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Figure 1: MAMMOS automatically generates multiple human motions sharing a given indoor space. Generated virtual

humans correctly understand the scene context around them, and they are also able to interact with each other naturally.

Abstract

We present MAMMOS, an automated framework that
generates the motions of multiple humans that naturally in-
teract with each other in a given 3D scene. Many practi-
cal VR scenarios require creating dynamic human charac-
ters in harmony with the surrounding environment and other
people. However, it is hard for an artist to manually gen-
erate multiple character motions tailored to the given 3D
scene structure, or gather sufficient data to train an auto-
mated system that jointly considers the entangled require-
ments. MAMMOS is a hierarchical framework that suc-
cessfully handles spatio-temporal constraints and generates
high-quality motions. Given a simple tuple of action labels
of the desired motion sequence, MAMMOS first places an-
chors in time and location for characters that avoid col-
lisions yet enable necessary interactions. Then we gener-
ate the timelines of individual collision-free paths within the
scene and connect them to perform diverse and natural mo-
tions. To the best of our knowledge, we are the first to gener-
ate long-horizon motion sequences of multiple humans with
realistic interactions such that we can automatically popu-
late the 3D scenes.

1. Introduction

Suppose we have a virtual asset of a 3D scene and we

want to create character motions such that they naturally

perform everyday activities (Figure 1). The 3D space can

be a digital twin of a real-world environment or a purely

virtual collaboration space. In addition to the spatial layout

of furniture or nearby objects, the generated motions need

to respect other people in the scene. When two people inter-

act, they need to maintain proper social distance [13] with

eye contact and synchronize their timing. If they are not

interacting, their paths need to avoid collisions. Because

all interpersonal relationships are dynamic, it is not trivial

to consider them jointly with the scene context. Further-

more, it is infeasible to collect sufficient training data that

exhaustively represent the diverse possible combinations of

interpersonal relationships and 3D scene layouts. Nonethe-

less, humans are social beings, and it is necessary to in-

clude interaction between them when synthesizing many

of practical scenarios. Although many prior works gener-

ate motions that consider the scene context, to the best of

our knowledge, none of them systematically unravels the

spatio-temporal constraints of multi-human scenarios.

Our objectives are three-fold: input should be easy, and

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 2: Overview of the pipeline. Our system consists of four stages: anchor placement, path generation, motion comple-

tion, and optimization. (a) The anchor placement stage creates the characters’ poses corresponding to the input action labels.

For action pairs with specified interaction, the created anchors of the two characters are in proximity, facing each other. (b)

In the path generation stage, we create collision-free paths between consecutive anchors. We also confirm the timeline of the

waypoints such that interactions are synchronized. (c) In the motion completion stage, we synthesize smooth scene-aware

motions that follow the created paths. The subsequent optimization stage refines the motion to be physically correct and

natural.

the system should be scalable yet able to generate natural

outputs. Instead of manually assigning the 3D configura-

tions of body joints in the scene, we would like to receive

a simple high-level description of motions as input, such

as the number of people and their action labels (sit, stand,

lie, and interact). All the subsequent complexities are auto-

mated, given the 3D scene. We achieve scalability to handle

the large-scale scene with multiple people by first consider-

ing the global spatio-temporal context in a coarse level and

subsequently generating fine motion with local information.

Most of all, the motion has to be natural. We jointly con-

sider the complex constraints, and avoid obvious violations

of physical laws. At the same time, we enhance natural-

ness with eye contact and diverse sequences of interacting

motions.

To tackle the challenging problem, we design a modular

approach as shown in Figure 2. Given the text input de-

scribing action labels of a number of characters, our system

first places anchors considering human-scene interaction or

human-human interaction. The anchors are placed in the

spatio-temporal domain within the scene to best show the

start and end of a given label of action and yet avoid col-

lisions. Then the path generation module can instantiate a

set of plausible trajectories between the anchors from a di-

verse stochastic distribution. Following the trajectory, we

generate detailed motions for individual characters, where

we can only consider local scene or interaction contexts as-

signed for the intermediate waypoints of the assigned path.

By detaching the holistic analysis from detailed motion gen-

eration, we can utilize the prior works on motion genera-

tion without extensively considering the context of multiple

characters within the scene.

In summary, MAMMOS is the first to generate motions

of multiple humans with mutual interactions within the

scene context. The proposed pipeline is a practical system

with easy input, scalability, and natural output trained with

limited datasets and successfully creates multiple character

motions adapted to new, large-scale scenes. Our framework

presents scalable interaction generation that can create a re-

alistic story in a shared virtual space.

2. Related Works

Motion Synthesis Creating the motion of the human

body has been investigated in various contexts. Several

works attempt to predict a future sequence of motions

given a frame or a sequence of frames [26, 12, 5, 3, 40].

Many applications, on the other hand, require generating

natural motion between keyframes of static poses, which

are investigated in [7, 15]. Recent studies even synthe-

size motion without any explicit pose information, either

from languages [1, 2, 10, 27, 28, 4, 9, 34, 38] or mu-

sic [35, 19, 20, 21]. To allow more explicit control of de-

sired motion, some methods take an input of specific action

labels and generate a sequence of motion either with a re-

current unit [10] or a transformer [27]. Recent methods go

beyond a small set of action categories and generate diverse

motions from free-form text [28, 4, 9, 34, 38]. None of

the previous works, however, tackle long-term motion se-

quences with action-label switches, scene interaction, and
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multiple human interactions.

Human-Scene Interaction When generating human mo-

tions, the surrounding environment is another interesting

context to consider. Starting from efforts to place a posed

static human in a 2D image [33] or 3D skeleton in RGB,

RGB-D, or depth image [11, 22], recent works provide

means to place a full 3D mesh of a human in a 3D scene uti-

lizing high-quality parametric models [23, 31, 25]. Recent

works utilize the 3D body model with expressive hands and

faces [25] and place them on 3D scenes [41, 39, 18, 43].

Zhang et al. [39] observes the local scene context us-

ing explicit basis point sets (BPS) [29], while Hassan et

al. [18] utilize contact probability between human and mo-

tion. A more recent method [43] proposes compositional

human-scene interactions given only a training set contain-

ing atomic interaction data. Our framework also creates

static body poses of anchors tailored to the given action la-

bels and the scene but further connects them to generate

a smooth motion sequence. In part, the proposed method

is similar to connecting end poses of the human body [37]

or synthesizing motions of a given action label within the

scene [36]. However, our approach further generates mo-

tions of multiple humans within the scene, such that they

harmoniously interact with the environment and other hu-

mans.

3. Method

Given a scene S and a sequence of desired action la-

bels with interaction A, MAMMOS generates the sequence

of human motion M: (S,A) → M. The scene can

be provided as a CAD model, a triangular mesh, or a

point cloud scan as long as we can estimate the distances.

If the user wants to generate the motion of N humans

within the scene, the desired action sequences are pro-

vided as A = {A1, ..., AN}, where Ai indicates the se-

quence of discrete action labels that ith person needs to

perform. The actions consider both the geometric context

and the mutual interaction between people in the scene.

The action sequences are composed of variable numbers

of action labels paired with interaction indicators, Ai =
{(ai1, ci1), (ai2, ci2)..., (aiMi

, ciMi
)}. Specifically, the action

label aij ∈ {stand, sit, lie} indicates the category of the body

pose in relation to the scene context. The interaction indi-

cator cij ∈ {0, . . . ,K} represents whether the paired ac-

tion aij is an independent action of the character (cij = 0)

or has to interact with another human doing action paired

with the same indicator value. We only allow two-person

interaction, meaning there are exactly two identical interac-

tion indicator values (cij = k, k = 1, . . . ,K) within the

set of action sequences. Then MAMMOS automatically

assigns the exact locations and time windows for the ac-

tions to take place and creates smooth and natural motion

trajectories. The generated motion M = (M1, . . . ,MN )
is composed of a sequence of motion parameters M i =
{(ri0, φi

0, θ
i
0), . . . , (r

i
T , φ

i
T , θ

i
T )} derived from the 3D para-

metric model of human body, where rit ∈ R
3 is the global

translation of the root position, φi
t ∈ R

6 is the global ori-

entation in the 6D continuous representation [44], and θit ∈
R

32 represents the body pose in the form of VPoser [25].

The overall pipeline is depicted in Figure 2. We resolve

the complex spatio-temporal constraints for motion genera-

tion by decomposing the problem into four stages, and pro-

gressively generate finer motions. The first anchor place-

ment stage places N humans in their anchor poses corre-

sponding to the sparse input action labels within the scene

(Section 3.1). The next stage is path generation, which

finds collision-free paths on grid locations of the discretized

scene to coarsely connect the synthesized anchors (Sec-

tion 3.2). The third stage of motion completion then in-

terpolates the paths on the grid to find full motion param-

eters of dense motion (Section 3.3). The last optimization

stage improves the motion quality and returns a realistic and

physically plausible sequence of motions (Section 3.4). At

each stage, we jointly consider the other humans and the

spatial context at an appropriate resolution.

3.1. Anchor Placement

Given the scene S and the sequence of action labels A,

the anchor synthesis finds the location and pose (rij , φ
i
j , θ

i
j)

of N people in the scene that corresponds to the action la-

bels aij . If there is no interaction associated with the action

(cij = 0), we can individually generate a pose θij given the

action label aij using a conditional variational autoencoder

(CVAE) architecture [36] and place the posed character in

appropriate translation rij and rotation φi
j considering the

scene layout as in [18]. To briefly elaborate, we choose from

a set of discrete candidate translations and rotations: candi-

date translations are the cells of the grid uniformly dividing

the scene, and the candidate rotations are eight discrete ori-

entations around the vertical axis. We exhaustively test all

the combinations and select the top ten best-scoring posi-

tions in terms of affordance while avoiding penetration. The

top ten candidates are individually optimized to find the best

final anchor. However, existing methods do not consider

multi-human scenarios within the scene. MAMMOS addi-

tionally considers constraints provided as interaction labels

and the inter-human distances to avoid a collision.

Interaction Anchor Placement Because the interaction

anchors abide by additional inter-human constraints, we

first place interaction anchors (cij �= 0) and place the re-

maining ones using existing methods. In addition to the

spatial context considered for normal anchors, the pair of

action anchors with the same interaction indicator number
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Figure 3: An example of interaction anchor placement.
Interaction anchors are placed so that the direction of the

body does not deviate more than a threshold angle from the

virtual line connecting two humans (dotted line).

(cij) should be in an appropriate distance and angle to face

each other as shown in Figure 3. We simplify the prob-

lem and find the anchor positions within the 2D overhead

map of the scene. The constraints are defined in terms of

the root positions and face orientations, such that they are

visible within the near and middle peripheral vision of the

human eye (around ±30 degrees) [8].

Anchor Occupation Rule After we place the interaction

anchors incrementally with the increasing indicator num-

bers, we fill the remaining anchors to avoid obvious colli-

sions. There are two simple rules: we maintain sufficient

distances between (1) temporally adjacent anchors from the

same human id; and (2) first or last anchors of different peo-

ple such that all starting positions are nicely spread from

each other as well as the ending positions. Basically, we se-

quentially generate non-interacting anchors and avoid col-

lisions against the aforementioned anchor positions if they

are already assigned. Other intermediate positions can be

adjusted in the next stage when we generate paths and reg-

ulate temporal precedence.

3.2. Path Generation

Path generation assigns the sequence of grid locations

for multiple people that satisfy the spatio-temporal context

scene and interaction Given the anchor places with action

labels, we generate paths between the subsequent anchors

such that there are no collisions, and the interaction pairs

are in sync in time. This is a very high-dimensional opti-

mization compared to recent approaches that only consider

the spatial constraints [37, 36, 16], and it is challenging

to manually create natural motion considering the complex

constraints. The paths are searched over discretized slices

of time intervals and a grid of the 2D projection of the in-

put scene. First, individual path planning generates spatial

paths for individual humans. The subsequent timeline inte-

gration adjusts the temporal alignment.

Individual Path Planning We generate diverse individ-

ual paths avoiding collision from the paths of other humans

on the 2D grid that is used in Section 3.1. The path plan-

ning process is also illustrated in Figure 4. For each grid,
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Figure 4: An example of the path planning process. (a)

Navigating a 2D grid map with the proxy cylinder. Cyan

points are passable grid points and red points are non-

passable grid points. (b) A sample created path. Anchor

positions are circled with yellow dotted lines.

we find the intersection between a proxy cylinder and the

scene to assess whether the grid cell is free for a human

to pass by. Starting from an anchor position, the path to the

subsequent anchor is incrementally generated by a modified

A∗ algorithm [14]. We assign the cost of a free grid point q
as f(q) =

g(q) + h(q)
︸ ︷︷ ︸

A∗

+(1−m(p, q))
︸ ︷︷ ︸

Neural Mapper [36]

+C · 1collision(q, t+ 1)
︸ ︷︷ ︸

Collision Avoidance (Ours)

, (1)

where q ∈ N (p) is a neighboring cell of the current po-

sition p. The cost function is composed of three groups.

The first group is the terms from the original A∗ algorithm.

g(q) measures the cost from the start point to q, and h(q)
is a heuristic function that estimates cost from q to the goal

position, which indicates the next anchor in our case.

Because the standard A∗ algorithm always creates a de-

terministic path, Wang et al. [36] suggested generating di-

verse and realistic paths with additional stochasticity re-

ferred to as the Neural Mapper. m(p, q) is a probabilistic

feasibility score of moving from grid point p to q, estimated

by a trained neural network.

The third group of the terms in Equation (1) is our mod-

ification to filter out paths that incur collisions due to the

temporal occupancy of other human trajectories. Basically,

we add an indicator function 1collision(q, t + 1) that returns

1 if a collision occurs at q at the next timestep t + 1 else

0. C is a very large constant and effectively adds an unac-

ceptably high cost to f when a collision is expected at the

next timestep t + 1 at q. Note that only the collision indi-

cator function is dependent on t. If the cost function g or

h also depends on t, the search space of the algorithm be-

comes prohibitive, and the path cannot be created within a

reasonable time.

Timeline Integration Timeline integration adjusts tem-

poral windows such that the interaction anchors with the
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Figure 5: Steps iterated for the timeline integration.
(a) In the initial timelines, the interactions (blue) are not

synched after independent path generation. To synchronize,

the timeline of Human A should be shifted by the timestep

indicated by the blue dotted-arrow. (b) We adjust the time-

lines so that all interactions are synced with their counter-

parts. We add an idle time (gray) to fill the temporal win-

dow after shifting. (c) After each modification for the time-

line integration, we check possible collisions for paths. We

recreate the subpaths with collision (red).

same indicator number are temporally aligned for a dura-

tion of time, and we avoid possible collisions. The number

of action labels is different to start with, and the grid paths

connecting generated anchors are in different lengths. We

iterate to add necessary idle times to match the times for

interaction and to check possible collisions as illustrated in

Figure 5. During idle time, the character stays at the same

spatial grid. When a collision is unavoidable, we regenerate

the problematic subpaths subject to collisions and iterate the

process.

3.3. Motion Completion

Motion completion creates frames of smooth motion that

follow the discrete paths in the grid. As the spatial-temporal

context is already considered from the path generation, the

motion completion can focus on local generation as sug-

gested by hierarchical frameworks [37, 42]. There are three

types of motions to generate in our framework: the moving

motion of the paths, the interaction motion of the interac-

tion anchors, and the idle motion derived from the timeline

integration.

Moving Motion For motions moving between grid

points, we define keyframes (rik, φ
i
k, θ

i
k) and interpolate

consecutive motion keyframes using neural networks. For

anchors, we already have target keyframe poses (Sec-

Figure 6: An example of grid points where local SDF
is retrieved. Cube-shaped and human-centered grid points

are used to encode local scene context (fewer grid points are

depicted than are actually used).

tion 3.1). For intermediate grid points in the paths between

anchors, we assign the grid locations as the x, y locations

of the pelvis of the motion keyframes. We set the rotation

φk to face the next grid point. The pose parameters θk are

derived from the predefined set of walking poses. We place

alternating stable feet on the path and update the z position

to minimize the penetration loss and the contact loss for op-

timization (Section 3.4).

Then we interpolate the keyframes by modifying the

motion generation of [37] to encode local scene context.

While previous works [37, 36] generate plausible motion

and adapt to the scene context, their original works place

one person at a time and are constrained to small rooms.

On the other hand, we handle larger scenes to place mul-

tiple people with interaction. We noticed that the perfor-

mance does not generalize to larger scenes when the neural

network processes the entire scene as an input. Instead, we

train a framework only with human-centered local informa-

tion encoded as the signed distance field (SDF), achieving

much more stable performance in scenes of various scales.

As shown in Figure 6, we extract a grid position centered at

the human pelvis and calculate the local SDF information

of neighboring positions. The motion interpolation simply

transfers the generated local motions into the global coordi-

nate frame. The moving motion is trained with the PROX

dataset [17] which contains rich interaction between human

and scene.

Interaction Motion When two people interact with each

other, we enrich the poses with natural interaction for a fixed

duration. The initial anchor poses only consider the action

labels, either sitting or standing. While the moving motion

interpolates the intermediate poses of fixed intervals along

the generated path, the interaction motion needs to be a vari-

able length of vibrant motions. To fit the purpose, we use

the CVAE architecture conditioned only on motion history

and enable different duration by employing an RNN struc-

ture. Specifically, we employ GRU-based CVAE architec-

ture used in the marker predictor of the GAMMA from [42].
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Figure 7: An example of eye contact optimization. Red

arrows are the estimated current eye directions and the blue

ones are the target eye directions to be matched to make eye

contact.

It is trained with the TCD Hands dataset [24], which con-

tains the SMPL-X parameters [25] on hand gestures and fin-

ger motions in our daily life, such as talking, waving, sign-

ing, etc. We extract the motion of the upper body from the

dataset with interacting motion and train the CVAE to gen-

erate diverse and natural interaction motion that seamlessly

continues from the given anchor.

Idle Motion Lastly, we add subtle movement even when

people stay still due to the idle moments introduced by the

timeline integration. Without additional movement, the idle

people freeze in the anchor positions, which appears awk-

ward and unnatural. As a simple yet effective remedy, we

introduce subtle posture variations by adding a small Gaus-

sian noise ∼ N(0, σ) to the anchor pose in the VPoser em-

bedding space. The random variation is further smoothed

out using the smoothness loss during optimization (Sec-

tion 3.4).

3.4. Optimization

The last optimization stage refines the created motions

to be physically valid and natural. Given the sequence

of generated motion for each person M i, motion parame-

ters (ri0:T , φ
i
0:T , θ

i
0:T ) are optimized based on physical con-

straints. We adopt constraints from previous works to pe-

nalize physically impossible artifacts: foot location, pene-

tration, contact, and smoothness constraints from [37] and

self-penetration constraints from [6]. The full loss is pre-

sented in the supplementary material. Notably, we intro-

duce novel eye contact optimization, which plays a signifi-

cant role in realism for natural interaction.

Eye Contact While two people are interacting with each

other, they need to make eye contact. We add eye contact

optimization on the frames performing the interacting mo-

tion. We define the energy function using the estimated eye

direction derived from the pre-fixed vertex topology of the

SMPL-X body mesh as depicted in Figure 7. Let’s denote a

vertex on the center of the forehead as vkf and the one on the

Ablation Method Winning Percentage of ‘all’(%) ↑ Relative Score of ‘all’ ↑
all vs all - I 93.4 2.84 (1.21)

all vs all - E 86.8 2.77 (1.20)

all vs all - C 96.7 3.78 (1.13)

all vs all - I - E - C 95.6 3.64 (1.11)

Table 1: Ablation study results of multi-human motions.
We provide the ratio of users who chose that the complete

pipeline with all components is more natural and the mean

and standard deviation of the scores that user provided in a

scale from 1 to 5 (5 is more natural).

back of the head as vkb for a human k. Assuming that human

i and j are interacting with each other, our eye contact loss

can be defined as below,

Eeye = arccos
ei · wi

‖ei‖‖wi‖
︸ ︷︷ ︸

angle between ei and wi

+ arccos
ej · wj

‖ej‖‖wj‖
︸ ︷︷ ︸

angle between ej and wj

(2)

where ei = vif − vib is the current eye direction of human

i and wi = vjf − vib is the target eye direction of human i

which is towards the eye of human j. ej and wj are obtained

similarly. Minimizing Eeye ultimately makes human i and j
look into each other’s eyes.

We encourage eye contact with minimal head rotation

and avoid significantly changing the previously generated

anchor pose. Instead of optimizing the embedded pose rep-

resenting the entire body θ ∈ R
32, we only alter the relative

rotation between neck and head extracted from full body

pose Θ ∈ R
63. However, directly optimizing a subset of the

body pose Θ can occur undesired deterioration of the body

shape. We add the pose prior loss [25] to the optimization

constraint to maintain valid body shapes.

4. Experiments

We evaluate the quality of the generated motions using

MAMMOS. When we employ network architecture from

previous studies, we mostly use the same training settings as

in their original papers. For moving motion completion de-

scribed in Section 3.3, we replace the original scene context

feature by the local SDF information. Correspondingly, we

replaced the PointNet [30] in the original architecture with

fully-connected layers. They are trained and tested with the

same split of PROX dataset [17] as in [37, 39, 41, 36]. We

also evaluate the generalization to larger scale 3D scenes

with Replica dataset [32]. For interaction motion of the up-

per body, we reduced the overall dimensions of the origi-

nal CVAE architecture [42] by half to adapt to the smaller

dataset size. The exact architectures and dimensions are ex-

plained in the supplementary material.
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Figure 8: Qualitative results for multi-human motion. We show sample results of multi-human motions with diverse

interactions in different scenes.
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Figure 9: The effect of each technical component. MAMMOS implements critical components to create natural and

physically plausible interactions between people.

4.1. Multi-Human Motion

MAMMOS generates multi-human motion including

natural interactions, which has not been addressed in previ-

ous literature. Since there are no existing implementations

for baseline comparison, we visually compare the effective-

ness of our approach with users’ assessment. Our approach

is compared against ablated versions that eliminate the key

components of MAMMOS: collision-free path generation

(-C), interaction motion generation (-I), and eye contact op-

timization (-E). Users are asked to compare two versions

of multi-human motions and choose a preferred one. They

make a total of five binary comparisons. Two of them are

to choose the more natural one between the result of ap-

plying all methods mentioned above (all) and the result of

nothing applied (all-I-E-C). In the other three questions, we

ask users the same question, except the comparison target

is changed to an ablated version without one of the compo-

nents.

The responses to the user study are summarized in Table

1. In all cases, our proposed method received the majority

of choices, which clearly demonstrates that all of the pro-

posed components are essential in realizing natural human-

Scene Anchor (s) Path (s) Motion (s) Optimization (s)

N3OpenArea (PROX) 10.66 (0.50) 0.01 (0.01) 0.27 (0.02) 1.83 (0.14)

Apartment1 (Replica) 13.58 (1.10) 0.01 (0.01) 0.29 (0.04) 1.77 (0.23)

Table 2: The average and standard deviation of runtime
for 50 runs on an RTX 4090 GPU. The anchor placement

stage are presented in seconds per anchor, while other stages

are measured in seconds per 30 frames.

human interaction. While all of them are critical, the physi-

cal violation of collision-free paths appears especially no-

ticeable. Sample frames of our multi-human motion are

available in Figure 1 and 8, whereas the comparison against

ablated versions is in Figure 9.

Although different combinations of human-object and

human-human relationships can significantly increase the

required resources, our staged pipeline handles them in a

scalable way. Table 2 compares the runtime of two differ-

ent environments, whereas the Replica dataset is about four

times larger than the PROX dataset. MAMMOS only ex-

periences a slightly longer anchor placement stage in the

Replica dataset to evaluate more candidate locations. Other

stages mainly rely on the local context, and are barely af-
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Non-collision↑ Contact↑ Smoothness↑
Method PROX Replica PROX Replica PROX Replica

Long-term [37] 94.58 99.39 95.04 90.89 96.41 93.28

Ours 97.17 99.72 99.80 99.99 97.71 97.42

Table 3: Evaluation on the physical plausibility for
single-human motions (without optimization). All scores

are high when using our method for both PROX and Replica

scenes.

��� ���� ��� �������	
 ���	

Figure 10: Comparison of single-human motion. Our ap-

proach produces more natural and temporally smooth re-

sults without jittering artifacts. (The brighter the color of a

human, the more time has passed.)

fected by the scene size. The total runtime increases almost

linearly as the number of humans increases.

4.2. Single-Human Motion

While our main focus is generating multi-human mo-

tion, our pipeline also results in more natural single-human

motion. Unlike multi-human cases, we can also compare

against previous works that create motions of a single hu-

man within a scene context, namely long-term[37], and to-
wards [36]. Both are trained with the PROX dataset as ours,

but the implementation is available only for the long-term.

We, therefore, include towards only for the visual compari-

son using the same scene.

We evaluate the quality of motion before optimization in

Table 3. The evaluation is presented in three metrics: the

non-collision score, the contact score, and the smoothness

score, which are defined in the supplementary materials.

The non-collision score and contact score [41, 37] evalu-

ate the physical plausibility. We sample 200 anchor pairs

and generate a motion sequence using these pairs to calcu-

late the non-collision score and contact score. Our method

exhibits better non-collision and contact scores, generat-

ing physically plausible human motion in various scenes.

The smoothness score evaluates the smoothness of the syn-

thesized motion by comparing the distances between the

body vertices of consecutive frames. The smoothness score

Figure 11: User study on the naturalness of single-
human motion. Our method generates the most natural hu-

man motions.

does not differ significantly for the PROX dataset, but our

method shows much better results for the Replica dataset,

which has a much larger scale than the PROX dataset. It

shows that our method is more scalable to other scenes. The

highlighted region in Figure 10 shows that our framework

generates more smooth human motions with less jittering in

large-scale scenes compared to long-term.

We also provide the results of the user study on the visual

comparisons in Figure 11. Similar to the multi-human mo-

tion, subjects are asked to choose the most natural result.

Each subject evaluates four different test scenes from the

PROX dataset. For each scene, three different motion se-

quences are presented (ours, long-term, and towards) with

the same action sequence in the same scene. The results

confirm that our method generates more natural motion than

the other methods for all test scenes.

5. Conclusions
In this paper, we present MAMMOS, the multi-human

motion generation framework that can populate natural and

diverse motions of virtual humans. While it is challenging

to simultaneously consider the dynamics of human-human

interaction and human-scene interaction, we automate the

motion generation only from a 3D scene and a simple list

of action labels. MAMMOS gradually handles the complex

spatio-temporal constraints in modularized stages, and ef-

fectively scales to large-scale 3D scenes with multiple peo-

ple. The generated motions of the people not only improves

the quality of individual people within the scene, but also

allow them to naturally interact with collision-free path and

appropriate interaction.
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