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Abstract

Nowadays, many people frequently have to search for
new accommodation options. Searching for a suitable
apartment is a time-consuming process, especially because
visiting them is often mandatory to assess the truthfulness
of the advertisements found on the Web. While this pro-
cess could be alleviated by visiting the apartments in the
metaverse, the Web-based recommendation platforms are
not suitable for the task. To address this shortcoming, in this
paper, we define a new problem called text-to-apartment
recommendation, which requires ranking the apartments
based on their relevance to a textual query expressing the
user’s interests. To tackle this problem, we introduce FAr-
MARe, a multi-task approach that supports cross-modal
contrastive training with a furniture-aware objective. Since
public datasets related to indoor scenes do not contain de-
tailed descriptions of the furniture, we collect and annotate
a dataset comprising more than 6000 apartments. A thor-
ough experimentation with three different methods and two
raw feature extraction procedures reveals the effectiveness
of FArMARe in dealing with the problem at hand.

Keywords— Cross-Modal Understanding, Tag-aware

Visual Representations, Metaverse Applications, Apart-

ment Recommendation, Contrastive Learning

1. Introduction
Nowadays, it is common to move across different cities

or nations every few years when looking for commercial or

educational opportunities. This situation leads to an even

Figure 1: The proposed problem: text-to-apartment recom-

mendation requires ranking all the apartments to recom-

mend those which are most suitable based on the user in-

terests.

more difficult problem, which is finding a new home. To do

so, one has to read hundreds or thousands of different adver-

tisements which often highlight the positive aspects of the

house, apartment, flat, etc1, while neglecting the negative

ones (e.g., unappealing due to mismatched styles, gloomy

due to unsightly furniture and colors, etc). Moreover, even

when selecting a subset of the apartments and visiting only

1In the rest of the paper, we will use apartments to cover these slightly

different situations.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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those, the process is incredibly time-consuming and stress-

ful, while also becoming more costly and environmentally

unfriendly due to the need to physically move to the loca-

tion. Therefore, visiting digital twins of the apartments in

the metaverse would be a more favorable and ideal solu-

tion. However, we argue that the dedicated Web applica-

tions which are commonly used to ease the search process

across all the advertisements, do not represent a good fit.

In fact, it is common for these applications to identify a

set of properties (e.g., availability, size, price, number of

rooms, number of bathrooms, etc) to obtain a filtered list of

viable candidates. Yet, these approaches do not allow for

a comprehensive analysis of the apartment, as they enable

specifying some properties but many unstated user require-
ments are left out. Therefore, to truly support the user in

the search for an optimal apartment through metaverse ex-

ploration, there is a need for an automatic solution which

both analyzes the contents of the metaverse scenario and

the users’ interests to find fewer recommendations that the

user can comfortably visit.

The proposed problem, which we name as “text-to-
apartment recommendation”, requires to rank a set of

apartments based on their relevance to a given user query, as

shown in Figure 1. Interestingly, neither this problem nor its

more general version related to retrieving 3D scenes based

on textual queries, have been studied in the literature. The

closest problem which was previously addressed consists in

ranking 3d scenes based on 2d images used as queries [2, 3].

However, such a methodology leads to possible limitations.

First, the user needs to have a visualization of the desired

apartment, which may be difficult to have, while also limit-

ing the flexibility of the approach (e.g., if the user sketches

a floorplan, then it may be difficult to retrieve those apart-

ments which have the same furniture and structural details,

yet following a different layout). Second, it also limits the

usability from the users’ point of view, since describing the

desired features in an apartment may be easier than sketch-

ing it, while also allowing for more flexibility both with re-

spect to floorplan layout (e.g., by not mentioning the posi-

tion of the furniture) and to the details which are left out

in the query (e.g., if the user does not mention a need for

a microwave oven, the retrieved apartments could include

both those equipping it and those who do not). The pro-

posed problem, which will be formally described in Section

2 along its main challenges, aims at allowing the users to

describe their interests with free-form text, since this may

represent a more comfortable solution, while also avoiding

the limitations related to the more traditional Web-based ap-

proaches.

How to tackle this problem? We consider two main fac-

tors to support our design choices for a text-to-apartment

model. First, the metaverse apartments could be seen as

3d scenes; however, the advertisements for them commonly

contain several photos to capture the environment and the

furniture available. Second, in recent years there have

been impressive advancements in vision and language un-

derstanding [33], enabling several multimodal applications

and allowing for cross-modal interactions. Therefore, we

model our metaverse apartments as a set of images, anno-

tate each apartment with very detailed descriptions, and use

a CLIP-based approach to model the cross-modal relations

and enable ranking. In particular, we implement several

solutions based on deep learning, both inspired by recent

literature and from past literature on related topics. The fi-

nal methodology we propose, which we called FArMARe

(Furniture-AwaRe Multi-task methodology for Apartment

REcommendation), consists of a multi-task learning ap-

proach based on two sub-tasks. First, a contrastive learning

objective requires the model to learn cross-modal relations

helpful for ranking. Second, a furniture-based classifica-

tion objective requires the model to more precisely identify

the furniture displayed in the images. To experimentally

validate our methodology, we collect a benchmark dataset

consisting of around 6000 apartments, each of which is an-

notated by detailed descriptions of its furniture. This is be-

cause, as described below, the publicly available datasets do

not offer both photo-like indoor pictures and detailed textual

descriptions, which are required in our setting.

In summary, the following are the main contributions of

this paper:

• We introduce the problem of text-to-apartment rec-

ommendation, and collect and annotate a benchmark

dataset of more than 6000 apartments.

• We design a multi-task learning methodology, called

FArMARe, to tackle the problem by introducing a

furniture-aware training objective.

• We compare the effectiveness of our method with sev-

eral baselines, inspired by previous research works on

similar topics, and show its effectiveness, achieving an

improvement of +1.1% R@1 and +2.0% R@5.

In Section 2 we describe the proposed text-to-apartment

recommendation problem and its challenges. Then, Sec-

tion 3 introduces the scientific literature related to our prob-

lem. The proposed methodology is described in Section

4, whereas a thorough experimental setting is followed in

Section 5, and several limitations and future directions are

highlighted in Section 6. Finally, Section 7 concludes the

manuscript.

2. Text-to-apartment recommendation: defini-
tion and challenges

The proposed problem, text-to-apartment recommenda-

tion, requires understanding the contents of the 3d scenario
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Figure 2: Overview of the proposed methodology. Details in Section 4.

representing the apartment, analyzing the user interests, and

then connecting them. If the latter are formalized through

free-form natural language, then the problem can be for-

mally defined as follows. Given a set A of apartments,

A = {a1, . . . , aN}, each annotated by a description di, the

objective is to learn two functions, f and g, such that the

apartment ai is the first retrieved if the query is di, i.e.,

∀j �= i, sim(f(ai), g(di)) ≥ sim(f(ai), g(dj)), where

sim is a similarity metric. In our setting, inspired by the

typical structure of the advertisements, each apartment ai is

depicted with a finite set of images.

The proposed problem could be considered similar to

other instances of multimedia retrieval, such as text-to-

image retrieval [33, 35]. However, two main intertwined

challenges remain. First, there are many details of the apart-

ment which need to be considered, both structural, e.g., how

many rooms it has, the presence of separate living and din-

ing rooms, etc, and furniture-related, such as all the mod-

ern appliances in the kitchen (fridge, microwave oven, etc).

All these details can be inferred from visual analysis, and

assessing their relevance to the user interests is very chal-

lenging both due to their amount and their different gran-

ularity. A second challenge is given by the complexity of

modeling all these details into the user interests. In fact, by

packing everything into a description, it may end up in very

long sentences, made of several hundreds of tokens, which

may make it difficult to process and understand. These two

problems entail a complex task involving both scene under-

standing capabilities and cross-modal understanding.

3. Related work
There are several fields which are related to the proposed

text-to-apartment recommendation problem. First of all,

Section 3.1 will discuss the available datasets about apart-

ments, and highlight the motivations which led us to collect

a new dataset. Then, Section 3.2 will cover recent advance-

ments in scene and language understanding. Finally, in Sec-

tion 3.3 we explore the literature on the topic of cross-modal

retrieval and contextualize our work into it.

3.1. About the dataset options for apartments

The proposed problem involves reasoning on both apart-

ments and textual data. In Table 1 we summarize sev-

eral characteristics of the publicly available datasets re-

lated to apartments or, more in general, house-like en-

vironments. Overall, we looked for a large-scale pub-

licly available dataset containing indoor visual information

(e.g., multiple photos or a 3d reconstruction), accompa-

nied by descriptions of the contents, furniture, etc. How-

ever, most of the previously published datasets present

some shortcomings which limit their applicability to our

use case. Houses3k [32], HouseExpo [27], and Text-to-
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3dHouseModel [14] offer only floorplan representation of

the houses, which may not effectively capture appliances

and other furniture, thus limiting their usefulness for rec-

ommending an apartment. FutureHouse [28], Matterport3d

[11], and Habitat-Matterport3d [34] present high-quality

panoramic, 3d scenes, images, or other visual formats, yet

no language annotations are available. Closest to our work

and task are SHREC 2018/2019 [2, 3, 46], House3d [44],

and Rent3d [30]. However, both Rent3d and SHREC lack

textual annotations, whereas House3d has some categorical

information but it is not publicly available. Therefore, we

decided to collect a new dataset, starting from the realistic

rooms available in 3d-FRONT [22] and creating textual de-

scriptions by aggregating the object, style, theme, and ma-

terial information available in the dataset (details in Section

5.1). Noteworthily, this allows for learning to identify the

furniture and appliances which are available, whereas the

annotations in Text-to-3dHouseModel only described the

type of rooms and their location within the house (i.e., not

“detailed” with respect to the proposed task).

3.2. Scene understanding and language

Early works on scene understanding focused on analyz-

ing the contents of 2d scenes and linking them to textual an-

notations, for instance when trying to automatize the gener-

ation of coherent descriptions [29], providing a correct an-

swer for content-related questions [18], or dealing with text-

guided indoor navigation [6]. Compared to the 2d counter-

part, similar tasks are far less explored on 3d scenes. In

the previous works, the focus was on associating language

and single object instances. Chen et al. learned a joint 3d-

text embedding space for text-guided generation purposes

[13]. Achlioptas et al. focused on a similar objective, al-

though working at a much finer granularity, learning to dis-

tinguish between very fine-grained details of the 3d objects

[5]. Then, the research focused on more detailed descrip-

tions, containing multiple objects and, possibly, rooms at

the same time. This led to the creation of challenging tasks

involving the identification of precise instances of an ob-

ject among many distractors [4, 12] and, very recently, the

automatic captioning of 3d scenes [16].

The task we propose in this paper is highly related to

these advances. Nonetheless, its novelty and importance is

highly motivating. First, current research fields are mostly

related to localizing or generating objects, which are funda-

mental tasks yet they may not be as useful when trying to

compare complex scenes and assess their relevance to the

user interests. Second, the direct implications which our

task can have both on businesses related to the metaverse,

and on a more environmental-friendly approach to visiting

apartments while looking for new accommodation.

3.3. Multimedia retrieval

Finding multimedia content which is relevant to the

user interests among many hundreds of thousands or even

millions of examples is a difficult problem which is get-

ting more and more attention from the research commu-

nity [23, 33]. The users commonly describe their interests

by means of textual queries, which are then automatically

mapped into a joint embedding space where another type

of multimedia content is also mapped, e.g., images [33, 35]

or videos [21, 23]. Recently, even more modalities were

taken into consideration when building these spaces, e.g.,

by considering simultaneously text, image/video, and audio

[7, 39]. The problem we are facing in this paper can be seen

as retrieving apartments (i.e., scenes) by means of textual

queries, as described in Section 2. This problem is inter-

esting both for the challenges which we highlighted before,

for its practical use cases, and also for its novelty. In fact,

to the best of our knowledge, there are no previous works

addressing the problem of retrieving apartments, or even

more general 3d scenes, by means of textual queries. The

only line of work about retrieving 3d scenes involves the

use of images or sketches as queries [2, 3, 45]. However,

the queries are visual and not textual, therefore limiting the

usability of those approaches in our setting. Other works on

‘scene retrieval’ focus on locating the objects in the scene

[31] or the text shown inside them [42, 43].

4. Proposed method: FArMARe
An overview of the proposed methodology, called

Furniture-AwaRe Multi-task methodology for Apartment

REcommendation (or FArMARe), is shown in Figure 2.

The textual and visual data are processed by two indepen-

dent branches, as typically done in cross-modal retrieval

[10, 26, 33, 47]. In the following sections, we describe each

of these branches separately, and how they are combined

together.

4.1. Visual data

Starting from the 3d scene, multiple viewpoints are sam-

pled, the amount of which depends on a subset of furniture

categories present in the scene, as done in [17]. Each of

the images is then processed by a pretrained Vision Trans-

former [20] to obtain a set of image descriptors. Then, our

multi-task approach requires solving two tasks: ranking,

and classification. For the first task, we use a simple net-

work to learn a function which maps each image descriptor

xi into the joint embedding space:

x̂i = Conv1d(xi) (1)

ai = ReLU(x̂iWc + bc) (2)

where Wc and bc are trainable parameters. At the same

time, x̂i is also processed by the network solving the sec-

4296



Dataset Data format Textual annotations Scale

Houses3k [32] Outdoor/exterior N. A. Large

HouseExpo [27] Floorplans N. A. Very large

Text-to-3dHouseModel [14] Floorplans Descriptions Large

FutureHouse [28] Indoor (panoramic) N. A. Very large

Matterport3d [11] Indoor N. A. Large

HM3d [34] Indoor N. A. Large

SHREC 2018/2019 [2, 3] Indoor N. A. Large

House3d [44] Indoor Category per object/room Large

Rent3d [30] Floorplans and indoor N. A. Small

Ours Indoor Detailed descriptions Large

Table 1: Comparison of several datasets from the literature on house models. “N. A.” stands for “Not Available”. Discussion

in Section 3.1.

ond task, i.e., classification. The classifier learns to predict

a class ti for each of the images starting from the shared

representation x̂i. To do so, it uses the following equations:

r1 = ReLU(x̂iWc1 + bc1)

r2 = δ(ReLU(r1Wc2 + bc2))

r3 = ReLU(r2Wc3 + bc3) (3)

r4 = ReLU(r3Wc4 + bc4)

pi = softmax(r4Wc5 + bc5)

where W∗ and b∗ are trainable parameters, and δ applies

dropout with probability 0.1. The supervision for the clas-

sification is provided by automatically recognized furniture

tags, leading to furniture-awareness in the training objec-

tive and in the features extracted in the intermediate layers.

These tags are obtained by YOLOv8 2 which we finetune

on a dataset of furniture images [1] considering 25 different

classes, e.g., ‘bed’, ‘shelf’, etc. In this way, the model needs

to extract more general, furniture-aware features which are

useful to solve both tasks simultaneously.

4.2. Textual data

As mentioned before, describing all the important as-

pects of an apartment may result in a very long descrip-

tion. Although the recent advancements in natural language

processing made it easier to process and understand their

contents [9, 15], very long sentences may still pose a prob-

lem [38]. To this end, we opted for the following approach.

First of all, the apartment description is split into several

sentences by splitting at the periods. Then, a pretrained

Transformer [40] is used to extract several sentence-level

representations, after which a bidirectional GRU is trained

contrastively with the visual data. The final representation

for the apartment description, di, is obtained by taking the

mean of the final hidden state of the bidirectional GRU.

2https://yolov8.com/

4.3. Loss function

The proposed approach, FArMARe, simultaneously

learns to solve two tasks. For the first task, i.e., ranking, we

use the triplet loss [36] which is commonly used in cross-

modal retrieval settings [8, 21, 41]. Given a batch of N
apartments, a1, . . . , aN , and their descriptions d1, . . . , dN ,

it can be defined as follows:

lr(a, p, n) = max(0,Δ+ s(a, n)− s(a, p))

Lr =
1

2 ·N · (N − 1)

(∑

i

∑

j �=i

lr(ai, di, dj)

+
∑

i

∑

j �=i

lr(di, ai, aj)
)

For the second task, i.e., classification, cross-entropy is

used. It is defined as follows:

Lc = − 1

N

N∑

j=1

ti,j log(pi,j)

where pi,j is the softmax-normalized logit for the j-th class,

and the tag ti is seen as a one-hot representation where

ti,i = 1 and ti,j = 0 for i �= j. The final loss function

is defined as:

L =
1

2

(Lc + Lr

)

5. Experimental results
The source code used in this paper for creating the

dataset and training the models can be found on this Github.

5.1. Analysis of the dataset

The dataset used in this paper consists of 6081 indoor

apartments which we gathered from 3d-FRONT [22]. Each

apartment is annotated with a textual description which we

collected by using the object categories, style, theme, and

material annotations associated with each piece of furniture.
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Figure 3: Top 30 most common tokens in the collected

dataset. Discussion in Section 5.1.

On average, the descriptions have 319 words, ranging from

a minimum of 19 and a maximum of 1905, making them

very long; looking at the sentences, the average reduces to

16.4 (2 to 93), making them much easier to process. The

words encountered in the annotations are highly specific to

the task at hand, and describe several styles for the furniture

(e.g., “Japanese” and “minimalist”), themes (e.g., “smooth”

and “net”), and materials (e.g., “wooden” and “composite”).

In Figure 3 we report the normalized frequency of the top 30

most common tokens, after the removal of stop-words and

some words we use to create more human-like descriptions

(e.g., “moreover”, “additionally”, etc). It can be seen that,

apart from “one” which is common, the other tokens are not

so frequent, making the retrieval task challenging, due to

more difficulties in capturing relationships between words.

5.2. Experimental setting

We use two evaluation metrics to assess the performance

of the approaches under analysis. The first metric, recall@k
(or R@k), measures a model’s ability to successfully re-

trieve the groundtruth information among the top k recom-

mendations. Moreover, we also include the Rsum, which

consists of the sum of R@1, R@5, and R@10 both for

text-to-apartment and apartment-to-text. The second met-

ric is the median rank, which reveals the position of the

groundtruth in the ranked list. A lower median rank value

indicates that the groundtruth is more likely to be found at

higher positions, demonstrating better ranking accuracy.

In the following experiments, we both explore the use

of a jointly trained vision and language backbone, and sep-

arately trained backbones. For the former, we consider a

Vision Transformer, ViT-B-32 [20], and a 12-layer Trans-

former jointly trained via CLIP. The pretraining is done on

LAION-2B (a subset of [37]). For the latter, we consider

an ImageNet-pretrained ResNet-152 [24] and a pretrained

BERT [19]. Is it important to note that in the non-learning

baseline, only the jointly trained backbone is considered: in

fact, it would not be possible to compute meaningful simi-

larity scores by using ResNet and BERT, since the two share

completely unrelated embedding spaces.

Here, we provide a brief description of the baseline

methods. Overall, all the learning-based methods use

sentence-level textual features followed by a bidirectional

GRU for the text data modeling.

Non-learning baseline (NLB). In SHREC 2018/2019,

which is the closest work to ours (see Section 3.1), non-

learning based solutions were also proposed. The best-

performing one used a pretrained VGG to extract features

for both input data (i.e., the 2d query, and the 2d viewpoints

of the 3d scene) and then computed the similarity matrix to

perform the ranking. In our setting, this approach can not

be used as is: in fact, our queries are textual and not visual,

therefore imposing a domain gap too big to obtain a decent

result. To address this and propose a non-learning base-

line, we use a pretrained model jointly trained with CLIP

[33] to extract both textual and visual features, separately

pool them, and then compute the similarity matrix via co-

sine similarity. The model uses ViT-B-32 [20] for the visual

backbone, and a 12-layer Transformer [40] for the textual

one.

Average-pool based, FC network (AFN). To aggregate

the visual descriptors xi obtained from the backbone, this

method simply averages them, obtaining r1 ∈ R1×FV .

Then, the following network is used to learn the final de-

scriptor for the apartment, ai:

r2 = BN(δ1(ReLU(Wf1r1 + bf1)))

r3 = BN(δ2(ReLU(Wf2r2 + bf2)))

ai = Wf3r3 + bf3

where W∗, b∗ are trainable weights and biases, δ1(·) and

δ2(·) represent the dropout operator with probability 0.20

and 0.10, respectively. BN(·) identifies the use of Batch

Normalization [25].

Conv1d network (CNV). Different from the previous

method, the visual descriptors are not initially pooled. In-

stead, we use a simple network consisting of a 1d convo-

lutional network to reduce the number of features, a ReLU

activation function, and finally, a fully-connected layer to

learn the final representation for the apartment.

5.3. Implementation details

For the 1d convolution used in Eq. 1 we use 512 out-

put channels, stride one, and the kernel size of five. The

classifier in Eq. 3 reduces the dimension by half in each

layer, therefore going from 512 to 64. Then, we use the

following 25 predefined classes: Bed, Cabinet, Carpet, Ce-

ramic floor, Chair, Closet, Cupboard, Curtains, Dining Ta-

ble, Door, Frame, Futec frame, Futec tiles, Gypsum Board,

4298



Visual | Textual Token-level Sentence-level

ResNet | BERT 4.6 16.9

CLIP | CLIP 35.4 48.9

Table 2: Analysis of the performance (text-to-apartment

R@10) when changing the input format for the textual an-

notations (long list of token-level features or shorter list

of sentence-level features) and type of features (separately

learned via ResNet-152 and BERT or jointly learned via

CLIP). Discussion in Section 5.4.

Lamp, Nightstand, Shelf, Sideboard, Sofa, TV stand, Ta-

ble, Transparent Closet, Wall Panel, Window, and Wooden

floor. Moreover, we used a 26th class for those tags whose

confidence was lower than 10%. To reduce the domain gap

between the pretraining data and the data at hand, we fine-

tuned YOLOv8 on 8000 images of furniture [1].

We use PyTorch 1.13.1 for the implementation and run

all the experiments on a machine using an RTX A5000

GPU, 16 GB of RAM, and an Intel Xeon E5-1620. The

training lasts 50 epochs with a batch size of 64. The opti-

mizer is Adam and the learning rate starts from .008 and is

decayed by a factor of 25% after 27 epochs.

5.4. Reasoning about the input data

The first two research questions we aim at answering are

the following: (1) In the proposed setting, is it better to

have the visual and textual backbones jointly or separately

trained? (2) Considering that the descriptions feature hun-

dreds of tokens, is it better if we extract the textual features

at the token- or at the sentence-level?

To answer both questions, we perform the follow-

ing experiment using the AFN method. For the jointly

trained backbones, we consider ViT-B-32 and a Trans-

former trained with CLIP; for the other question, we use

ImageNet-pretrained ResNet-152 [24] and BERT [19] to

separately extract visual and textual features, respectively.

We evaluate the four combinations (separate or joint fea-

tures, token, or sentence level) and report the results in Ta-

ble 2. To answer the first question, it can be seen that the

features extracted from a jointly trained vision and language

backbone lead to far better performance, achieving around

35.4% and 48.9% text-to-apartment R@10 at the token- and

sentence-level respectively. These results represent a mar-

gin of +30.8% and +32.0%, respectively, compared to the

separately trained features. For the second question, it can

be seen that working on sentences makes the feature ex-

traction process more effective, obtaining 16.9% R@10 us-

ing ResNet and BERT (+12.3% than the token-level), and

48.9% R@10 using CLIP (+13.5%).

5.5. Comparison between the baseline methods

In Table 3 we report a comprehensive quantitative anal-

ysis of the performance obtained by the three models we

considered in our study (details in Section 5.2) and by our

proposed method. As mentioned in the previous sections,

it is not meaningful to use the non-learning baseline with

ResNet and BERT, as the two present a wide domain gap

between the two single-modal spaces. Then, from the Ta-

ble, three main results are observed. First, all the meth-

ods under analysis achieve better performance when using

the jointly trained backbones, as opposed to the separately

trained ones, confirming the results obtained in the previous

experiment. Second, delaying the fusion of the informa-

tion obtained from the single viewpoints leads to better re-

sults than performing it early, since both CNV (e.g., 63.7

and 225.9 Rsum with ResNet and BERT, and CLIP fea-

tures respectively) and FArMARe (92.3 and 232.7 Rsum)

obtain far better performance than AFN (33.2 and 133.7

Rsum). Finally, the information obtained by the additional

task in our multi-task approach leads to a considerable im-

provement over CNV, obtaining +1.1%, +2.0%, and +0.2%

text-to-apartment R@1, R@5, and R@10, and overall +6.8

Rsum. Noteworthily, these results are obtained by perform-

ing 5 runs with both of the models, to reduce the influence

of randomness.

6. Discussion and limitations

About the object detection module. As mentioned in

Section 4, we are currently extracting the best tag accord-

ing to the detector. This works well when there is only one

main object in the viewpoints (e.g., see Figure 4.a), how-

ever when multiple are visible picking only one tag may not

be enough (e.g., see Figure 4.b). Moreover, the detection

may also fail, leading to incorrect information injected into

the visual descriptors (e.g., see Figure 4.c). While over-

all the proposed method proves to be effective, these lim-

itations may indeed affect its final performance and relia-

bility, leaving much space for improvement. We highlight

the following options to address these shortcomings. First,

considering that multiple object tags may be relevant for

a single image, a different learning strategy could be de-

signed to leverage this aspect (i.e., moving to a multi-label

classification problem), while also adopting spatial atten-

tion to ground the predictions, making the approach both

more explainable and possibly improving the overall perfor-

mance. Second, in our setting, which consists of photoreal-

istic yet synthetic environments, generating the supervision

from synthetic data may help obtain a more precise classi-

fier, which could also lead to better features for the ranking

task.

About the long descriptions. In our methodology, we

decided to split the descriptions into a sequence of sen-
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Text-to-Apartment Apartment-to-Text
Rsum

Method R@1 R@5 R@10 MedR R@1 R@5 R@10 MedR

ResNet | BERT features

AFN 1.3 5.8 10.4 101 1.6 4.6 9.5 104 33.2

CNV 4.3 11.4 16.6 93 2.7 11.8 16.9 95 63.7

FArMARe (Ours) 6.9 17.4 22.1 88 7.1 16.7 22.1 89 92.3
CLIP features

NLB (∼ [2]) 0.1 0.6 1.3 413 0.6 1.9 3.7 339 8.2

AFN 10.6 25.5 34.2 29 8.9 23.2 31.3 31 133.7

CNV 23.7 40.6 48.9 11 23.1 40.7 48.9 12 225.9

FArMARe (Ours) 24.8 42.6 49.1 11 25.7 41.4 49.1 11 232.7

Table 3: Comparison between the baselines under analysis (Section 5.2), and the proposed method, FArMARe (Section 4).

Discussion in Section 5.5.

(a) Tag: “bed” (b) Tag: “wardrobe” (c) Tag: “dining table”

Figure 4: Qualitative examples of the tags obtained from the object detector, including examples when (a) it correctly

identifies the predominant furniture; (b) it correctly identifies one of the furniture, but misses the other; (c) it fails. Discussion

in Section 6.

tences, then to capture the meaning of each of them sep-

arately by using a powerful language model, and finally

to model their contextual information through a neural se-

quential model. By dividing the language understanding

step into two sub-steps, we are able to achieve higher effec-

tiveness. However, recent advancements showed that very

long contexts can be understood by large language mod-

els [9, 15]. Therefore, by extending our methodology with

these techniques it may be possible to obtain better language

understanding even while working at the token-level.

7. Conclusion

In this paper, we defined the problem of recommending

an apartment based on user-defined queries which capture

their interests. This novel problem is inspired by the need

for applications which are able to analyze the contents of

a digital twin of the apartment, representing it in the meta-

verse, assess whether it is a good match for the user-defined

query, and rank the metaverse apartments accordingly. This

approach may be highly impactful both on businesses deal-

ing with apartments recommendation, and on the environ-

ment, since being able to visit the apartment in the meta-

verse has a smaller impact than visiting it by physically

moving across states.

To realize a model able of solving the problem, we in-

troduced FArMARe, a multi-task methodology which uses

both a contrastive framework, to learn how to perform

cross-modal ranking, and a furniture-based classification

objective, which helps the model extracting more general

furniture-aware features. We collected and annotated a

dataset of more than 6000 apartments, over which we per-

formed several experiments with three different methods

and two different feature extraction procedures, confirming

the effectiveness of the proposed method.

Finally, we discussed the limitations of the model, while

also highlighting possible future research directions.
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