for the OoD pixels, the latter also

adding two extra free energy-based regularization terms and
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Figure 3: Our proposal begins by aligning the styles between the OoD objects and driving scenes, followed by random copy-

pasting. The synthetic OoD data is mixed with the normal driving scenes at a pre-specified ratio. Only the final classification

head is fine-tuned; the rest of the network is frozen. At inference, a single-channel OoD map is generated along with the

predicted semantic label map. Each pixel of the OoD map carries a scalar score derived from model’s output.

the gambler loss [24]. DenseHybrid [11] also used a free

energy-based loss with an additional binary classification

head to classify between in-distribution (ID) and OoD pix-

els. The authors of [23] adopted a contrastive loss, using

OoD data as negative examples in contrast to the ID pix-

els. Recent works [25, 12, 26, 28] discovered the benefit

of using transformer-based models and performing mask

level classification for segmentation. Building on top of

Mask2Former [6], the authors of [25, 26, 28] used an OvR

binary classification loss, while an ensemble over anomaly

scores of mask-wide predictions was introduced in [12].

In this work, we focus on improving the OoD synthe-

sis, while keeping the fine-tuning loss very simple. As the

OoD proxy data often comes from a domain very differ-

ent from driving scenes, the resulting style difference hin-

ders the effectiveness of naive AnomalyMix. With the aid

of style-aligned AnomalyMix, a simple variant of a OvR

loss already leads to a strong anomaly segmentation perfor-

mance.

Per-pixel OoD Score It is a common practice to segment

OoD objects based on per-pixel OoD scores, which can be

understood as a form of predictive uncertainty on the given

training classes. Maximum logit [13] has been shown as a

better choice than maximum Softmax response, and the au-

thors of [16] improved the latter by correcting the frequent

class bias. Free energy was adopted by [30], and DenseHy-

brid [11] further subtracted it by the logit generated by its

additional classification head.

Our fine-tuning method can work with different OoD

scores derived from the logits of the semantic segmentation

model. Besides the widely used ones (i.e., maximum logit

and energy), we additionally introduce a new OoD score,

i.e., Max-Min Logit. It computes the difference between the

maximum and minimum logit, which helps to better distin-

guish uncertain ID pixels from OoD pixels, reducing false

positive rates (FPRs).

3. Method
As shown in Fig. 3, our method consists of style-aligned

AnomalyMix for fine-tuning a pre-trained model with a top-

K OvR loss, and a single-channel OoD map derived from

the predictive logits.

3.1. Style-aligned AnomalyMix

Similar to AnomalyMix in [30], we extract OoD objects

from an off-the-shelf dataset, then copy and paste them into

the training samples of the semantic segmentation model.

Specifically, we only take non-occluded objects from MS

COCO and randomly paste them into driving scenes (e.g.,

Cityscapes) throughout fine-tuning. However, it is quite ob-

vious to see from Fig. 2 that MS COCO and Cityscapes

have their own domain-specific styles. The network can

make use of this style difference to learn anomaly segmenta-

tion, which is not a generalizable solution in the real world.

Thanks to the advances in generative models, we can trans-

fer the style of training samples to the OoD objects before

mixing them together, i.e., aligning the style before Anoma-

lyMix as shown in Fig. 3. Technically, we take a pre-trained

ISSA model [17], which consists of a StyleGAN2-based

generator and a masked noise encoder for GAN inversion.

The ISSA encoder can respectively extract the style and

content of a given exemplar. By mixing up the style and

content from different exemplars, the ISSA generator can

transfer the style of one exemplar to the other. While the

model was pre-trained only on Cityscapes, it successfully
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transfers the Cityscapes style to unseen MS COCO objects.

3.2. Fine-tuning Loss

We focus on fine-tuning only the classification head of

a pre-trained model, aiming to preserve the integrity of the

backbone that is shared with other perception tasks in the

autonomous driving system. Under this constraint, group-

ing the diverse OoD objects into an additional OoD class

is suboptimal and can potentially harm the recognition of

known objects. While the Softmax-based cross entropy loss

over the given training classes is adopted at training, we

propose to re-purpose the logit of each class for parame-

terizing the probability of “being” vs. “not being” in that

class. This effectively turns multi-class classification into

a set of binary OvR classifications. On the OoD pixels, all

class logits should then be supervised with the ground-truth

of “none of any given classes”. The concurrent work [25]

utilized such a loss for both training a Mask2Former based

segmenter, and fine-tuning it on synthetic OoD data. Here,

we alternatively minimize the top-K OvR losses across the

classes

Lood =
1

K|Nood|
∑

i∈Nood

∑

k∈StopK(i)

− log σ(−sλi,k), (1)

where σ is the sigmoid-function, Nood is the index set of

OoD pixels, λi,k is one of the top-K largest logits StopK(i)
on the pixel i, and s is a hyperparameter to control the slope

of the gradients of the sigmoid-function with respect to the

logit λi,k. Compared to simply averaging the per-class loss

over all classes, the top-K variant focuses on improving the

worst cases, e.g., the logit of the frequent “road” class of-

ten has a larger response than that of other classes on OoD

pixels. Thus, it helps to reduce the logit difference across

different classes on the OoD pixels. Besides the loss on

the OoD pixels, the total fine-tuning loss is a weighted sum

Lall = Lid + γLood with the original training loss on the

in-distribution (ID) pixels.

3.3. Per-pixel OoD score

After fine-tuning, we resort to per-pixel OoD scores for

anomaly segmentation. They are derived from the logits

generated by the semantic segmenter. The logit response

of an input can be regarded as the negative distance of that

sample to the corresponding class, i.e., larger logit value

indicates closer to the class prototype (which is the final

layer weight vector). In the literature, maximum logit re-

sponse and negative free energy are top-performing scores.

The latter is essentially a smoothed version of the former.

Besides using them, we additionally consider the difference

between the maximum and minimum logit. In semantic seg-

mentation, there are often many ambiguous in-distribution

pixels. For instance, the logit responses of boundary pixels

are not as high as that of center pixels in segments. While

the maximum logits of boundary pixels may not be suffi-

ciently high, their minimum logits are still much smaller.

Therefore, using the gap can help to better tell OoD pixels

apart from uncertain in-distribution pixels.

4. Experiments
In this work, we use semantic segmentation models pre-

trained on Cityscapes [8], specifically DeepLabv3+ [5] with

either a Wide ResNet38 or ResNet101 backbone. We use

the mIoU (%) as the in-distribution performance metric and

compute the area under receiver operating characteristics

(AUC), average precision (AP), and the false positive rate

at a true positive rate of 95% (FPR95) to validate our ap-

proach. The in-distribution dataset is Cityscapes [8]; two

real-world anomaly segmentation benchmarks, Fishyscapes

Lost & Found [3] and Road Anomaly [21] are investi-

gated. For fine-tuning, the default loss configuration is with

γ = 0.05/0.01 (WideResNet38/ResNet101), K = 5, and

s = 2. We adopt the AdamW optimizer with an initial

learning rate of 10−5, polynomial decay at the rate 0.9, and

20 fine-tuning epochs in total. The mixing probability for

style-aligned AnomalyMix is set as 0.1. The OoD loss is

computed based on the network output before the final bi-

linear upsampling operation in DeepLabv3+.

4.1. Comparison with Prior Art

The target setting is to adapt an existing semantic seg-

mentation model for anomaly segmentation without ar-

chitecture changes. Thus, our comparison is with meth-

ods that use the same architectures, and can preserve the

original mIoU on the Cityscapes validation set. In this

case, DeepLabv3+ with the two types of backbones are

the most common choices in the literature. As we can

see from Table 1, our method improves over the baselines

while preserving the in-distribution performance mIoU. As

the methods (in the first block of the table) focused on

deriving OoD scores from the pre-trained models, their

mIoU stays exactly identical to the original performance.

However, such post-hoc OoD score derivation does not

lead to strong anomaly segmentation performance, as the

pre-trained models are over-confident and uncalibrated as

shown in Fig. 1. Both Meta-OOD [4] and PEBAL [30]

trained the model with OoD data, thus outperform the post-

hoc methods. Compared to them, we better preserve the

original mIoU performance. Notably, on AP, which mea-

sures the precision of localizing the OoD pixels, we out-

perform them by a large margin. Moreover, our method is

compatible with different OoD scores. Compared to prior

methods that also used Max Logit and Energy, our fine-

tuning method greatly improved their performance. Among

the three OoD scores, the new score, i.e., Max-Min Logit,

is better at reducing FPRs, but slightly worse at increasing

APs. It can be an interesting future step to fuse multiple
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DeepLabv3+ w. WideResNet38 backbone w. ResNet101 backbone

Cityscapes Fishyscapes L & F Cityscapes Fishyscapes L & F

Method mIoU ↑ AUC ↑ AP ↑ FPR95 ↓ mIoU ↑ AUC ↑ AP ↑ FPR95 ↓
Max Softmax Pred. [13] 89.29 4.59 40.59 86.99 6.02 45.63

Max Logit (ML)[13] 93.41 14.59 42.21 92.00 18.77 38.13

Entropy [14] 90.62 90.82 10.36 40.34 80.50 88.32 13.91 44.85

Energy [22] 93.72 16.05 41.78 93.50 25.79 32.26

Standardized ML [16] 94.97 22.74 33.49 96.88 36.55 14.53

Meta-OOD [4] 89.00 93.06 41.31 37.69 - - - -

PEBAL [30] 89.12 98.96 58.81 4.76 - 99.09 59.83 6.49

Ours (Max Logit) 98.71 71.94 6.42 98.45 67.35 9.36

Ours (Energy) 90.39 98.79 70.87 5.88 80.50 98.58 69.93 8.38

Ours (Max-Min Logit) 98.87 70.84 5.52 98.83 66.32 5.74

Table 1: Comparison of our proposal with prior art on the Fishyscapes Lost & Found [3]. Note that our comparison scope

lies in the line of methods aiming to adapt a standard semantic segmentation model for anomaly segmentation without major

architecture changes and extra (sub)networks. The pre-trained model checkpoints and the baseline numbers are taken from

the source specified in PEBAL [30].

w./o. Style Align. w. Style Align.

OoD Score AUC ↑ AP ↑ FPR95 ↓ AUC ↑ AP ↑ FPR95 ↓
Max Softmax Pred. 94.82 32.32 20.76 +1.55 +18.84 -2.74

Entropy 96.21 47.14 19.76 +1.13 +16.37 -2.85

Max Logit 97.84 51.79 12.61 +0.61 +15.56 -3.25

Energy 98.02 52.32 11.92 +0.56 +17.61 -3.54

Max - Min. Logit 98.24 45.02 9.14 +0.59 +21.30 -3.40

Table 2: Style-alignment before AnomalyMix introduces

consistent gains across different OoD scores in all metrics.

Here, we use DeepLabv3+ (ResNet101) and Fishyscapes

Lost & Found [3].

good OoD scores together for further improvements.

4.2. Ablation Study

We first evaluate the benefit from using style alignment

before AnomalyMix. As shown in Table. 2, style alignment

is beneficial in all cases, independent of the choice of the

OoD score and in all OoD evaluation metrics.

Next, we compare different choices of K for our method

in Table 3. The baseline PEBAL and OvR essentially con-

siders all classes, performing worse than our top-K OvR

variant. This reveals the benefit of focusing on improving

the worst cases, i.e., the top-K confident predicted classes.

Among all three OoD scores, K = 5 is generally better than

K = 3 and K = 7, and they all outperform the two com-

petitive baselines. Overall, the performance is insensitive to

the value of K, making it an easy-to-tune hyperparameter.

Finally, we compare different fine-tuning losses. The

two baselines, Uniform and Energy, respectively indicate

minimizing the cross entropy with a uniform label distri-

bution, and maximizing the negative Log-Sum-Exp of the

Method K AUC ↑ AP ↑ FPR95 ↓
PEBAL [30] - 99.09 59.83 6.49

OvR (Max Logit) - 97.70 52.24 12.97

OvR (Energy) - 97.95 59.96 12.09

OvR (Max-Min Logit) - 98.52 59.19 7.51

3 98.34 60.86 10.50

Ours (Max Logit) 5 98.45 67.35 9.36

7 98.12 63.88 11.40

3 98.48 64.07 9.73

Ours (Energy) 5 98.58 69.93 8.38

7 98.28 68.30 10.47

3 98.79 58.59 6.37

Ours (Max-Min Logit) 5 98.83 66.32 5.74
7 98.69 66.56 6.43

Table 3: Ablation on the choice of K for our proposal. The

fine-tuning loss of PEBAL and OvR involves all classes,

whereas only the top-K ones are considered in Ours. Here,

we use DeepLabv3+ (ResNet101) and Fishyscapes Lost &

Found [3].

multi-class logits. In addition, we compare with the OvR

loss averaged over all classes. Compared to them, our top-

K OvR loss does not involve all multi-class logits at each

optimization step, but rather focuses on the hardest cases,

i.e., top-K high logit responses to the OoD pixel. As shown

in Fig. 4, our loss is the only one that excels at both AP

and FPR95. Notably, our fine-tuning loss leads to superior

performance using all three OoD scores. As all these scores

reflect some form of “uncertainty” on OoD pixels, the con-

sistent performance improvement indicates our fine-tuning
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Figure 4: Comparison of different fine-tuning losses, using DeepLabv3+ (ResNet101) and Fishyscapes Lost & Found. The

proposed top-K OvR loss improves the AP and FPR95 when combining with the three top-performing OoD scores.

process is effective at inducing a “none of the given classes”

prediction on anomalies.

4.3. Visual Results on Fishyscapes Lost & Found

Fig. 5 visualizes the semantic label map and per-pixel

OoD score produced by PEBAL [30] and our method (Max-

Min Logit). The training loss of PEBAL has multiple terms.

In addition to the uniform label prediction and energy loss,

the gambler loss [24] introduced an extra class in predic-

tion. It is quite interesting to observe that some anomalies

are classified as the extra class (in green). However, as also

pointed out by the authors, it is not yet a reliable predic-

tion for all cases, and the per-pixel OoD score is more in-

formative about the anomalies as we can observe in Fig. 5.

Compared to PEBAL, our method uses a single top-K OvR

loss without the extra class. The per-pixel OoD score has a

strong response to the anomalies, while the false positives,

such as paintings on the road or sidewalk, are less frequent

than that in PEBAL.

4.4. Domain Shift in Road Anomaly

Table 4 shows the results on the Road Anomaly [21]

benchmark. While our method still noticeably outperforms

the others, all solutions are still far from delivering satisfac-

tory results, with APs below 50% and FPRs above 35%.

To gain some insights on the performance gap between

Fishyscapes Lost and Found [3] and Road Anomaly [21],

Fig. 6 shows some interesting visual examples. First, we

can clearly notice the domain shift from Citypscapes [8],

including not only the style change, but also geographic

shift, and object part ambiguity. For instance, the first ex-

ample is closer to Cityscapes and both approaches handle

it well. In the next example, we observe false positives

from unfamiliar fences. More interestingly, it is arguable

whether the umbrella is an outlier or a part of person in

this case. The overall scene is also quite different to the

Cityscapes examples, which were collected in Europe. For

Method AUC ↑ AP ↑ FPR95 ↓
Max Softmax Pred. [13] 67.53 15.72 71.38

Max Logit (ML)[13] 72.78 18.98 70.48

Entropy [14] 68.80 16.97 71.10

Energy [22] 73.35 19.54 70.17

Standardized ML [16] 75.16 17.52 70.70

SynBoost [2] 81.91 38.21 64.75

PEBAL [30] 87.63 45.10 44.58

Ours (Max Logit) 89.04 43.82 39.04

Ours (Energy) 89.65 46.39 38.09
Ours (Max-Min Logit) 87.15 38.38 43.40

Table 4: Comparison of our proposal with prior art on Road

Anomaly [21], using DeepLabv3+ (WideResNet38). Note

that our comparison scope lies in the line of methods aim-

ing to adapt a standard semantic segmentation model for

anomaly segmentation without major architecture changes

and extra (sub)networks. The pre-trained model check-

points and the baseline numbers are taken from the source

specified in PEBAL [30].

the last two examples, the rocks on the road should be de-

tected as anomalies, whereas many small stones on the road

could be just “road”. To separate both cases, the model will

need to have a higher-level concept of the scene if the stone

road was not shown during training. Therefore, to tackle the

Road Anomaly benchmark, our hypothesis is that focusing

on unknown objects with the assumption of no domain shift

is suboptimal. It can be interesting to combine anomaly

segmentation with domain generalization techniques, e.g.,

ISSA [18], RobustNet [7], and StyleLess [29]. Moreover,

the energy-based OoD score appears to be more robust than

Max Logit and Max-Min Logit under the domain shift. Dif-

ferent to the observation on Fishyscapes [3], subtracting the

minimum logit is no longer effective to reduce false posi-

tives. We hypothesize that logits are generally less reliable
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Figure 5: Visual examples using PEBAL [30] and our method for semantic segmentation and anomaly segmentation on

Fishyscapes [3]. Our pixel-wise OoD score has less false positive responses to drawings on the road and side walk curb-

stone, while PEBAL can map some anomalies into its extra class prediction (e.g., dummy person, trash bin), but not always

consistently (e.g., boxes and white stick).

under the domain shift, and simple logit processing is inef-

fective to reduce false positives caused by domain shifts.

Notably, several recent works, i.e., [23] and [25, 28, 26],

achieved promising progresses, even though they lay be-

yond the scope of fine-tuning a standard semantic seg-

mentation model. The former added an extra network to

Deeplabv3+, and exploited contrastive learning for regular-

izing the feature space. Contrastive learning is a successful

representation learning technique that improves OoD gen-

eralization in different tasks. The latter ones built on top

of Mask2Former [6], which is not only transformer-based,

but also changes from per-pixel multi-class classification to

mask proposals and mask-level classification. Moreover, it

is beneficial to pre-train the model on multi-domain driving

scene data such as Mapillary [27] plus Cityscapes [8], indi-

cating the value of improved domain generalization achiev-

able by more diverse source data at training.

5. Conclusion

We proposed a simple fine-tuning process that demon-

strates impressive performance gains on the anomaly seg-

mentation benchmark Fishyscapes Lost & Found. The

fine-tuned semantic segmentation model preserves the per-

formance on the original task, and additionally generates

high-quality per-pixel OoD scores for anomaly segmenta-

tion in situations where there is no major domain shift from

training/fine-tuning to testing. Notably, our results indicate

the value of improving the existing synthetic OoD synthe-

sis process extensively adopted in previous studies. While

our proposed style alignment has mitigated the synthetic-

to-real gap, it remains an ongoing challenge to completely

close the gap. We hope that our findings will inspire further

exploration in this direction. Additionally, it is highly inter-

esting to consider the domain shift together with anomalies,

e.g., combining with domain generalization techniques for

tackling the Road Anomaly challenge.
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Figure 6: Visual examples using PEBAL [30] and our method for semantic segmentation and anomaly segmentation on

Road Anomaly [21], which is clearly more challenging than Fishyscapes due to the larger domain gap. We can observe a

large amount of false positives generated by both methods, where our method is slightly better than PEBAL. It is also worth

mentioning that some of them are actually arguable anomalies.
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