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Abstract

The rapid development of 3D object detection systems
for self-driving cars has significantly improved accuracy.
However, these systems struggle to generalize across di-
verse driving environments, which can lead to safety-
critical failures in detecting traffic participants. To address
this, we propose a method that utilizes unlabeled repeated
traversals of multiple locations to adapt object detectors to
new driving environments. By incorporating statistics com-
puted from repeated LiDAR scans, we guide the adaptation
process effectively. Our approach enhances LiDAR-based
detection models using spatial quantized historical features
and introduces a lightweight regression head to leverage the
statistics for feature regularization. Additionally, we lever-
age the statistics for a novel self-training process to stabi-
lize the training. The framework is detector model-agnostic
and experiments on real-world datasets demonstrate sig-
nificant improvements, achieving up to a 20-point perfor-
mance gain, especially in detecting pedestrians and distant
objects. Code is available at https://github.com/
zhangtravis/Hist-DA.

1. Introduction
Self-driving cars need to detect objects like cars and

pedestrians and localize them in 3D to drive safely. 3D

object detection systems have advanced rapidly in accu-

racy, but still fail to generalize across the extremely diverse

domains where vehicles are deployed: A perception sys-

tem trained in sunny California may never have seen snow-

covered cars, and may fail to detect these cars with dis-

astrous consequences. Unfortunately, we cannot afford to

separately annotate training data for every location a car

might be driven in. We therefore need ways of adapting

3D perception systems to new driving environments with-

out labeled training data. This is the problem of unsuper-

*Denotes equal contribution.
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vised domain adaptation, where the object detector must be

adapted to a new target domain where only unlabeled data

is available. In this work, we explore 3D object detection

from LiDAR data and how to best adapt it to a set of di-

verse, real-world scenarios.

Different from prior works in unsupervised domain

adaptation, we follow [13] to include the assumption that

unlabeled repeated traversals of the same locations are

available to the adaptation algorithm. As discussed in the

prior works, such assumptions are highly realistic: for ex-

ample, roads and intersections are usually visited many

times by many vehicles. Prior work has shown that the addi-

tional information from repeated traversals helps 3D detec-

tion in the same domain [11, 12], and helps the perception

models adapt to a new domain [13].

However, it is not readily obvious how to best utilize the

repeated traversals. Rode-DA [13] uses P2-score, which is

a statistic computed from repeated LiDAR scans character-

izing the persistence of different areas of the 3D scene, to

correct the false positive detections in self-training and bet-

ter supervise the model. We argue that this method has not

fully exploited the information from the P2-score and it can

be used in a more principled way to guide the adaptation

process.

Our key insight is that the P2-score is a perfect signal

to regularize the feature in the detection training. Our full

method is based on Hindsight [11]. Hindsight enhances

LiDAR-based 3D object detection models with the spatial

quantized historical (SQuaSH) features computed from re-

peated past traversals. The authors show that Hindsight

can greatly improve the detection performance when tested

within similar areas. However, the SQuaSH features do not

guarantee to be invariant across different domains, result-

ing in limited performance gain. To prevent the SQuaSH

features overfit to the training domain, we propose to add

the P2-score prediction task as an auxiliary task while train-

ing the SQuaSH featurizer. Observing LiDAR points within

each voxel sharing similar P2-score, we apply an extra light-

weighted regression head after the SQuaSH feature, and

train the head with simple P2 regression task. The regres-
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sion head is only used in training and does not introduce

latency overhead during testing.

Pairing with the typical self-training technique in do-

main adapation, we validate our method on two large, real-

world datasets: Ithaca365 [2] and Lyft [4], as well as a suite

of representative object detectors. Our method, which we

term Historically Guided Domain Adaptation (Hist-DA),

can achieve up to 20 points in improvement, most notably

in difficult cases such as detecting pedestrians and far away

objects. Furthermore, our method requires very little tun-

ing to achieve strong performance for 3D object detection.

Concretely, our contributions are as follows:

• Our methodology identifies a strong source of infor-

mation with a high learning signal to improve self-

supervised adaptation.

• We designed a model-agnostic adaptation framework

to leverage repeated traversals effectively.

• We empirically validated our approach on two real-

world datasets and show through ablation studies that

Hist-DA is robust and generalizable.

2. Related Works

Past Traversals in Autonomous Driving Human drivers

often drives through the same locations repeatedly, thus it

is natural to assume that the (unlabeled) data collected for

training perception systems for self-driving vehicle contains

repeated traversals of different locations. Past works have

leveraged this property to enhance the perception of au-

tonomous vehicles. These include self-supervising 2D rep-

resentation for visual odometry [1], uncovering mobile ob-

jects in LiDAR in an unsupervised manner [12], etc. The

line of work that is directly related to ours is Hindsight [11]

where the authors proposed to learn additional feature de-

scriptors for each point in a LiDAR point cloud from the

unlabeled past traversals for better downstream 3D object

detection. Hindsight is simple and effective and would work

with any downstream 3D detectors that consumes 3D Li-

DAR point cloud. In this work, we seek to adapt this family

of detectors when deploying to a new domain where unla-

beled past traversals are available.

Unsupervised Domain Adaptation (UDA) for 3D Object
Detection. Adapting 3D object detectors to new domains

where no labels are available is crucial to deployment of

self-driving vehicles. The key to UDA is to understand

the domain differences that the detector would encounter

during deployment. SN discovers that car sizes could be

a source of domain differences and propose to normalize

the car sizes when training the detectors on the source do-

main [7]; SPG identifies point cloud density as one poten-

tial source of differences and propose to fill in point clouds

during deployment [8]. Though these methods have shown

remarkable progress in the problem, they all target spe-

cific domain differences, which is not feasible in all cases.

One way to characterize domain differences is through the

use of unlabeled data. Along this vein, ST3D [9] and

ST3D++ [10] adopt conventional self-training approaches

with improved filtering mechanism to stabilize adaptation

whereas MLC-Net [6] achieves domain alignment via en-

forcing consistency between a source detector and its expo-

nential moving average on the unlabeled data. Though these

methods[6, 7, 9] are effective, they mostly assume that all

the unlabeled data are i.i.d. which ignores other potential

signals that could be inherent in the unlabeled data such as

temporal signals [13] that are potentially useful in adapta-

tion. In this work, we explore using unlabeled past traver-

sals for domain adaptation. As shown in [13], these cor-

related data contains potent signals for aiding adaptation.

However, crucially different from [13], we focus on adapt-

ing Hindsight — a family of models that uses past traversals

during inference time.

3. Historically Guided Domain Adaptation
We attempt to adapt a 3D object detector to a target do-

main using unlabeled data. Different from typical adapta-

tion setup [7, 9], we assume the autonomous driving sys-

tem has access to multiple traversals of the same driving

scenes and accurate localization information, both in the

source and target domain. In section 3.1, we will clearly

lay out the adaptation setup. Then, we will discuss relevant

background information to clarify our proposed methodol-

ogy in section 3.2. Our key insight is to leverage P2-score

information from repeated traversals to adapt the detector’s

point features from one domain to another —akin to feature-

alignment works done in the 2D space— as well as self-

training to ensure stable predictions. We discuss the rele-

vant adaptation strategies in section 3.3. Our overall method

is shown in Figure 1.

3.1. Unsupervised Domain Adaptation with Re-
peated Traversals

Our goal is to adapt a LiDAR-based detector using re-

peated traversals of unlabeled point clouds {P t
i } and the

associated global localization {Gt
i} from the target domain,

for the i-th frame in traversal t. We assume that the source

domain also has access to multiple repeated traversals, as

well as the bounding box labels bc associated with training

point clouds Pc, for the c-th training frame. To character-

ize these historical traversals, we combine the point clouds

for a single traversal to create a dense point cloud in the

same way as [11]. Specifically, for a single traversal in

a domain that consists of a sequence of point clouds, we

transform each point cloud into a fixed global coordinate

system. Then, for a location l in a single frame i within

traversal t every m meters along the road, the point clouds
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Figure 1. Method diagram of the adaptation process. The method is divided into source domain training, target domain unsupervised

training, and finally deployment on the target domain. The repeated traversals from the source domain are colored in blue, and those from

the target domain are colored in yellow. Best viewed in color.

from a range [−Hm, Hm] are combined to produce a dense

point cloud Dt
l =

⋃
Gt

i∈[l−Hm,l+Hm]{P i
t } (with a slight

abuse of notation as we use Gt
i additionally for the location

i was captured).

3.2. Background

Persistency Prior Score from multiple traversals. Our

goal is to exploit the inherent information from the unla-

beled repeated traversals for adaptation. One source of

information we can retrieve is the Persistency Prior (P2)

score, that was introduced in [12]. To recap, P2-score uses

entropy-based measures to quantify how persistent a single

LiDAR point cloud is across multiple traversals. It is cal-

culated using the set of dense point clouds {Dt
l}Tt=1, for

T ≥ 1 traversals of a location. For a given 3D point q
around location l, we first count the number of neighboring

points around q within a certain radius r in each Dt
l :

Nt(q) =
∣∣{pi; ||pi − q||2 < r,pi ∈ Dt

l}
∣∣ (1)

We can then normalize the neighbor count Nt(q) across

traversals t ∈ {1, ...T} into a categorical probability:

P (t; q) =
Nt(q)∑T

t′=1 Nt′(q)
(2)

Using P (t; q), we can then compute the P2-score τ(q) the

same way as [12]:

τ(q) =

{
0 if Nt(q) = 0 ∀t;
H(P (t;q))
log(T ) otherwise

(3)

where H is the information entropy. Intuitively, a higher

P2-score corresponds to a more persistent background,

while a lower P2-score corresponds to a mobile foreground

object. This value is a statistic that can be calculated from

the repeated traversals, and as a result, it’s natural for us

to use an architecture that leverages these data. One such

candidate is Hindsight.

Hindsight. Hindsight [11] is an end-to-end featurizer in-

tended to extract contextual information from repeated past

traversals of the same location. The authors proposed an

easy-to-query data structure used to endow the current point

cloud with information from past traversals to improve 3D

detection.

Given the dense point cloud Dt
l , Hindsight encodes it

using a spatial featurizer that results in a spatially-quantized

feature tensor Qt
l . This can be applied to the T tensors, one

for each traversal in location l, which is then aggregated

into a single tensor Qg
l , deemed SQuaSH, using a per-voxel

aggregation function fagg:

Qg
l = fagg(Q

1
l , ...,Q

T
l ) (4)

Once deployed, if the self-driving car captures a new scan

Pc at a new location Gc and the SQuaSH feature at this lo-

cation is Qg
lc

, Hindsight endows Pc by querying the features

Qg
lc

around it. In the work [11], the SQuaSH featurizer is

trained concurrently with the object detector, using the de-

tection loss as a signal for gradient updates.

3.3. Adaptation Strategy

Our adaptation strategy consists of P2 feature alignment

training in the source domain and unsupervised self-training

in the target domain.

P2 Feature Alignment Training Though the computa-

tion of P2-score is of high latency and thus it is hard to be

applied online, it serves perfectly as an additional signal for

offline adaptation algorithm. With P2-score, we construct

a simple self-supervised learning task to adapt the SQuaSH

features after deployment.
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Car Pedestrian

Method 0-30 30-50 50-80 0-80 0-30 30-50 50-80 0-80

No Adapt/ No HS 42.19 12.66 0.95 18.54 40.74 18.32 0.42 21.18

ST3D 61.63 38.70 4.73 35.89 44.37 26.94 0.00 24.97

Rote-DA 62.85 41.88 15.07 41.32 48.76 32.61 1.21 30.59

No Adapt + HS 41.88 29.31 16.40 30.29 51.16 26.41 5.80 29.99

Hist-DA (Ours) 58.44 40.03 25.26 42.82 60.72 48.58 21.42 48.48
Oracle (in domain) 73.38 56.19 39.08 57.10 55.39 37.42 14.86 40.37

Table 1. Results of adapting a detector from Lyft to Ithaca365. Metrics are reported on nuScenes mAP at 1m matching.

Car Pedestrian

Method 0-30 30-50 50-80 0-80 0-30 30-50 50-80 0-80

No Adapt/ No HS 59.0 40.9 25.8 45.4 16.7 8.2 0.2 6.7

ST3D 71.8 52.1 30.4 55.7 – – – –

Rote-DA 54.3 31.9 14.9 35.7 29.6 34.4 4.1 22.0

Hist-DA (Ours) 62.6 49.2 34.9 51.8 25.6 26.5 7.9 16.7

Oracle (in domain) 69.1 71.5 49.0 65.7 37.0 38.2 26.3 32.2

Table 2. Results of adapting a detector from Ithaca365 to Lyft. Metrics are reported at 0.7 IoU matching.

Consider a point q in a point cloud Pc, we can obtain

1) its corresponding SQuaSH feature Qg
l (q); 2) its corre-

sponding P2-score τ(q). Since the SQuaSH feature is com-

puted from the same traversals, it should contain sufficient

information to reproduce the corresponding P2-score. How-

ever, the trained model might suffer from the domain differ-

ence, and thus in the target domain, it might not be able to

encode sufficient information from the past traversals, in-

cluding those for the P2 score. We thus construct a P2 score

prediction task for the SQuaSH feature to help the model

align the relevant information it extracts in the source do-

main to invariant information encoded in P2-scores. For

each SQuaSH feature Qg
l (q), we apply a simple MLP to

predict the corresponding P2 score,

τ̂(q) = MLP(Qg
l (q)). (5)

We compute the L1 distance between the predicted P2 score

and the corresponding P2 score as the alignment loss,

lalignment = ‖τ̂(q)− τ(q)‖1. (6)

The final objective for the detector training under the source

domain consists of the alignment loss lalignment, in addition

to the regular detection loss for the detector we are adapting

ldetection, computed from the predicted bounding boxes b̂ and

the labels bc. Our methodology is detector agnostic, and

we do not assume the base detector or the detection loss

ldetection.

Unsupervised Self-Training To stabilize finetuning in

the target domain, we apply self-training in the target do-

main. Similar to works [5, 13] that showed the effectiveness

of self-training, we leverage refined pseudo-labels that we

generate for adaptation into the target domain.

Given an aligned detector from P2 feature alignment

training, we can generate bounding boxes in the target do-

main. Given a point cloud Pc in the target domain, we can

obtain bounding boxes b̂ from the detector. Similar to the

source domain, we can compute the P2-score for each point

cloud in the target domain, τ(q), q ∈ Pc. To assess the

quality of a particular bounding box, we can apply a simple

criteria that points within the bounding box cannot be too

persistent, i.e. having P2-scores that are too high. In this

work, we filter out bounding boxes that capture points with

P2-scores with a 20th-percentile larger than 0.7:

b̂final = {b ∈ b̂|P20({τ(qj)}j∈b) < 0.7}, (7)

with a slight abuse in notation, we denote j ∈ b as the j-th

point that is in bounding box b. This gives us the final set

of pseudo-labels, b̂final, and we compute the detection loss

for the model on the pseudo-labels, and the final objective

for the unsupervised training on the target domain is this

pseudo-label detection loss, ldetection computed on b̂final as

the labels.

4. Experiments

Datasets. We experiment with two large-scale autonomous

driving datasets: the Lyft Level 5 Perception dataset [4] and

the Ithaca-365 dataset [2]. To the best of our knowledge,
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these are the only two publicly available autonomous driv-

ing datasets that have both bounding box annotations and

multiple traversals with accurate 6-DoF localization. The

Lyft dataset is collected in Palo Alto (California, US) and

the Ithaca-365 dataset is collected in Ithaca (New York,

US). We use the roof LiDAR (40/60-beam in Lyft; 128-

beam in Ithaca-365), and the global 6-DoF localization with

the calibration matrices directly from the raw data. We sim-

ulate adaptation scenarios in both ways: 1) train in Lyft and

test in Ithaca-365; 2) train in Ithaca-365 and test in Lyft.

Source 3D Object Detectors. In the source domain, we

train the default implementation of PointRCNN model with

Hindsight [11] using both object detection and P2-score

feature alignment training for 60 epochs. We modify the

Hindsight model to predict P2-scores from the inputted

dense point cloud St
l . All models are trained with 4 GPUs

(NVIDIA A6000).

It is worth noting that our methodology has the ability to

be applied to other 3D object detectors as well, and leave

this for future exploration.

Evaluation Metrics. On the Lyft dataset, we evaluate ob-

ject detection performance in a bird’s eye view (BEV) and

use KITTI [3] metrics and conventions for 3D detection.

We report average precision (AP) with the intersection over

union (IoU) thresholds at 0.7 and 0.5 for Car and Pedestri-

ans. Additionally, these evaluations are evaluated at various

depth ranges. Due to space constraints, we report APBEV at

IoU=0.7 for Cars and Pedestrians. On the Ithaca365 dataset,

the default match criterion is by the minimum distance to

the ground-truth bounding boxes. We report the mean aver-

age precision (mAP) with match thresholds of 1-meter for

Cars and Pedestrians. Since there are too few cyclists in the

Ithaca-365 dataset to provide a reasonable performance es-

timate, we train and evaluate our models only on Cars and

Pedestrians.

Adaptation Method Comparisons We compare the pro-

posed methodology against the following methods with

publicly available code: ST3D [9] and Rote-DA [13].

4.1. Domain Adaptation Performance Results

In Table 1 and Table 2, we show the results on adaptation

from a detector trained in the Lyft dataset to the Ithaca365

dataset and vice versa. Based on the tables, we can see

that our methodology, despite its simplicity, outperforms all

baselines in almost all metrics in both adaptation directions.

This goes to show not only that using multiple traversals

serves as a strong learning signal for these models, but also

that predicting P2-scores as a self-supervised learning task

leads to a dramatic improvement.

Hist-DA works especially well in more challenging sce-

narios, specifically in the pedestrian scenario and with far-

ther distances. Although it performs slightly worse for

cars at close ranges, our methodology has a significantly

stronger performance for pedestrians and for far away ob-

jects. The model even outperforms an in-domain detector in

all distances for pedestrians by a substantial amount. Fur-

thermore, due to the simple nature of the single round of

self-training in Hist-DA, our method is significantly sim-

pler to train than any of the baselines, which require many

rounds of self-training. Consequentially, it is significantly

simpler to tune and is faster to train. Observe that by adding

in Hindsight features (+ HS), we are already able to observe

performance gains over the model that doesn’t leverage past

traversal information. This shows that such historical fea-

tures already improve adaption and are more robust across

domains. By including our method, we are able to achieve

the best performance by explicitly bootstrapping in the past

traversal statistics in the form of P2-scores.

4.2. Qualitative Results

We visualize our adaptation results in Figure 2, and com-

pare the detections of Hist-DA (in yellow) to detections

without adaptation (in blue). Observe that detection results

using Hist-DA are qualitatively better than those without

adaptation, both in the shape, as well as precision and re-

call. In particular, for smaller actors such as pedestrians

and in actors that are further away. The feature alignment

training allows for more robust features that generalizes

across domains, and the unsupervised self-training allows

for stronger adaptation into the new domain.

4.3. Analysis

Effect of different adaptation components. We addition-

ally ablate the different components and report our results in

Table 3. Observe that adding in P2-score training is crucial

to the generalizability of the features across domains. Addi-

tionally, adding in self-training (“Pseudo-Label”) helps sta-

bilize the model training in an unsupervised manner into

the new domain. Although using both P2 Training and

pseudo-labels and only using P2 Training have similar per-

formances, we noticed that the number of traversals from

the source to the target domain can affect the performance

of including P2 Training in the target domain. This oc-

curs because P2 scores are inherently derived from repeated

traversals, and the number of traversals can affect its ac-

curacy. To be more specific, we observed that going from

Ithaca365, which had 20 traversals to Lyft, which had 5

traversals made the performance of both P2 and pseudo-

labels worse than using pseudo-labels since the P2 scores

derived from the target domain was introducing noise to

cause the model’s P2 backbone to decrease in accuracy.

Effect of historical traversals. We examine the effect of

the additional information by including unlabeled, histori-

cal traversals. We report our findings in Table 4. Although

directly evaluating on Ithaca365 using a PointRCNN model
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Figure 2. Qualitative visualization of adaptation results. We visualize one example scene (above: LiDAR, below: image, not used for

adaptation) from the adaptation results from the Ithaca-365 → Lyft and Lyft → Ithaca-365 datasets. Ground-truth bounding boxes are

shown in green, detection boxes of no adaptation and our method are shown in blue and yellow, respectively. Best viewed in color.

Source Target Car Pedestrian

P2 Training P2 Training Pseudo-Label 0-30 30-50 50-80 0-80 0-30 30-50 50-80 0-80

41.88 29.31 16.4 30.29 51.16 26.41 5.8 29.99

� 50.57 34.57 19.04 36.39 55.9 38.83 12.28 39.88

� � 37.24 15.26 2.85 18.37 41.16 26.32 12.05 27.73

� � 58.44 40.03 25.26 42.82 60.72 48.58 21.42 48.48
� � � 58.06 42.34 25.82 43.31 60.87 48.42 20.41 47.92

Table 3. Ablation results adapting a detector from Lyft to Ithaca365. Metrics are reported on nuScenes mAP at 1m matching.

trained on Lyft has noticeable performances, one can see

that including the Hindsight model increases the perfor-

mance in both cars and pedestrians, with some distances

improving by almost two-fold. On the other hand, adapting

a PointRCNN model without Hindsight leads to improve-

ments specifically for pedestrians, but performs slightly

worse than (-) adapt / HS in cars. Naturally, adding both

would significantly improve the performance as shown in

the table, with adapting improving the pedestrian perfor-

mance and the hindsight model improving the car perfor-

mance.

PRCNN

Model

Car Pedestrian

0-30 30-50 50-80 0-80 0-30 30-50 50-80 0-80

baseline 42.2 12.7 0.9 18.5 40.7 18.3 0.4 21.2

(-) adapt, HS 41.9 29.3 16.4 30.3 51.2 26.4 5.8 30.0

adapt, (-) HS 54.1 22.8 2.0 27.0 52.5 31.2 1.9 32.1

Ours 58.4 40.0 25.3 42.8 60.7 48.6 21.4 48.5

Table 4. Ablation results adapting a detector from Lyft to

Ithaca365. Metrics reported on nuScenes mAP at 1m matching.

Robustness of the framework. We analyze the robust-

ness of our method to localization error and number of past

traversals used in computing the historical features of the

model. Results for localization error are shown in Table 5;

Hist-DA is robust to minor errors in noise. We additionally

report results for robustness under number of past traversals

in Table 6. Observe that performance gain in adaptation

can be seen with even two past traversals of an area. Addi-

tionally, our method handles higher depths better than other

methods as shown in Table 1 and Table 2, since P2-score as

a self-supervision task acts as a prior over the point clouds

and inherently removes static objects that normal object de-

tectors might not catch at higher depths.

5. Discussion and Future Works
In this work, we propose our method, Hist-DA, for the

task of domain adaptation in self-driving object detection.

Our work is able to achieve strong performance by train-

ing well aligned features from past traversal statistics, and

further leverage the statistics to stabilize model outputs in

the test domain in an unsupervised manner. Our method is

the first to approach domain adaptation for 3D object detec-

tion under a feature alignment perspective leveraging past

traversal information. Furthermore, by bringing in an archi-

tecture specifically designed to leverage such information,
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Loc. Error Car Pedestrian

0-30 30-50 50-80 0-80 0-30 30-50 50-80 0-80

baseline 42.2 12.7 0.9 18.5 40.7 18.3 0.4 21.2

0.1 m 58.2 40.8 24.6 42.6 59.7 47.8 21.1 47.5
0.2 m 58.2 40.1 23.9 42.4 59.2 46.5 19.4 46.4

0.3 m 57.3 40.5 23.0 41.8 57.4 44.5 16.7 44.2

0.4 m 57.0 38.8 21.6 40.7 56.0 41.2 14.3 41.9

0.5 m 56.9 38.4 19.8 40.2 54.4 38.5 11.3 38.9

Table 5. Robustness testing on Lyft to Ithaca365, localization error.

Metrics are reported on nuScenes mAP at 1m matching.

# Traversals Car Pedestrian

0-30 30-50 50-80 0-80 0-30 30-50 50-80 0-80

N = 1 56.0 33.1 14.0 36.3 52.8 32.1 6.3 33.9

N ≤ 2 59.2 39.6 22.2 41.9 58.4 43.5 16.0 43.8

N ≤ 3 59.0 39.9 24.3 42.6 59.8 46.0 19.6 46.5

N ≤ 4 59.1 39.7 25.2 42.9 60.6 48.4 20.9 48.3

Table 6. Robustness testing on Lyft to Ithaca365, number of traver-

sals. Metrics are reported on nuScenes mAP at 1m matching.

we show state-of-the-art performance on two large, real

world datasets. Future directions include expanding this

framework into other object detectors and exploring other

feature alignment methods leveraging past traversals.
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