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Abstract

Understanding how two hands interact with each other is
a key component of accurate 3D interacting hand mesh re-
covery. However, recent Transformer-based methods strug-
gle to learn the interaction between two hands as they di-
rectly utilize two hand features as input tokens, which re-
sults in distant token problem. The distant token problem
represents that input tokens are in heterogeneous spaces,
leading Transformer to fail in capturing correlation be-
tween input tokens. Previous Transformer-based methods
suffer from the problem especially when poses of two hands
are very different as they project features from a backbone to
separate left and right hand-dedicated features. We present
EANet, extract-and-adaptation network, with EABlock, the
main component of our network. Rather than directly uti-
lizing two hand features as input tokens, our EABlock uti-
lizes two complementary types of novel tokens, SimToken
and JoinToken, as input tokens. Our two novel tokens are
from a combination of separated two hand features; hence,
it is much more robust to the distant token problem. Using
the two type of tokens, our EABlock effectively extracts in-
teraction feature and adapts it to each hand. The proposed
EANet achieves the state-of-the-art performance on 3D in-
teracting hands benchmarks. The codes are available at
https://github.com/jkpark0825/EANet.

1. Introduction
Recovering 3D meshes from two interacting hands [27,

39, 18, 10, 12, 20] is necessary for immersive experiences

in AR/VR and human-computer interaction. Although the

interactions between two hands are highly prevalent in the

real world, building a robust 3D mesh recovery framework

for two interacting hands is still an open challenge.

The main challenge for recovering the mesh of interact-

ing hands lies in capturing the context of their interaction,

which differs from recovering a single hand mesh. Recent

works [12, 20, 8], inspired by the success of the attention

mechanism [35, 9], use Transformer [35] to capture the cor-
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(a) Keypoint Trans [12]
Separate L/R feat.: �
No distant token: �

(b) IntagHand [20]
Separate L/R feat.: �

No distant token: �

(c) EABlock (Ours)
Separate L/R feat.: �
No distant token: �

Figure 1: Comparison between previous Transformer
blocks and our EABlock. Instead of directly using fea-

ture from backbone or left and right hand features as in-

put tokens, our FuseFormer in EABlock uses SimToken and

JoinToken as input tokens.

relation between the two hands. There have been two main

approaches. Figure 1a shows the first approach [12]. It does

not separate features, extracted from a backbone [14], to

each hand. Instead, it directly uses features from the back-

bone as input tokens of a Transformer. Figure 1b shows the

second approach [20, 8]. It separates features from a back-

bone to left and right hand-dedicated features. Then, it uses

the separated features as input tokens of a Transformer.

Separating the feature from the backbone can make the

network robust to the similarity between two hands. In ad-

dition, left and right hand-dedicated branches could focus

only on one type of hand instead of two hands, which could

relieve burden of modules [27, 20]. However, it can cause

a distant token problem. Keypoint Transformer [12] in Fig-

ure 1a does not separate features, hence it does not suffer

from the distant token problem; however, it cannot enjoy the

benefit of the separation. In contrast, IntagHand [20] in Fig-

ure 1b suffers from the distant token problem as it separates

features, while enjoying the benefit of the separation. The

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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(a) Input image (b) IntagHand [20] (c) EANet (Ours)

Figure 2: Comparison of token distribution with t-
SNE [34]. t-SNEs are drawn with input tokens, when given

a single image of (a). (b) Previous methods [20] use left

and right hand features as input tokens, which suffer from

the distant token problem when poses of two hands are dif-

ferent. (c) We use SimToken and JoinToken as input tokens,

suffering much less from the problem.

distant token problem arises due to the heterogeneous na-

ture of input tokens projected to two separate spaces, caus-

ing the Transformer to struggle in capturing correlations be-

tween two hands. Figure 2b demonstrates the existence of

the distant token problem between two hand features. In-

terestingly, we observed that the degree of heterogeneity

between the two hand features becomes severe when the

poses of the two hands are significantly different. The in-

teraction between the two hands can still be important even

when the poses of the hands are very different; however,

previous works fail to capture such interaction effectively

because of the heterogeneity of the two hand features. As a

result, this leads to sub-optimal performance. Such distant

token problem has also been addressed in the recent multi-

modal learning community [28, 17, 21, 16]. While the dis-

tant token problem of two hands may not be as severe as in

the case of multi-modality, it is still a challenge that needs

to be addressed.

To address the distant token problem, we newly in-

troduce two tokens: SimToken and JoinToken, which lie

in homogeneous spaces, as shown in Figure 2c, contain-

ing two hand information. Instead of directly passing

the separated left and right hand features to Transform-

ers like previous works [20, 8], we convert the left hand

and right hand features to new tokens and pass the con-

verted ones to Transformers. The SimToken is obtained

through similarity-based operation using a self-attention

(SA) Transformer [35]. The JoinToken is obtained by for-

warding a concatenation of two input features to a fully con-

nected layer; therefore, JoinToken models joint distribution

of two input features without any similarity-based opera-

tions. As the new tokens are from both left and right hand

features, they lie in homogeneous spaces. We design the

new tokens to be complementary. For example, when two

hands have very different poses, the distant token problem

(the left and right hand features from bottom row of Fig-

ure 2c) limits the ability of SA Transformer [35] to cap-

ture their interaction. This can result in making SimToken

less effective. On the other hand, JoinToken can still cap-

ture useful interaction information in such cases as it does

not rely on similarity-based operations (e.g., dot products

in Transformer). Conversely, when two hands have sim-

ilar poses, SimToken’s SA mechanism enables it to cap-

ture highly useful interaction information that complements

JoinToken. In this way, the new two tokens allow our sys-

tem to 1) be robust to similarity between two hands by sep-

arating left and right hand features and 2) avoid the distant

token problem and compute the correlation between input

tokens properly.

We utilize the newly introduced two tokens in EANet,

extract-and-adaptation network, where EABlock forms a

main component of it. Figure 1c briefly shows EABlock,

driven by our Transformer-based module, FuseFormer.

FuseFormer fuses two input features by generating the two

newly introduced tokens, SimToken and JoinToken, and

processing them with a cross-attention (CA) Transformer.

Driven by the FuseFormer, the EABlock consists of

extract and adaptation stages. In the extract stage, our

EABlock first extracts an interaction feature from two hand

features with a FuseFormer. In the adaptation stage, we

adapt the extracted interaction feature to each hand with

two additional FuseFormers for each hand. For the left

hand adaptation as an example, we pass the extracted in-

teraction feature and left hand feature to FuseFormer for

fusing them. As the interaction feature mostly contains in-

formation about both hands, it may not be optimal for sep-

arately recovering the 3D hand mesh of each hand. There-

fore, we fuse the interaction feature and left hand feature to

achieve two objectives: 1) preserving the interaction infor-

mation between the two hands and 2) obtaining more left

hand-specific information. We follow a similar process for

the right hand adaptation, passing the extracted interaction

and right hand features through another FuseFormer.

With extensive experiments and qualitative analysis, we

demonstrate the effectiveness of our framework. In the

challenging InterHand2.6M [27] and HIC [33] datasets, we

show that our EANet outperforms the previous state-of-the-

art methods by a significant margin. Our contributions are

summarized as follows:

• We propose EANet, extract-and-adaptation network,

for 3D interacting hand mesh recovery. With the help

of main block, EABlock, our system effectively cap-

tures the interaction between two hands even when

poses of two hands are very different.
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• We design FuseFormer, a core component of our

EABlock. FuseFormer fuses input features by gener-

ating two complementary types of tokens, SimToken

and JoinToken.

• Extensive experiments and qualitative analysis show

that the proposed EANet outperforms previous state-

of-the-art methods on 3D hand mesh benchmarks.

2. Related works
3D interacting hand mesh recovery. Several works [41,

40, 2, 27, 39, 12, 20] have been proposed to address 3D

hand mesh recovery from monocular RGB image. Inter-

Hand2.6M dataset [27, 26] is the first dataset to show a

potential for 3D hand mesh recovery in interacting hands

by proposing the first large-scale high-resolution real RGB-

based 3D hand pose dataset. Following the release of the

dataset [27], Zhang et al. [39] proposed a method that es-

timates 3D hand meshes based on initially estimated 2.5D

heatmap of interacting two hand joints. The initially esti-

mated 3D hand meshes are then jointly refined in a cascaded

manner to take advantage of multi-scale features extracted

from pre-trained ResNet-50 [14] backbone. As the Trans-

former [35]-based mechanisms have emerged for various

tasks in computer vision [9, 13], several methods [20, 12]

have been proposed to effectively exploit Transformer [35]

in 3D interacting hand mesh recovery. Keypoint Trans-

former [12] introduced a SA Transformer [35]-based mod-

ule that performs global context-aware feature encoding for

keypoints features. Stepping forward, IntagHand [20] pro-

posed a CA Transformer [35]-based module to inherently

model two hand correlation between two interacting hands.

Despite promising results, previous Transformer-based

methods [20, 8] suffer from the distant token problem as

they directly utilize two hand features as input tokens when

poses of two hands are different. In contrast, our EANet

is designed to address such distant token problem by using

our two novel tokens as input tokens: SimToken and Join-

Token. The two tokens are prepared and processed in our

FuseFormer. By employing multiple FuseFormers in our

main block, EABlock, the proposed EANet effectively ex-
tracts interaction feature and adapts it to each hand.

Tokenization in Transformer. Transformer [35]-based

methods have become the de-facto standards in multiple

tasks for both natural language processing [7, 3] and vi-

sion [9, 4, 13]. The rise of Transformer [35] has largely

been accounted for its general purpose inductive bias, al-

lowing flexibility [17, 1, 24] to handle input data while mak-

ing minimal assumptions [17]. However, to compensate

for such flexibility, many works have demonstrated task-

specific add-ons such as positional embedding [31, 16, 22]

or tokenization [9, 11, 1, 37, 24]. Especially, tokeniza-

tion [9, 1, 37, 24] has been widely developed in vision as

tokens in Transformer do not directly correspond to any sin-

gle structure in an image. As demonstrated in vision, proper

tokenization is essential for Transformer to make its full po-

tential in corresponding tasks [38, 36]. In our work, we

introduce two novel tokens named SimToken and JoinTo-

ken. The two novel tokens allow Transformer to overcome

distant token problem of two input features by effectively

fusing the input features.

3. Extract-and-adaptation network (EANet)
Figure 3 provides an overall architecture of our EANet.

The proposed EANet consists of backbone, EABlock, joint

feature extractor, self-joint Transformer, and regressor.

3.1. Backbone

Given an input hand image I ∈ R
H×W×3, a back-

bone extracts hand features for both left hand FL and right

hand FR. H = 256 and W = 256 represent height and

width of the input image, respectively. We first feed a hand

image I to ResNet-50 [14], pre-trained on ImageNet [6], to

extract an image feature F ∈ R
h×w×C , where h = H/32

and w = W/32 denote height and width of F respectively,

and C = 2048 denotes the channel dimension of F. Then,

the image feature F is passed to two separate 1 × 1 convo-

lutional layers to obtain left hand feature FL and right hand

feature FR. The two features have the same dimension of

R
h×w×c where c = C/4.

3.2. Extract-and-adaptation block (EABlock)

Figure 4 shows detailed pipeline of our EABlock.

EABlock consists of two stages (i.e., extract and adapta-

tion), and FuseFormers are used in each stage. FuseFormer

is our basic block, which fuses two types of input features

with SimToken and JoinToken. FuseFormer consists of a

SA Transformer, a fully connected layer, and a CA Trans-

former.

Extract: Interaction feature extract. Figure 5 shows the

overall pipeline of FuseFormer in the extract stage. The

FuseFormer in the extract stage extracts an interaction fea-

ture Finter by fusing two hand features (FL and FR). Differ-

ent from the previous Transformer-based methods [12, 20]

that utilize FL and FR as input tokens, we use SimToken tS

and JoinToken tJ as input tokens to address the distant token

problem.

SimToken tS is obtained by passing the two hand fea-

tures (FL and FR) to a SA Transformer [35]. To this end,

we first reshape FL and FR from R
h×w×c to R

hw×c. Then,

we concatenate the reshaped FL and FR along with a class

token tcls ∈ R
1×c [9]. The class token is implemented as a

learnable one-dimensional embedding vector to learn a gen-

eral two hand information [9]. We denote the concatenated

token by t ∈ R
l×c, where l = hw + hw + 1. Then, we ex-

tract query qSA, key kSA, and value vSA from the concate-
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Figure 3: The overall architecture of extract-and-adaptation network (EANet). Our EANet extracts an interaction feature

and adapts it to each hand. Then, from the adapted features (F∗
L or F∗

R), joint feature extractors extract joint features of each

hand (FJL or FJR), guided by corresponding predicted 2.5D joint coordinates (JL or JR). Finally, regressor produces MANO

parameters, which are forwarded to MANO layers for reconstructing 3D hand meshes (VL or VR). © denotes concatenation.
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Figure 4: The overall pipeline of EABlock. A FuseFormer

in the extract stage of EABlock first extracts an interaction

feature Finter by using both hand features FL and FR. Then,

with an interaction feature Finter and one hand feature (FL or

FR), each FuseFormer in the adaptation stage of EABlock

produces adapted interaction feature (FinterL or FinterR). Af-

terwards, adapted interaction features are concatenated with

corresponding hand features to produce adapted hand fea-

ture (F∗
L or F∗

R). © denotes concatenation.

nated token t with separate linear layers. The dimensions of

qSA, kSA, and vSA are all identical to that of t. Analogous to

the previous Transformers [35, 9], the SimToken tS ∈ R
l×c

is produced as follows:

Attn(qSA,kSA,vSA) = softmax(
qSAkSA

T

√
dkSA

)vSA, (1)

r = t+ Attn(qSA,kSA,vSA), (2)

tS = r+ MLP(r), (3)

where dkSA
denotes a channel dimension of kSA. Conse-

quently, tS is built upon a standard SA Transformer from

two hand features.

JoinToken tJ ∈ R
hw×c is obtained by passing two hand

features (FL and FR) to a fully connected layer. Before

passing the two hand features, we concatenate and reshape

two hands features (FL and FR) from R
h×w×2c to R

hw×2c.

Formally,

tJ = FC(ψ(FL,FR)), (4)
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Figure 5: The overall pipeline of FuseFormer in extract
stage. FuseFormer first prepares SimToken tS and JoinTo-

ken tJ with SA Transformer and a fully connected layer,

respectively. Then, a CA Transformer processes the two to-

kens. © denotes concatenation.

where ψ represents a composition of concatenation and re-

shape functions. FC denotes a fully connected layer.

After preparing two tokens (tS and tJ), a CA [5] Trans-

former extracts an interaction feature Finter ∈ R
hw×c from

the two tokens. For CA, we extract query from JoinToken tJ

and key-value pair from SimToken tS with separate linear

layers. We denote query, key and value of the CA Trans-

former by qCA ∈ R
hw×c, kCA ∈ R

l×c, and vCA ∈ R
l×c,

respectively.

The reason for using JoinToken as a query is to address

mismatch between the query-key correlation and value. Let

us take an example where the inputs of the CA Transformer

are obtained in an opposite way: query from SimToken and

key-value from JoinToken. When poses of two hands are

very different, SimToken fails to capture useful interaction

between two hands; hence, first half and second half of

SimToken mainly contain the left and right hand informa-

tion, respectively, not both hand information. On the other

hand, JoinToken contains information of both hands. Let us

take a single element in query, which mostly contains left

hand information, as an example. From this element’s point

of view, the query-key correlation is always formulated by

how much all elements in JoinToken are similar to the left

hand information. However, as value is from JoinToken,
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the opposite hand information can be retrieved based on the

left hand-driven similarity, which is undesirable. In the end,

using SimToken as a query suffers from the mismatch be-

tween query-key correlation (driven by the left hand) and

value (right hand information). In contrast, ours extracts

query from JoinToken and key-value from SimToken. As

elements in query contain both hand information, the query-

key correlation is not fixed to a single type of hand (e.g., left

hand); hence, ours does not suffer from the mismatch.

In the end, the CA Transformer outputs an interaction

feature Finter following Equation 1, 2, and 3 with qCA, kCA,

and vCA. Consequently, FuseFormer in the extract stage ex-
tracts interaction feature Finter by fusing two hand features

(FL and FR). Formally,

Finter = FuseFormer(FL,FR;Wextract), (5)

where Wextract denotes learnable weights of the FuseFormer

in the extract stage.

Adaptation: Interaction feature adaptation. In the adap-

tation stage, EABlock adapts the extracted interaction fea-

ture Finter to each hand with two additional FuseFormers.

While the interaction feature, obtained from the extract

stage, is useful for understanding how two hands interact

with each other, directly utilizing it for 3D hand mesh re-

covery of each hand might not be optimal. Therefore, we

fuse the interaction feature and feature of each hand to

achieve two goals: 1) preserving interaction information

between two hands and 2) obtaining left and right hand-

specific information. Taking the left hand adaptation as an

example, we pass the left hand feature FL and the interac-

tion feature Finter to a FuseFormer, which fuses them and

outputs interaction feature adapted to the left hand FinterL ∈
R

hw×c. The adaptation for the right hand is performed

in the same manner by passing the right hand feature FR

and interaction feature Finter to another FuseFormer, which

fuses them and outputs interaction feature adapted to the

right hand FinterR ∈ R
hw×c. Formally,

FinterL = FuseFormer(FL,Finter;WadaptL), (6)

FinterR = FuseFormer(FR,Finter;WadaptR), (7)

where WadaptL and WadaptR denote learnable weights in

FuseFormers for the left and right hand adaptations, respec-

tively.

To reduce computational costs, for each hand, we apply a

fully connected layer, which reduces the channel dimension

from c to c/4, to the adapted interaction features (FinterL or

FinterR). Then, we reshape the output of the fully connected

layer to R
h×w×c/4. Finally, for each hand, we concate-

nate the adapted interaction feature (FinterL or FinterR) and

its corresponding hand feature (FL or FR) along the chan-

nel dimension, which becomes final adapted feature of each

hand, denoted by F∗
L and F∗

R.

3.3. Joint feature extractor

For each hand, a joint feature extractor extracts 2.5D

joint coordinates (JL or JR) and joint features (FJL or FJR)

from the adapted hand features (F∗
L or F∗

R). Motivated by

Moon et al. [25], our joint feature extractor effectively ex-

tracts joint features with the guidance of estimated 2.5D

joint coordinates.

2.5D joint coordinate estimation. x- and y-axis of 2.5D

joint coordinates are in the 2D pixel space, while z-axis of

them are in the root joint (i.e., wrist)-relative depth space.

To estimate 2.5D joint coordinates of each hand, we apply

a 1 × 1 convolution layer to the adapted hand features (F∗
L

or F∗
R) to change their channel dimension to dJ . Then, we

reshape the output to a 2.5D heatmap whose dimension is

R
h×w×d×J . d = 8 denotes discretized depth size of the

2.5D heatmap, and J denotes the number of joints. Subse-

quently, 2.5D joint coordinates for left or right hand (JL or

JR) are obtained by applying the soft-argmax operation [32]

to the corresponding 2.5D heatmap.

Joint feature extract. The left hand joint features FJL are

obtained through a grid sampling [15] on feature map F∗
L

with (x, y) position from the estimated 2.5D joint coordi-

nates JL. Likewise, the right hand joint features FJR are ob-

tained in a same manner with right hand feature F∗
R and the

corresponding 2.5D joint coordinates JR. The joint features

contain global contextual information of each hand joint,

essential for 3D hand mesh recovery.

3.4. Self-joint Transformer (SJT)

Self-joint Transformer (SJT) is a standard SA Trans-

former. For each hand, it enhances joint features (FJL or

FJR) through the SA [35], which outputs (F∗
JL or F∗

JR). De-

spite its simplicity, we observed that SJT is greatly helpful

to enhance the joint features as it can implicitly consider

kinematic structure of hand joints through the SA. Note that

the goal of SJT is clearly different from that of FuseFormer:

FuseFormer aims to fuse two types of input features, while

the SJT aims to enhance a single type of input feature.

3.5. Final outputs

For each hand, the regressor produces 48-dimensional

pose parameters (θL or θR) and 10-dimensional shape pa-

rameters (βL or βR) of MANO [30] from the enhanced

hand joint features (F∗
JL or F∗

JR). The pose parameters

are obtained by first concatenating the enhanced joint fea-

tures (F∗
JL or F∗

JR) with 2.5D joint coordinates (JL or JR).

Then, we flattened the concatenated features each into a

one-dimensional vector. The final two vectors are passed

to two fully connected layers to predict MANO pose pa-

rameters. To obtain the shape parameters, we forward the

adapted hand features (F∗
L or F∗

R) to a fully connected layer

after global average pooling [23]. In the end, the final 3D
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Separate L/R feature EABlock
MPJPE MPVPE

MRRPE
Single Two All Single Two All

� � 14.90 15.73 15.32 11.84 14.05 12.80 22.76

� � 12.74 14.33 13.53 12.53 11.95 12.28 23.79

� � 9.62 11.54 10.58 7.86 10.78 9.13 18.82

Table 1: Comparison of models with various architec-
tures in Figure 1.

Block
MPJPE MPVPE

MRRPE
Single Two All Single Two All

CA Transformer 12.74 14.33 13.53 12.53 11.95 12.28 23.79

SA Transformer 11.44 13.49 12.47 9.51 12.37 10.75 25.35

Ours (w/o adaptation) 10.66 11.81 11.25 8.37 11.24 9.61 21.00

Ours (full) 9.62 11.54 10.58 7.86 10.78 9.13 18.82

Table 2: Comparison of models with various Trans-
former blocks for EABlock.

hand meshes, denoted by VL and VR, are obtained by for-

warding the MANO parameters to MANO layers. In addi-

tion, the 3D relative translation between two hands is ob-

tained from the adapted hand features (F∗
L and F∗

R). To this

end, we concatenate them and perform global average pool-

ing. Finally, a fully connected layer is used to output the 3D

relative translation between two hands. To train our model,

we minimize loss functions, defined as a weighted sum of

L1 distances between estimated and ground truth θ, β, J,

V, and 3D relative translation.

4. Experiments

4.1. Implementation details

All implementations are done with PyTorch [29] un-

der Adam optimizer [19] and in batch size of 32 per

GPU (trained with four RTX 2080 Ti GPUs). For training

our model on InterHand2.6M [27] dataset, we trained our

model for 30 epochs, with learning rate annealing at 10th

and 15th epochs from the initial learning rate 1× 10−4.

4.2. Datasets and evaluation metrics

InterHand2.6M dataset. We trained and evaluated EANet

on InterHand2.6M dataset. For the comparison with the

previous approaches, we used both single and interacting

hand (SH+IH) images of the H+M split. For ablation stud-

ies, we used SH+IH images of the H split.

HIC dataset. To show the generalizability of our proposed

EANet, we further showed results on HIC [33] dataset.

Different from InterHand2.6M [27] dataset, which has ho-

mogeneous background and lighting sources, HIC dataset

includes natural lighting with more diverse backgrounds.

Note that the HIC dataset was only used for evaluation.

Evaluation metrics. Following the prior arts [27, 12], we

reported mean per joint position error (MPJPE), mean per

vertex position error (MPVPE), and mean relative-root po-

sition error (MRRPE). All metrics are in a millimeter scale.

(a) Input
image

(b) CA
Transformer

(c) SA
Transformer

(d) Ours
(w/o adapt.)

(e) Ours
(full)

Figure 6: Visual comparison of models with various
Transformer blocks for EABlock.

4.3. Ablation studies

Overall design of EANet. Table 1 justifies our approach,

which 1) separates left and right hand features and 2) uses

EABlock to address the distant token problem, as depicted

in Figure 1c. For the first row, we did not separate the fea-

ture from the backbone to left and right hand features. In-

stead, the feature from the backbone was directly passed

to SA Transformer following Keypoint Transformer [12].

Then, a single joint feature extractor and self-joint Trans-

former were used. Two regressors for each hand output final

3D hand meshes. For the second row, we replaced EABlock

with CA Transformer following IntagHand [20] while keep-

ing the separation. Without the separation (Figure 1a and

the first row of the table), model’s performance drops sig-

nificantly as the separation is helpful to make the network

robust to the similarity between left and right hands. Also,

left and right hand-dedicated branches could focus only on

one type of hands instead of two hands, which could relieve

the burden of modules [27, 20]. Compared to the second

row of the table (Figure 1b), ours addresses the distant to-

ken problem by introducing the EABlock, which results in

performance improvements.

EABlock vs. previous Transformer blocks. Table 2 and

Figure 6 demonstrate the superiority of the EABlock over

previous Transformer blocks. For the first and second rows

of Table 2, we replaced our EABlock with standard Trans-

formers with a similar number of parameters as EABlock,

each with corresponding SA and CA modules. Following

the previous Transformer-based methods [20, 12], we used

two hand features as the input tokens. The SA Transformer

(the second row) extracts query, key, and value from both

hands, and CA Transformer (the first row) extracts query

from one hand and key-value pair from the other hand. As

shown, SA Transformer shows better results than CA Trans-

former, especially in the single hand cases. This is because

the CA mechanism forcefully injects irrelevant information

from non-existing counterpart hand.

Meanwhile, the third row shows that our EABlock out-

performs the two Transformer baselines only with the ex-

tract stage (i.e., without the adaptation stage) in EABlock.

Especially, the gain in two hands cases (+1.68) is larger than

that of single hand cases (+0.78) in terms of MPJPE. This

demonstrates the benefits of our two novel tokens, which

are proposed to relieve the distant token problem. With the

adaptation stage, our EABlock improves its performance in
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Figure 7: Visual comparison with state-of-the-art methods on InterHand2.6M [27] (top) and in-the-wild (bottom). The

red circles highlight regions where our EANet is correct, while others are wrong. We crawl in-the-wild images from web.

qCA kCA,vCA
MPJPE MPVPE

MRRPE
Single Two All Single Two All

- - 13.19 14.17 13.88 9.68 13.61 11.95 25.95

tJ FL,FR 10.66 12.60 11.63 8.73 11.65 10.00 21.88

tJ tJ 12.02 13.42 12.71 8.79 11.63 10.02 22.67

tS tS 10.44 12.36 11.40 8.53 11.33 9.75 21.70

tS tJ 10.48 12.40 11.44 8.58 11.37 9.79 21.52

tJ tS 9.62 11.54 10.58 7.86 10.78 9.13 18.82

Table 3: Comparisons of models with various inputs for
CA Transformer in FuseFormer. The first row uses tJ as

the interaction feature without using the CA Transformer.

EABlock SJT
MPJPE MPVPE

MRRPE
Single Two All Single Two All

� � 11.22 13.18 12.20 10.08 12.87 11.28 23.04

� � 11.05 13.04 12.04 9.07 11.92 10.28 22.80

� � 10.12 11.92 11.02 8.61 11.42 9.83 21.11

� � 9.62 11.54 10.58 7.86 10.78 9.13 18.82

Table 4: Comparison of models with various combina-
tions of EABlock and SJT.

all metrics, shown in the fourth row. In particular, the adap-

tation has more gain in single hand cases compared to two

hand cases, both for MPJPE and MPVPE. This justifies our

adaptation stage, designed to adapt the interaction feature to

each hand and filter irrelevant information from the interac-

tion feature.

Inputs of CA Transformer in FuseFormer. Table 3 jus-

tifies our strategy to use JoinToken tJ and SimToken tS as

query and key-value pair of the CA Transformer in Fuse-

Former, respectively. The comparison between the fifth row

and our setting (the last row) shows that using JoinToken as

a query produces lower 3D errors compared to using SimTo-

ken as a query. This shows our setting effectively addresses

the mismatch between query-key correlation and value, de-

scribed in Section 3.2. In addition, our setting performs

better than using a single type of token (the third and fourth

rows), which indicates that our two tokens are complemen-

Methods # of params (M)
MPVPE

MRRPE
Single Two All

Zhang et al. [39] 143.37 - 13.95 - -

Keypoint Transformer [12] 117.05 10.16 14.36 11.94 30.87

IntagHand [20] 39.04 - 9.03 - -

EANet (Light. Ours) 33.90 5.71 7.66 6.53 34.29

EANet (Ours) 106.82 4.81 6.34 5.45 28.54

Table 5: Quantitative comparison with state-of-the-art
methods on InterHand2.6M [27] dataset.

Methods
MPVPE

MRRPE
Single Two All

Zhang et al. [39] - 42.08 - -

Keypoint Transformer [12] 60.19 51.21 54.71 190.77

IntagHand [20] - 45.74 - -

EANet (Light. Ours) 43.90 38.47 40.59 83.44

EANet (Ours) 32.82 34.43 33.80 81.11

Table 6: Quantitative comparison with state-of-the-art
methods on HIC [33] dataset.

tary. Ours also produces lower 3D errors compared to the

second row that uses two hand features (FL and FR) as a

key-value pair. This proves the benefit of using SimToken

compared to the two hand features. Lastly, ours produces

far better results than the first row that uses JoinToken as

the interaction feature without using the CA Transformer in

FuseFormer. This demonstrates that solely using JoinToken

is insufficient, and the CA Transformer is necessary to fuse

two types of input features of FuseFormer.

Combinations of EABlock and SJT. Table 4 shows that

our SJT greatly harmonizes with the proposed EABlock.

Solely employing the SJT without EABlock, in the sec-

ond row, shows a minor improvement. Adopting EABlock

alone, in the third row, shows considerable improvement

compared to the baseline. Most importantly, jointly adopt-

ing both EABlock and SJT further consistently improves

the performance in every metric.
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Figure 8: Comparison of t-SNEs and attention maps.
Ours is from CA Transformer in extract stage of EABlock.

4.4. Comparisons with state-of-the-art methods

Comparison on InterHand2.6M and HIC. Table 5 and

6 show that our EANet achieves the highest performance

on Interhand2.6M [27] and HIC [33] datasets, respec-

tively. Following the previous works [20, 39], we measured

MPVPEs after scale alignment on meshes with GTs. Due

to the absence of MPVPE in the manuscript of Keypoint

Transformer, the numbers were obtained from their offi-

cially released codes and pre-trained weights. In Table 5,

we compare the performance and the number of parameters

with previous 3D interacting hand mesh recovering meth-

ods [27, 25, 10, 12]. Our EANet has fewer parameters than

Keypoint Transformer [12] and Zhang et al. [39], while sig-

nificantly outperforming them. Moreover, to ensure a fair

comparison with IntagHand [20], which has fewer param-

eters than ours, we introduce a lighter version of EANet,

EANet (Light). We reduced the channel dimension to

c = C/8 instead of c = C/4 for EANet (Light). Even with

fewer parameters, EANet (Light) shows better MPVPE than

IntagHand [20], further demonstrating the efficacy of our

proposed approach. Furthermore, in Table 6, our EANet

achieves significantly better performance on HIC dataset

than other methods, indicating its strong generalizability.

In addition, Figure 7 shows the visual comparisons

with previous state-of-the-art methods [20, 12] on Inter-

Hand2.6M [27] and in-the-wild interacting hand images.

The results showcase our EANet’s superior performance in

precise hand pose and interaction estimation.

Attention map comparison. Figure 8 compares attention

maps and corresponding t-SNEs. In Figure 8b, Keypoint

Transformer [12] does not suffer from the distant token

problem, as it does not separate feature from the backbone

to left and right hand features. However, without the sep-

aration, networks suffer from sub-optimal performance, as

shown in Table 1. Also, its attention map shows the dom-

inance of strong self-correlations with weak correlations

from non-diagonal areas. In Figure 8c, IntagHand suffers

from the distant token problem. Hence, it fails to gener-

ate proper correlations between two hands with different

poses, resulting in predominantly low correlations between

all queries and keys. In contrast, Figure 8d shows that our

SimToken and JoinToken do not suffer from the distant to-

ken problem with balanced high correlations in both the

Figure 9: Comparison on InterHand2.6M [27] sequences
with various pose differences. x-axis represents pose dif-

ference between two hands. y-axis represents errors of the

methods on each sequence with pose difference of x-axis.

left- and right-half of the attention map. As the each half

of the attention map was computed between each query and

each hand portion of SimToken, the high correlations in

both halves indicate that ours effectively utilizes both left

and right hand information for each query.

Robustness to asymmetric poses of two hands. Figure 9

demonstrates that our EANet exhibits significantly greater

robustness to asymmetric poses of the hands compared to

previous state-of-the-art methods [39, 12, 20]. For this anal-

ysis, we selected 6 sequences from the InterHand2.6M [27],

which have diverse pose similarities between the two hands.

The x-axis of the figure represents the average pose dif-

ference between the two hands in each selected sequence,

with larger values indicating bigger pose differences. No-

tably, our EANet produces nearly consistent MPJPE values

across all pose differences, even when the pose difference

increases about 7 times at the rightmost x value compared

to the leftmost one. Moreover, our method produces sig-

nificantly lower MPJPE values than previous methods for

all sequences, including those with the biggest pose differ-

ences. We clarify the way to calculate the pose difference

of each sequence in the supplementary material.

5. Conclusion
We present EANet, extract-and-adaptation network for

3D interacting hand mesh recovery. With the help of the

main block, EABlock, EANet effectively learns interaction

between two hands by solving distant token problem. The

EABlock is mainly driven by our novel Transformer-based

block, FuseFormer, which fuses two types of input features

by using SimToken and JoinToken. By extracting interac-

tion from two hand features and then adapting the interac-

tion towards each hand in EABlock, our EANet achieves

the state-of-the-art performance in recovering 3D interact-

ing hand mesh on challenging scenarios.
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