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Abstract

Traditional image-to-image and text-to-image search
struggle with comprehending complex user intentions, partic-
ularly in fashion e-commerce, where users search for similar
products with text modifications to a reference image. This
paper introduces Progressive Vision-Language Alignment
and Multimodal Fusion (ProVLA), a novel approach which
utilizes a transformer-based vision and language model to
generate multimodal embeddings. Our method involves a
two-step learning process and a cross-attention-based fu-
sion encoder to facilitate robust information fusion, and a
momentum queue-based hard negative mining mechanism
to handle noisy training data. Extensive evaluations on the
Fashion 200k and Shoes benchmark datasets demonstrate
that our model outperforms state-of-the-art methods.

1. Introduction
Image search, a cornerstone of computer vision, encodes

the semantics of an input query to retrieve the most rele-
vant images [9, 24, 31, 12, 10]. However, these traditional
image-to-image and text-to-image modalities often struggle
to accurately understand complex user intentions. Particu-
larly in the fashion e-commerce domain, where users intend
to search for a similar product given a reference picture, but
they also have certain changes over the reference, such as
changing the color and style. In such cases, the traditional
image-to-image and text-to-image methods are limited in
fulfilling the users’ search requirements.

Compositional image search [29, 1, 3] aims to address
these challenges by using both both image and text inputs.
Figure 1 depicts the process of compositional image search.
The image serves as a reference, and the text is used as
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Figure 1. Compositional image search: A new product is retrieved,
resembling the reference image while incorporating changes speci-
fied in the text.

a modification guidance to describe how the reference im-
age should be changed to approximate users’ intentions and
obtain the target image. This approach enables users to ex-
press their ideas more precisely by leveraging both visual
and textual information. However, one intrinsic challenge
is the difficulty of compositing image-text representations
that transform only the image features relevant to the text
modification while preserving other features. Also, given the
labor-intensive data collection and labeling processes, the
training data is prone to be noisy, i.e., wrongly labeled color,
feature, products, etc. Previous works [29, 1, 3] have made
strides in this direction but still face several shortcomings.

This paper proposes ProVLA, a new compositional image
search model that addresses these challenges. It employs
transformer-based vision [21] and language [7] backbone
models to generate embedding tokens for each modality.
We introduce a two-step learning procedure and a cross-
attention-based fusion encoder module to solve the first chal-
lenge, and a momentum queue-based hard negative mining
mechanism to tackle the second challenge. We evaluate
ProVLA on the Fashion 200k [15] and Shoes [14] bench-
marking datasets. Quantitative results indicate our ProVLA
outperforms existing state-of-the-art (SOTA) methods, and
qualitative visualization demonstrates effective interaction
and exchange of information between modalities.
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In summary, our main contributions are the following:

• The introduction of ProVLA, a multimodal composi-
tional learning model for the combined representation
of image and text queries.

• A two-step learning framework to progressively con-
dition the model in the complex knowledge for down-
stream tasks.

• The development of a cross-attention-based multimodal
fusion encoder and a momentum queue-based hard neg-
ative mining mechanism for robust and efficient infor-
mation fusion.

• The validation of ProVLA on multiple image-text re-
trieval benchmarking datasets, demonstrating superior
performance over recent state-of-the-art methods.

2. Related Works
Image Retrieval. Image retrieval, a longstanding problem in
computer vision, relies on learning an embedding space that
maps query and target retrieval candidates closely or far apart
depending on relevance [5]. Traditional unimodal-based
queries are effective for simple searches but struggle with
more complex retrieval targets [12, 24, 22, 20, 32, 36, 11, 34,
35]. In response, Vo et al. proposed a compositional image
retrieval model that combines image and text queries [29].
Subsequent models, like TIRG [29], ARTEMIS [6], VAL
[3], DATIR [13], CoSMo [18], and MAAF [8], have further
developed this approach. However, they tend to neglect
contextualizing backbone models pre-trained on the open-
domain data, which may limit the model to align domain-
specific text terms with image contents.
Vision-language Pre-training. Inspired by the success of
transformer-based pre-training in natural language process-
ing [7], vision-language pre-training leverages large-scale
image-text pairs to learn a joint vision-language embedding
space. Models like CLIP [26] and ALIGN [16] have shown
promising results, yet they often ignore the interaction be-
tween modalities. Other studies such as UNITER [4], ViLT
[17], ALBEF [19], and TCL [33] have proposed ways to
learn joint embeddings of image content and natural lan-
guage during pre-training, thereby increasing the interaction
between modalities. This work builds upon these findings,
proposing a vision-language training approach that tailors
the backbone models to the joint embedding space with the
semantics of the target retrieval task.

3. Proposed Method
The proposed framework, referred to as ProVLA, aims

to create a fused representation of the reference image and
modification text that is well aligned with the target image.
It comprises a two-step progressive learning: Pre-fine-tuning
and Image-Text Composition, and two main components:

multimodal fusion encoder and momentum queue-based neg-
ative mining (Figure 2). The pre-fine-tuning step conditions
the model into the domain-specific semantic spaces [37, 3].
During this phase, the model learns to align domain-specific
text terms with image contents. Subsequently, the Image-
Text Composition process executes multimodal fusion for
the image search and retrieval task. The Pre-fine-tuning and
Image-text composition networks utilize a vision encoder, a
text encoder, and a multimodal fusion encoder, all based on
transformer models [28]. The Pre-fine-tuning network inputs
are the image and its caption, while the Image-text Compo-
sition network takes the reference image, target image, and
corresponding modification text as inputs. In both steps, a
Swin Transformer [21] is employed to extract visual repre-
sentation from images. The compositional image search task
requires both fine-grained visual information for the features
mentioned in the modification text and coarse-grained visual
information for the remaining features that should be pre-
served. As the Swin Transformer learns visual concepts at
different levels of granularity in a hierarchical order, we con-
catenate output image tokens from the penultimate (Stage 3)
layers and the final (Stage 4) as the image embedding. To
encode the semantics of the modification text, we adopt a
6-layer transformer as the language backbone.

We view the image-text composition task as an image-to-
image retrieval task, conditioned by the explicit description
in the modification text. This process mainly relies on the
cross-attention mechanism in the multimodal fusion encoder.
The reference image embedding serves as the query in the
cross-attention operation, acting as the initial search context
for visual information. The modification text embedding,
functioning as both keys and values, is the potential trans-
formation repository, from which relevant modifications are
identified and applied to the image, effectively bridging the
image and text domains.

The primary objective of image-text composition training
is to bring the embeddings of matched composed image-
target image pairs closer while distancing the unmatched
pairs. Therefore we employ a momentum queue-based neg-
ative mining strategy. For this, we leverage contrastive
learning and a mechanism of momentum-based distillation,
maintaining queues to store the most recent composed im-
age, reference image, and target image embeddings [30, 19].
This results in optimized contrastive learning tasks and the
calculation of softmax-normalized similarity.

More formally, let Ir denote the reference image, T the
modifying text, C the composed image, and It the target
image. Let Y c2It

(C) and P c2It

(C) denote, respectively, the
one hot and soft-max normalized similarities between the
composed image and the set of target images, as defined
in [19]. Likewise, let Y Itc2(It) and P Itc2(It) denote the
one-hot and soft-max normalized similarities between the
target image and the set of composed images. Here, (It, C)
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Figure 2. Overview of the proposed ProVLA architecture. It consists of two steps: Pre-fine-tuning and Image-text Composition. In the
Image-text Composition step, two main forward paths are highlighted with blue and orange colors. The blue-colored path is the multimodal
fusion path and the orange colored is the auxiliary loss path. The centered multimodal fusion path is also the inference path. Please be
notified the Fusion Encoder plot in the Image-text Composition step is a simplified plot.

is a positive pair if the tuple (Ir, T ) used to compute C is
paired with It, in which case the one-hot similarity has a
probability of 1. Otherwise, the pair is negative and the one-
hot similarity has a probability of 0. The Composed-Target
matching (CTM) loss is then mathematically defined as the
cross-entropy H between softmax-normalized similarity P
and the one-hot similarity label Y [19], i.e.:

LCTM =
1

2
E(C,It)[H(Y c2It

(C), P c2It

(C))

+H(Y It2c(It), P It2c(It))].

(1)

In order to encourage the vision encoder to preserve visual
attributes not modified by the text, we adopt the Reference-
Target matching (RTM) loss. This loss employs the same
design as the CTM loss, but the pair of inputs is the em-
bedding of reference and target images. Also, to facilitate
the training of the fusion encoder, we adopt the image-text
matching (ITM) and masked language modeling (MLM)
losses, which are widely used in previous vision-language
fusion research [19, 33]. Given the triplet of the reference im-
age, target image, and text, the task of image-text matching
is to predict whether the text matches the difference between
the two images. The masked language modeling task aims to
predict the masked word in the given text by looking at the
remaining text and two images. We adopt the same fusion
encoder for the image-text composition, but the text embed-
ding is the query to the cross-attention. For the ITM, the
difference between target and reference image embedding is
the input to the fusion encoder, and the concatenation of two
image embeddings is used as the input for the MLM task.

In summary, the overall training objective of the Image-

Text Composition is:

L = LCTM + LRTM + LITM + LMLM . (2)

Please note that we omit the loss from the momentum model
[19] for a clearer presentation.

4. Experiment
4.1. Experimental Setup

Datasets. We test our method on two widely-used bench-
marking datasets: Fashion 200k [15] and Shoes [14].

The Fashion 200k dataset, sourced from multiple web-
sites, comprises roughly 200,000 fashion images with prod-
uct information and product images. We adopt the approach
introduced in TIRG [29], using only images and correspond-
ing text captions, where the text style is an attribute list. We
filter image pairs with a single word difference in the cap-
tion and generate modification text in a ”replace A with B”
format. This results in triplets of a reference image, target
image, and modification text. The dataset comprises around
170,000 training and 30,000 testing triplets. The retrieval is
performed by matching target attributes, not images.

The Shoes dataset was initially designed for attribute dis-
covery [2], featuring image-text pairs of products and titles.
It is then augmented with relative captions in natural lan-
guage for dialog-based interactive image retrieval [14]. It
consists of 10,000 training and 4,658 testing triplets. The
modification text in this dataset is human-annotated, reflect-
ing real user feedback in e-commerce.
Baseline Models. We compare ProVLA with a wide range
of baselines including early works and recent SOTA models
on this task, including TIRG [29], VAL [3], MAAF [8],
CoSMo [18], ARTEMIS [6] and DATIR [13].
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Evaluation Metric. For both datasets, we adopt the standard
evaluation metric in retrieval, i.e., Recall@K, denoted as
R@K for short.

Implementation. We use the PyTorch [25] deep learning
framework to conduct all our experiments. The Swin Trans-
former is pre-trained on ImageNet-21k [27] at resolution
224x224. The text encoder and fusion encoder are initialized
with a BERTbase [7] model. We pre-fine-tune the model for
50 and 100 epochs for the Fashion 200K and Shoes datasets,
respectively, using a batch size of 192 on 8 NVIDIA V100
GPUs. The optimizer is AdamW [23] with a weight decay
rate of 0.02. We adopt a cosine-scheduled learning rate with
a warmup set to 1e−5 in the first 30 epochs, and decayed
to 1e−6. The momentum parameter is set to 0.995, and the
size of the hard-negative mining queue is set to 38,400. The
distillation weight α is linearly ramped up from 0 to 0.6
within the 1st epoch.

4.2. Compositional Search Performance

Table 1 and Table 2 illustrate the retrieval performance
on the Fashion 200K and Shoes datasets. From those tables,
we observe that our model achieves compelling results com-
pared to other methods. On the Fashion 200k dataset, our
model surpasses the SOTA method by a significant margin,
with a 2.6 percent points increase in R@10 and a 1.9 percent
points increase in R@50. However, we note a minor setback,
as our model underperforms by 1.6 percent points on the
R@1 metric. Similarly, in the Shoes dataset, our model ex-
hibits a competitive edge, outperforming the SOTA by 0.5
percent points on R@1 and by a notable 3.1 percent points
on R@50. A limitation surfaces on the R@50 metric, where
our model falls behind the SOTA.

The improvement in both datasets can be attributed to our
model’s efficacy in leveraging relevant image and text data,
generating meaningful modifications for improved retrieval
performance. However, the slight deficits in Recall@1 on the
Fashion 200k dataset and Recall@50 on the Shoes dataset un-
derscore room for further refinement. We conjecture that the
shortcomings may stem from the model’s current handling
of edge cases where minor attribute variations significantly
impact the retrieval process.

4.3. Ablation Study

To better understand the impact of the two key compo-
nents of our model, namely the two-step progressive learning
and the queue-based hard negative mining, we conducted an
ablation study. This analysis aims to isolate the contributions
of each component and provide insights into their function-
ality and importance within the model. Table 3 depicts the
result of the ablation study.

Initially, a simplified model without these components
showed R@10 scores of 18.2 and 23.6 on the Fashion 200k
and Shoes datasets, respectively. Adding queue-based hard

Method Fashion 200k

R@1 R@10 R@50

TIRG 14.1 42.5 63.8
VAL 22.9 50.8 72.7

MAAF 18.9 - -
CosMo 23.3 50.4 69.3

ARTEMIS 21.5 51.1 70.5
DATIR 21.5 48.8 71.6

Ours 21.7 53.7 74.6
Table 1. Quantitative results for the Fashion 200k dataset. The
highest value is colored green. ”-” means the result is not reported
in the original paper.

Method Shoes

R@1 R@10 R@50

TIRG 12.6 45.5 69.4
VAL 16.5 49.1 73.5

MAAF 16.4 50.0 76.4
CosMo 16.7 48.4 75.6

ARTEMIS 18.7 53.1 79.3
DATIR 17.2 51.1 75.6

Ours 19.2 56.2 73.3
Table 2. Quantitative results for the Shoes dataset. The highest
value is colored green.

Method Fashion 200k Shoes
R@10 R@10

No Pre-fine-tuning and no
queue-based negative mining 18.2 23.6

No Pre-fine-tuning 30.3 37.4
ProVLA 53.7 56.2

Table 3. Ablation study of removing two key components in the
ProVLA.

negative mining significantly increased the scores to 30.3
and 53.7, demonstrating its vital role in improving retrieval
precision by handling diverse negative samples. Incorpo-
rating both components further improved R@10 scores to
53.7 and 56.2 on the respective datasets, emphasizing the
importance of progressive learning in refining the model’s
understanding of the data.

5. Conclusion
In conclusion, our Progressive Vision-language Align-

ment and Multimodal Fusion (ProVLA) model introduces a
more effective method for image search, especially in con-
texts where users aim to find items similar to a reference
image with specific modifications. The model employs a
two-step learning framework, a cross-attention-based fusion
encoder, and a momentum queue-based hard negative min-
ing mechanism to tackle inherent challenges. Evaluated on
multiple image-text retrieval benchmark datasets, ProVLA
outperforms recent state-of-the-art methods, illustrating its
potential for robust and precise image search.
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