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Abstract

Language models demonstrate remarkable capacity to
generalize representations learned in one modality to down-
stream tasks in other modalities. Can we trace this ability
to individual neurons? We study the case where a frozen
text transformer is augmented with vision using a self-
supervised visual encoder and a single linear projection
learned on an image-to-text task. Outputs of the projection
layer are not immediately decodable into language describ-
ing image content; instead, we find that translation between
modalities occurs deeper within the transformer. We intro-
duce a procedure for identifying “multimodal neurons” that
convert visual representations into corresponding text, and
decoding the concepts they inject into the model’s residual
stream. In a series of experiments, we show that multimodal
neurons operate on specific visual concepts across inputs,
and have a systematic causal effect on image captioning.
Project page: mmns.csail.mit.edu

1. Introduction

In 1688, William Molyneux posed a philosophical riddle
to John Locke that has remained relevant to vision science
for centuries: would a blind person, immediately upon gain-
ing sight, visually recognize objects previously known only
through another modality, such as touch [24, 30]? A pos-
itive answer to the Molyneux Problem would suggest the
existence a priori of ‘amodal’ representations of objects,
common across modalities. In 2011, vision neuroscien-
tists first answered this question in human subjects—no, im-
mediate visual recognition is not possible—but crossmodal
recognition capabilities are learned rapidly, within days af-
ter sight-restoring surgery [15]. More recently, language-
only artificial neural networks have shown impressive per-
formance on crossmodal tasks when augmented with addi-
tional modalities such as vision, using techniques that leave
pretrained transformer weights frozen [40, 7, 25, 28, 18].

Vision-language models commonly employ an image-
conditioned variant of prefix-tuning [20, 22], where a sep-
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Figure 1. Multimodal neurons in transformer MLPs activate on
specific image features and inject related text into the model’s next
token prediction. Unit 2019 in GPT-J layer 14 detects horses.

arate image encoder is aligned to a text decoder with a
learned adapter layer. While Frozen [40], MAGMA [7],
and FROMAGe [18] all use image encoders such as CLIP
[33] trained jointly with language, the recent LiMBeR [28]
study includes a unique setting: one experiment uses the
self-supervised BEIT [2] network, trained with no linguistic
supervision, and a linear projection layer between BEIT and
GPT-J [43] supervised by an image-to-text task. This setting
is the machine analogue of the Molyneux scenario: the ma-
jor text components have never seen an image, and the ma-
jor image components have never seen a piece of text, yet
LiMBeR-BEIT demonstrates competitive image captioning
performance [28]. To account for the transfer of semantics
between modalities, are visual inputs translated into related
text by the projection layer, or does alignment of vision
and language representations happen inside the text trans-
former? In this work, we find:

1. Image prompts cast into the transformer embedding
space do not encode interpretable semantics. Transla-
tion between modalities occurs inside the transformer.

2. Multimodal neurons can be found within the trans-
former, and they are active in response to particular
image semantics.

3. Multimodal neurons causally affect output: modulat-
ing them can remove concepts from image captions.
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Figure 2. Top five multimodal neurons (layer L, unit u), for sample images from 6 COCO supercategories. Superimposed heatmaps (0.95
percentile of activations) show mean activations of the top five neurons over the image. Gradient-based attribution scores are computed
with respect to the logit shown in bold in the GPT caption of each image. The two highest-probability tokens are shown for each neuron.

2. Multimodal Neurons

Investigations of individual units inside deep networks
have revealed a range of human-interpretable functions: for
example, color-detectors and Gabor filters emerge in low-
level convolutional units in image classifiers [8], and later
units that activate for object categories have been found
across vision architectures and tasks [44, 3, 31, 5, 16]. Mul-
timodal neurons selective for images and text with similar
semantics have previously been identified by Goh ef al. [12]
in the CLIP [33] visual encoder, a ResNet-50 model [14]
trained to align image-text pairs. In this work, we show that
multimodal neurons also emerge when vision and language
are learned entirely separately, and convert visual represen-
tations aligned to a frozen language model into text.

2.1. Detecting multimodal neurons

We analyze text transformer neurons in the multimodal
LiMBeR model [28], where a linear layer trained on
CC3M [36] casts BEIT [2] image embeddings into the in-
put space (er, = 4096) of GPT-J 6B [43]. GPT-J transforms
input sequence z = [z1,...,xp] into a probability distri-
bution y over next-token continuations of x [42], to create
an image caption (where P = 196 image patches). At layer
/¢, the hidden state hf is given by hffl + a;’ + m;?, where
a;’ and m;’ are attention and MLP outputs. The output
of the final layer L is decoded using W for unembedding:
y = softmax(Wzh’), which we refer to as decoder(h’).

Recent work has found that transformer MLPs encode
discrete and recoverable knowledge attributes [I1, 6, 26,

]. Each MLP is a two-layer feedforward neural network
that, in GPT-J, operates on hffl as follows:

m;" = W}, GELU(W/, hi™")

wm e
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Motivated by past work uncovering interpretable roles of
individual MLP neurons in language-only settings [0], we
investigate their function in a multimodal context.

Attributing model outputs to neurons with image input.
We apply a procedure based on gradients to evaluate the
contribution of neuron uy, to an image captioning task. This
approach follows several related approaches in neuron attri-
bution, such as Grad-CAM [35] and Integrated Gradients
[39, 6]. We adapt to the recurrent nature of transformer
token prediction by attributing neuron effects from image
patches to generated tokens in the caption, which may be
several transformer passes later. We assume the model is
predicting c as the most probable next token ¢, with logit
y°. We define the attribution score g of u;, on token c after
a forward pass through image patches {1,...,p} and pre-
activation output Z, using the following equation:

a c

9k,c = Z;]f 87;5

This score is maximized when both the neuron’s output

and the effect of the neuron are large. It is a rough heuristic,

loosely approximating to first-order the neuron’s effect on

the output logit, compared to a baseline in which the neu-

ron is ablated. Importantly, this gradient can be computed
efficiently for all neurons using a single backward pass.

2

2.2. Decoding multimodal neurons

What effect do neurons with high g . have on model
output? We consider ug, € U ¢ the set of first-layer MLP
units (|U| = 16384 in GPT-J). Following Equation 1 and
the formulation of transformer MLPs as key-value pairs
from [11], we note that activation Af of uj contributes a
“value” from W, to h;. After the first layer operation:

m; = WoutAi (3)

As Ak grows relative to Ag (where j # k), the direc-
tion of m; approaches Wk , A% where Wk , is one row

of weight matrix W,,;. As this vector gets added to the
residual stream, it has the effect of boosting or demoting
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BERTScore CLIPScore
random 3627 21.74
multimodal neurons .3848 23.43
GPT captions 5251 23.62

Table 1. Language descriptions of multimodal neurons correspond
with image semantics and human annotations of images. Scores
are reported for a random subset of 1000 COCO validation images.
Each BERTScore (F1) is a mean across 5 human image annota-
tions from COCO. For each image, we record the max CLIPScore
and BERTScore per neuron, and report means across all images.

certain next-word predictions (see Figure 1). To decode the
language contribution of uy to model output, we can di-
rectly compute decoder(Wk ,), following the simplifying
assumption that representations at any layer can be trans-
formed into a distribution over the token vocabulary using
the output embeddings [1 1, 10, 1, 34]. To evaluate whether
uy translates an image representation into semantically re-

lated text, we compare decoder(WE ,) to image content.

Do neurons translate image semantics into related text?
We evaluate the agreement between visual information in
an image and the text multimodal neurons inject into the
image caption. For each image in the MSCOCO-2017 [23]
validation set, where LiMBeR-BEIT produces captions on
par with using CLIP as a visual encoder [28], we calculate
gk, for uy, across all layers with respect to the first noun ¢
in the generated caption. For the 100 w;, with highest gy, .
for each image, we compute decoder(W~,,) to produce a
list of the 10 most probable language tokens uy contributes
to the image caption. Restricting analyses to interpretable
neurons (where at least 7 of the top 10 tokens are words in
the English dictionary containing > 3 letters) retains 50%
of neurons with high gy, . (see examples and further imple-
mentation details in the Supplement).

We measure how well decoded tokens (e.g. horses,
racing, ponies, ridden, . in Figure 1) corre-
spond with image semantics by computing CLIPScore [17]
relative to the input image and BERTScore [45] rela-
tive to COCO image annotations (e.g. a cowboy riding a
horse). Table 1 shows that tokens decoded from multimodal
neurons perform competitively with GPT image captions
on CLIPScore, and outperform a baseline on BERTScore
where pairings between images and decoded multimodal
neurons are randomized (we introduce this baseline as we
do not expect BERTScores for comma-separated token lists
to be comparable to GPT captions, e.g. a horse and rider).

Figure 2 shows example COCO images alongside top-
scoring multimodal neurons per image, and image regions
where the neurons are maximally active. Most top-scoring
neurons are found between layers 5 and 10 of GPT-J (L =
28; see Supplement), consistent with the finding from [26]
that MLP knowledge contributions occur in earlier layers.

A surfer is riding a wave in light blue water ™,
A person lying on a surfboard ”...]
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Figure 3. CLIPScores for text-image pairs show no significant dif-
ference between decoded image prompts and random embeddings.
For image prompts, we report the mean across all image patches
as well as the distribution of max CLIPScores per image.

Random Prompts GPT COCO
CLIPScore 19.22 19.17 23.62  27.89
BERTScore .3286 3291 5251 4470

Table 2. Image prompts are insignificantly different from ran-
domly sampled prompts on CLIPScore and BERTScore. Scores
for GPT captions and COCO nouns are shown for comparison.

3. Experiments

3.1. Does the projection layer translate images into
semantically related tokens?

We decode image prompts aligned to the GPT-J embed-
ding space into language, and measure their agreement with
the input image and its human annotations for 1000 ran-
domly sampled COCO images. As image prompts corre-
spond to vectors in the embedding space and not discrete
language tokens, we map them (and 1000 randomly sam-
pled vectors for comparison) onto the five nearest tokens
for analysis (see Figure 3 and Supplement). A Kolmogorov-
Smirnov test [19, 37] shows no significant difference (D =
.037,p > .5) between CLIPScore distributions comparing
real decoded prompts and random embeddings to images.
We compute CLIPScores for five COCO nouns per image
(sampled from human annotations) which show significant
difference (D > .9,p < .001) from image prompts.

We measure agreement between decoded image
prompts and ground-truth image descriptions by computing
BERTScores relative to human COCO annotations. Table 2
shows mean scores for real and random embeddings along-
side COCO nouns and GPT captions. Real and random
prompts are negligibly different, confirming that inputs to
GPT-J do not readily encode interpretable semantics.
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Figure 4. Top-activating COCO images for two multimodal neu-
rons. Heatmaps (0.95 percentile of activations) illustrate consis-
tent selectivity for image regions translated into related text.

3.2. Is visual specificity robust across inputs?

A long line of interpretability research has shown that
evaluating alignment between individual units and seman-
tic concepts in images is useful for characterizing feature
representations in vision models [4, 5, 46, 16]. Approaches
based on visualization and manual inspection (see Figure 4)
can reveal interesting phenomena, but scale poorly.

We quantify the selectivity of multimodal neurons for
specific visual concepts by measuring the agreement of their
receptive fields with COCO instance segmentations, follow-
ing [3]. We simulate the receptive field of u; by comput-
ing A¥ on each image prompt z; € [z1,...,xp], reshap-
ing A% into a 14 x 14 heatmap, and scaling to 224 x 224
using bilinear interpolation. We then threshold activations
above the 0.95 percentile to produce a binary mask over the
image, and compare this mask to COCO instance segmen-
tations using Intersection over Union (IoU). To test speci-
ficity for individual objects, we select 12 COCO categories
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Figure 5. Across 12 COCO categories, the receptive fields of mul-
timodal neurons better segment the concept in each image than
randomly sampled neurons in the same layers. The Supplement
provides additional examples.
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Figure 6. Ablating multimodal neurons degrades image caption
content. We plot the effect of ablating multimodal neurons ordered
by gk, and randomly sampled units in the same layers (left), and
show an example (right) of the effect on a single image caption.

with single object annotations, and show that across all cat-
egories, the receptive fields of multimodal neurons better
segment the object in each image than randomly sampled
neurons from the same layers (Figure 5). While this exper-
iment shows that multimodal neurons are reliable detectors
of concepts, we also test whether they are selectively ac-
tive for images containing those concepts, or broadly active
across images. Results in the Supplement show preferential
activation on particular categories of images.

3.3. Do multimodal neurons causally affect output?

To investigate how strongly multimodal neurons causally
affect model output, we successively ablate units sorted by
gk, and measure the resulting change in the probability
of token c. Results for all COCO validation images are
shown in Figure 6, for multimodal neurons (filtered and un-
filtered for interpretability), and randomly selected units in
the same layers. When up to 6400 random units are ablated,
we find that the probability of token c is largely unaffected,
but ablating the same number of top-scoring units decreases
token probability by 80% on average. Ablating multimodal
neurons also leads to significant changes in the semantics
of GPT-generated captions. Figure 6 shows one example;
additional analysis is provided in the Supplement.

4. Conclusion

We find multimodal neurons in text-only transformer
MLPs and show that these neurons consistently translate
image semantics into language. Interestingly, soft-prompt
inputs to the language model do not map onto interpretable
tokens in the output vocabulary, suggesting translation be-
tween modalities happens inside the transformer. The ca-
pacity to align representations across modalities could un-
derlie the utility of language models as general-purpose in-
terfaces for tasks involving sequential modeling [25 |, 13, 38,
29], ranging from next-move prediction in games [ 21, 32]
to protein design [41, 9]. Understanding the roles of indi-
vidual computational units can serve as a starting point for
investigating how transformers generalize across tasks.
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5. Limitations

We study a single multimodal model (LiMBeR-BEIT)
of particular interest because the vision and language com-
ponents were learned separately. The discovery of multi-
modal neurons in this setting motivates investigation of this
phenomenon in other vision-language architectures, and
even models aligning other modalities. Do similar neurons
emerge when the visual encoder is replaced with a raw pixel
stream such as in [25], or with a pretrained speech autoen-
coder? Furthermore, although we found that the outputs
of the LiMBeR-BEIT projection layer are not immediately
decodable into interpretable language, our knowledge of
the structure of the vector spaces that represent information
from different modalities remains incomplete, and we have
not investigated how concepts encoded by individual units
are assembled from upstream representations. Building a
more mechanistic understanding of information processing
within transfomers may help explain their surprising ability
to generalize to non-textual representations.

6. Acknowledgements

We are grateful for the support of the MIT-IBM Watson
Al Lab, and ARL grant W911NF-18-2-0218. We thank Ja-
cob Andreas, Achyuta Rajaram, and Tazo Chowdhury for
their useful input and insightful discussions.

References

[1] J Alammar. Ecco: An open source library for the explain-
ability of transformer language models. In Proceedings of
the 59th annual meeting of the association for computational
linguistics and the 11th international joint conference on
natural language processing: System demonstrations, pages
249-257,2021. 3

[2] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit:
Bert pre-training of image transformers. arXiv preprint
arXiv:2106.08254,2021. 1,2

[3] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and
Antonio Torralba. Network dissection: Quantifying inter-
pretability of deep visual representations. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 6541-6549, 2017. 2, 4

[4] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and
Antonio Torralba. Network dissection: Quantifying inter-
pretability of deep visual representations. In Computer Vi-
sion and Pattern Recognition, 2017. 4

[5] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Agata Lapedriza,
Bolei Zhou, and Antonio Torralba. Understanding the role of
individual units in a deep neural network. Proceedings of the
National Academy of Sciences, 2020. 2, 4

[6] Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang,
and Furu Wei. Knowledge neurons in pretrained transform-
ers. arXiv preprint arxiv:2104.08696, 2022. 2

[7] Constantin Eichenberg, Sidney Black, Samuel Weinbach,
Letitia Parcalabescu, and Anette Frank. Magma—multimodal

(8]

(9]

[10]

[11]

(12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

(22]

2866

augmentation of generative models through adapter-based
finetuning. arXiv preprint arXiv:2112.05253, 2021. 1

Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal
Vincent. Visualizing higher-layer features of a deep network.
University of Montreal, 1341(3):1, 2009. 2

Noelia Ferruz and Birte Hocker. Controllable protein de-
sign with language models. Nature Machine Intelligence
4(6):521-532,2022. 4

Mor Geva, Avi Caciularu, Guy Dar, Paul Roit, Shoval
Sadde, Micah Shlain, Bar Tamir, and Yoav Goldberg. Lm-
debugger: An interactive tool for inspection and interven-
tion in transformer-based language models. arXiv preprint
arXiv:2204.12130,2022. 3

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy.
Transformer feed-forward layers are key-value memories.
arXiv preprint arXiv:2012.14913, 2020. 2, 3

Gabriel Goh, Nick Cammarata §, Chelsea Voss f, Shan
Carter, Michael Petrov, Ludwig Schubert, Alec Radford, and
Chris Olah. Multimodal neurons in artificial neural net-
works. Distill, 2021. https://distill.pub/2021/multimodal-
neurons. 2

Yaru Hao, Haoyu Song, Li Dong, Shaohan Huang, Zewen
Chi, Wenhui Wang, Shuming Ma, and Furu Wei. Lan-
guage models are general-purpose interfaces. arXiv preprint
arXiv:2206.06336, 2022. 4

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770-778, 2016. 2

Richard Held, Yuri Ostrovsky, Beatrice de Gelder, Tapan
Gandhi, Suma Ganesh, Umang Mathur, and Pawan Sinha.
The newly sighted fail to match seen with felt. Nature neu-
roscience, 14(5):551-553, 2011. 1

Evan Hernandez, Sarah Schwettmann, David Bau, Teona
Bagashvili, Antonio Torralba, and Jacob Andreas. Natural
language descriptions of deep visual features. In Interna-
tional Conference on Learning Representations, 2022. 2, 4
Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras,
and Yejin Choi. CLIPScore: a reference-free evaluation met-
ric for image captioning. In EMNLP, 2021. 3

Jing Yu Koh, Ruslan Salakhutdinov, and Daniel Fried.
Grounding language models to images for multimodal gen-
eration. arXiv preprint arXiv:2301.13823, 2023. 1

Andrej N Kolmogorov. Sulla determinazione empirica di una
legge didistribuzione. Giorn Dell’inst Ital Degli Att, 4:89—
91,1933.3

Brian Lester, Rami Al-Rfou, and Noah Constant. The power
of scale for parameter-efficient prompt tuning. arXiv preprint
arXiv:2104.08691, 2021. 1

Kenneth Li, Aspen K Hopkins, David Bau, Fernanda Viégas,
Hanspeter Pfister, and Martin Wattenberg. Emergent world
representations: Exploring a sequence model trained on a
synthetic task. arXiv preprint arXiv:2210.13382, 2022. 4
Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimiz-
ing continuous prompts for generation. arXiv preprint
arXiv:2101.00190, 2021. 1



[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

(34]

[35]

[36]

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dolldr, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Computer Vision—-ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740-755. Springer, 2014. 3

John Locke. An Essay Concerning Human Understanding.
London, England: Oxford University Press, 1689. 1

Kevin Lu, Aditya Grover, Pieter Abbeel, and Igor Mordatch.
Pretrained transformers as universal computation engines.
arXiv preprint arXiv:2103.05247,1,2021. 1,4, 5

Kevin Meng, David Bau, Alex J Andonian, and Yonatan Be-
linkov. Locating and editing factual associations in gpt. In
Advances in Neural Information Processing Systems, 2022.
2,3

Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan
Belinkov, and David Bau. Mass editing memory in a trans-
former. arXiv preprint arxiv:2210.07229, 2022. 2

Jack Merullo, Louis Castricato, Carsten Eickhoff, and Ellie
Pavlick. Linearly mapping from image to text space. arXiv
preprint arXiv:2209.15162,2022. 1,2, 3

Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter,
Danny Driess, Montserrat Gonzalez Arenas, Kanishka
Rao, Dorsa Sadigh, and Andy Zeng. Large language
models as general pattern machines. In arXiv preprint
arXiv:2307.04721, 2023. 4

Michael J. Morgan. Molyneux’s Question: Vision, Touch and
the Philosophy of Perception. Cambridge University Press,
1977. 1

Chris Olah, Alexander Mordvintsev, and Ludwig Schubert.
Feature visualization. Distill, 2(11):e7, 2017. 2

Vishal Pallagani, Bharath Muppasani, Keerthiram Muruge-
san, Francesca Rossi, Lior Horesh, Biplav Srivastava,
Francesco Fabiano, and Andrea Loreggia. Plansformer:
Generating symbolic plans using transformers.  arXiv
preprint arXiv:2212.08681, 2022. 4

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748-8763. PMLR, 2021. 1,2

Ori Ram, Liat Bezalel, Adi Zicher, Yonatan Belinkov,
Jonathan Berant, and Amir Globerson. What are you token
about? dense retrieval as distributions over the vocabulary.
arXiv preprint arXiv:2212.10380, 2022. 3

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek
Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Ba-
tra. Grad-CAM: Visual explanations from deep networks via
gradient-based localization. International Journal of Com-
puter Vision, 128(2):336-359, oct 2019. 2

Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu
Soricut. Conceptual captions: A cleaned, hypernymed, im-
age alt-text dataset for automatic image captioning. In Pro-
ceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages
2556-2565, Melbourne, Australia, July 2018. Association
for Computational Linguistics. 2

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

2867

Nickolay Smirnov. Table for estimating the goodness of fit
of empirical distributions. The annals of mathematical statis-
tics, 19(2):279-281, 1948. 3

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu
Awal Md Shoeb, Abubakar Abid, Adam Fisch, Adam R
Brown, Adam Santoro, Aditya Gupta, Adria Garriga-
Alonso, et al. Beyond the imitation game: Quantifying
and extrapolating the capabilities of language models. arXiv
preprint arXiv:2206.04615, 2022. 4

Mukund Sundararajan, Ankur Taly, and Qiqgi Yan. Ax-
iomatic attribution for deep networks. In Doina Precup and
Yee Whye Teh, editors, Proceedings of the 34th Interna-
tional Conference on Machine Learning, volume 70 of Pro-
ceedings of Machine Learning Research, pages 3319-3328.
PMLR, 06-11 Aug 2017. 2

Maria Tsimpoukelli, Jacob L Menick, Serkan Cabi, SM Es-
lami, Oriol Vinyals, and Felix Hill. Multimodal few-shot
learning with frozen language models. Advances in Neural
Information Processing Systems, 34:200-212, 2021. 1
Serbulent Unsal, Heval Atas, Muammer Albayrak, Kemal
Turhan, Aybar C Acar, and Tunca Dogan. Learning func-
tional properties of proteins with language models. Nature
Machine Intelligence, 4(3):227-245, 2022. 4

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez,t. ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 2

Ben Wang and Aran Komatsuzaki. GPT-J-6B:
A 6 Billion Parameter Autoregressive Language
Model. https://github.com/kingoflolz/

mesh-transformer-jax, May 2021. 1,2

Matthew D Zeiler and Rob Fergus. Visualizing and un-
derstanding convolutional networks. In Computer Vision—
ECCV 2014: 13th European Conference, Zurich, Switzer-
land, September 6-12, 2014, Proceedings, Part I 13, pages
818-833. Springer, 2014. 2

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-
berger, and Yoav Artzi. Bertscore: Evaluating text genera-
tion with bert. arXiv preprint arXiv:1904.09675, 2019. 3
Bolei Zhou, David Bau, Aude Oliva, and Antonio Torralba.
Interpreting deep visual representations via network dissec-
tion. [EEE transactions on pattern analysis and machine
intelligence, 41(9):2131-2145, 2018. 4



