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Abstract

The aim of intrinsic decomposition is to deduce the
albedo and shading components, typically from 2D images.
However, this task is ill-posed, necessitating previous meth-
ods to rely on imaging assumptions. In contrast to 2D
images, point clouds present a promising solution due to
their richness as scene representation formats. They in-
herently align both the geometric and color information of
an image, making them valuable to address this challeng-
ing problem. Hence, we propose a method, Point Intrin-
sic Net (PoInt-Net), which jointly predicts the albedo, light
source direction, and shading by leveraging point cloud
representations. Through experiments, we demonstrate the
advantages of PoInt-Net, as it outperforms 2D representa-
tion methods across multiple metrics and datasets. More-
over, the model exhibits reasonable generalization capabil-
ities for previously unseen objects and scenes.

1. Introduction
Intrinsic decomposition is a fundamental challenge and

ill-posed problem. Given a single 2D image, there exist nu-

merous potential combinations of albedo and shading that

can result in that same input image. Previous methods

mainly investigate the priors from images, such as human

perception [8, 14], context-based priors [4, 5, 20], and geo-

metric priors [1–3, 9, 13, 23]. Despite demonstrating good

performance on trained datasets, these methods encounter

challenges when the underlying assumptions or learned pat-

terns fail to accurately capture real-world scenarios. [6] pro-

poses a method for learning intrinsic decomposition based

on spatial models of albedo and shading. However, there

remains a gap between learning from paradigms and human

perception.

Recent studies have demonstrated that employing point

cloud data representations provide advantageous for low-

level vision tasks, such as color constancy [21], synthetic

views generation [22], and light field representation [16].

However, the use of point cloud data representation has

been overlooked in the context of intrinsic decomposition.
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Figure 1: Our approach involves decomposing the intrinsic

components of an object/scene by leveraging a point cloud

representation of its appearance from a specific viewing an-

gle. Point clouds are generated from RGB − D images,

where the depth is obtained by a depth camera (e.g. Lidar

or ToF) or is estimated from an RGB image by a monocular

depth estimation method such as [19]. Our method is able

to generalize well to real-world images taken from unseen

shapes/scenes.

Therefore, this paper delves into the exploration of a 3D

point cloud representation for intrinsic decomposition. A

point-based network (PoInt-Net) is introduced to exploit the

3D structure and appearance of an object or scene, enabling

the extraction of surface geometry and intrinsic appearance.

By estimating light source direction and surface normals

from the input point cloud, the final shading is generated

by the shader. The estimated shading is combined with the

estimated albedo to reconstruct the input appearance.

Experiments demonstrate that PoInt-Net achieves state-

of-the-art shading estimation results on widely used

datasets, while maintaining comparable albedo estimation

performance. PoInt-Net seamlessly integrates with point

clouds generated from estimated or calculated depths (Fig.
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1), providing flexibility and robustness to generalize intrin-

sic decomposition across a broader spectrum of shapes and

scenes. The contributions of the paper are:

• A novel paradigm is proposed to intrinsic decomposi-

tion by reformulating the task into a 3D point cloud

representation, which explicitly incorporates geomet-

ric priors and sparse representations.

• A point-based intrinsic decomposition network is in-

troduced, PoInt-Net, includes explainable subnets for

light direction estimation, shading rendering, and

albedo reconstruction.

• The proposed method outperforms prior methods

across multiple datasets, demonstrating robust gener-

alization capabilities.

2. Point Cloud Intrinsic Representation
2.1. Intrinsic Decomposition

Given a viewing angle, if the surface is Lambertian, the

appearance Idiffuse formulation can be simplified as:

Idiffuse =
∫
ωi∈Ω+

fr(ωi)Li(ωi)(N · ωi)dωi, (1)

where ωi is the lighting angle from the upper hemisphere

Ω+, ωo is the viewing angle, N is the surface normal,

Li(x, ωi) is the position of the lighting angle and its direc-

tion, and fr is the surface reflectance, modeled by a Bidi-

rectional Reflectance Distribution Function (BRDF) [15].

Conventionally, ρd

π denotes the reflectivity of the surface

(albedo), where fr(ωi) = ρd

2π . Therefore, if the illumina-

tion is uniform, the intrinsic model is defined by:

Idiffuse =
ρd
π
· (N · Lin), (2)

where, Lin represents the visible incident light. The aim of

intrinsic decomposition is to disentangle the albedo A = ρd

π
and shading S = (N · Lin) from the appearance Idiffuse,

where (·) is the dot product.

2.2. Intrinsic Appearance on Point Cloud

According to Eq. 1, the appearance of the object un-

der a given lighting condition is acquired as a RGB im-

age I = [Ir, Ig, Ib] ∈ R
U×V×3. Additionally, its cor-

responding depth map is represented by D ∈ R
U×V×1.

The depth information can either be directly obtained by

a depth camera, e.g., LiDAR, or can be estimated by a

(monocular) depth estimation method based on 2D images,

e.g.,[19]. The RGB image and corresponding depth map

are transformed into a (colored) point cloud representation,

P = {pi|i ∈ 1, . . . , n}. Specifically, each point pi is repre-

sented as a vector of [x, y, d, r, g, b] values:

pi =

(
(u− cx)d

fx
,
(v − cy)d

fy
, d, r, g, b

)
, (3)

where, fx and fy are the focal lengths, and (cx, cy) is

the principal point. Given a dataset of M point clouds,

P = {P1,P2, ...,PM}, its intrinsic components can be

defined by: 1) Albedo A = {A1,A2, ...,AM}, 2) Shad-

ing S = {S1, S2, ...,SM}, 3) Surface Normal N =
{N1,N2, ...,NM}, and 4) Light source position L =
{L1,L2, ...,LM}.

Albedo contains the invariant (albedo) information.

Therefore, a direct point based mapping (fα : P → A)

is employed to decompose the reflectance appearance.

Shading depends on the object geometry, viewing and

lighting conditions. Thus, instead of directly learning the

shading, a point-light direction net (fθ : P → L) is used to

estimate the light direction from the point cloud represen-

tation. Then, a point-learnable shader (fσ : L,N → S) is

trained to generate the rendering effects based on the sur-

face normals (from input point cloud) and light direction

estimation (from point-light direction net).

3. Point Based Intrinsic Decomposition
3.1. Point Intrinsic Net

The proposed point intrinsic network (PoInt-Net) con-

sists of three modules: 1) the Point Albedo-Net, which is

designed to learn the material properties of object surfaces,

2) the Light Direction Estimation Net, dedicated to infer the

lighting conditions. The aim is to support the estimation of

the (point cloud) albedo, and 3) the Learnable shader, which

combines the inferred light direction and surface normals to

generate the shading map. The closest approach to ours is

[9]. However, this method estimates the normal informa-

tion directly from the input images and can only be gener-

alized at a (single) object level. Fig. 2 shows the proposed

network architecture and the details of the forward connec-

tions. Each of the three sub-nets shares a similar design,

with only a few differences such as the activation functions.

Specifically, all three sub-nets are adopted from [17], and

employ Multi-Layer Perceptrons (MLPs) for point-feature

extraction and decoding, with the aim of solving the point-

to-point relationship.

Point Albedo-Net takes as input a 6-D point cloud contain-

ing color information and spatial coordinates, and produces

estimates of surface reflectances. To produce scaled output

colors, the Rectified Linear Unit (ReLU) is utilized as the

activation function.

Light Direction Estimation Net takes the same input as

the Point Albedo-Net, and predicts the point-wise light di-

rections. The final two layers use the hyperbolic tangent

function (Tanh) as activation to ensure that all light direc-

tions are estimated.

Surface Normal Calculation computes the surface normal

based on the input point cloud including: 1) neighboring

point identification and covariance matrix calculation, 2)

eigenvector computation of the covariance matrix, and 3)

4233



�������	�
����

��������	�	���

�����
� ������ ���
���	���
�

�
��

	�
�

��
�


�

�
��

��
�	

��
�

���������

��������	�	���

�������	

����
	�����	

���������	
����	����	����������	�������������	

�����

�����	����������

�������	����������

 �!

 !

 �!

 �!

 �!

 
!

�����
�

������
�

��
��

�	
��

� ���

 �!

!

!

"�	���	� �����
	��
�

"�	���	��

�����#

 
!

"�	���	��$�#�	�
����
	���

��
���	��
	����������
����������������������������������������������������������������������������� ���

!!
�

Figure 2: Our proposed framework for intrinsic point cloud decomposition starts by transforming the RGB−D representation

to a point cloud representation (a). The point cloud representation is used as input to train two separate components: the

shading and the albedo estimation. The shading estimation is supported by the DirectionNet (Light Direction Estimation

Net), which takes (a) as input and and outputs light direction estimates (c). Surface normals (d) are calculated using local

neighborhoods within (a). The Shader (Learnable Shader) then uses the concatenated vectors of (c) and (d) to generate the

final shading estimation (e). The albedo estimation is obtained by the AlbedoNet (Point-Albedo Net) which extracts invariant

reflectance (b) from (a) based on the Lambertian assumption. Finally, by multiplying (b) and (e), the reconstructed image (f)

is generated. Please refer to the supplementary for the detailed architecture.

normal vector selection based on the smallest eigenvalue.

To speed up the training process, normal information is pre-

computed and used during training.

Learnable Shader takes as input the concatenated vectors

of the surface normal information (calculated from the input

point cloud) and light direction estimation, and outputs the

point-wise shading map.

3.2. Joint-learning Strategy
A two-step training strategy is employed to arrive at an

end-to-end intrinsic decomposition learning pipeline. First,

for shading estimation, the Light Direction Estimation Net
and Learnable Shader are trained using ground-truth light

position L and shading S. Then, for albedo estimation, the

parameters in these two sub-nets are preserved and frozen,

while the Point Albedo-Net is constrained by the ground-

truth albedo A and the final reconstructed image Î (mul-

tiplied by the estimated albedo map Â and the estimated

shading map Ŝ). During training, the mean square error is

used. The loss function1, for stage one, is:

Lshading =
1

M

M∑
(|L− L̂|2 + |S− Ŝ|2). (4)

For stage two, a series of loss functions are used to constrain

the invariant color information. To address reflectance

changes, a color cross ratio loss inspired by [7] is used, for-

mulated as follows:

Lccr = |MRG−MR̂Ĝ|+ |MRB−MR̂B̂ |+ |MGB−MĜB̂ |,
(5)

1For datasets without light direction labels, the loss function only con-

strains the shading map Ŝ.

where {MRG,MRB ,MGB}, {MR̂Ĝ,MR̂B̂ ,MĜB̂} are the

cross color ratios from the ground-truth albedo and the esti-

mated albedo respectively. Please refer to supplemental for

the details of cross color ratios calculation. Similarly to [5],

the gradient difference is considered and is formulated by:

Lgrad = |∇A−∇Â|22 (6)

Hence, the reconstruction loss is applied to constrain the

estimated albedo:

Lrec =
1

M

M∑
(|A− Â|2 + |I− Î|2), (7)

The final loss function is:

Lalbedo = Lrec + Lgrad + Lccr, (8)

where {̂·} represents the estimated values, and M is the

number of input point clouds in a mini-batch. Adam [10]

is employed as the optimizer.

4. Experiments
We first train PoInt-Net on the ShapeNet-Intrinsic

dataset [9], with ground-truth labels for intrinsic images and

light positions. Then, the pre-trained parameters are fine-

tuned on the MIT-intrinsic dataset2 [8], with only ground

truth labels for intrinsic images. The quantitative and qual-

itative results are presented across the two datasets. For the

numerical results, three common metrics are employed for

evaluation: mean square error (MSE), local mean squared

error (LMSE), and structural dissimilarity (DSSIM).

2Depth information is available for download at: here
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MSE×102 LMSE×102 DSSIM×102
A S Avg. Total Total

CGIntrinsics[11] 3.38 2.96 3.17 6.23 -

Fan et al. [5] 3.02 3.15 3.09 7.17 -

Ma et al. ∗[14] 2.84 2.62 2.73 5.44 -

USI3D∗ [12] 1.85 1.08 1.47 4.65 -

Ours (w/o. shader) 0.48 0.57 0.53 1.15 4.93

Ours 0.46 0.38 0.42 1.00 4.15

∗ Unsupervised methods but finetune on the dataset.

Table 1: Results and ablation study for ShapeNet-Intrinsic.

Input Prior method w/o. Shader GT Prior method Ours GTw/o. ShaderOurs w/o. shader Ours w/. shader

Shading Albedo

Figure 3: Qualitative results on the ShapeNet-Intrinsic (top

2 rows) & MIT-intrinsic (bottom 2 rows) datasets.

ShapeNet-Intrinsic. We compare our approach to the lat-

est open source methods [5, 11, 12, 14]. Table 1 demon-

strate that our approach outperforms existing methods by

a large margin for all three metrics. This superior perfor-

mance attributes to PoInt-Net’s ability to accurately predict

intrinsic properties by capturing and leveraging complex re-

lationships among them, resulting in more robust and reli-

able estimations. The qualitative results are presented in

Fig. 3, using USI3D [12] (fine-tuned version) as a refer-

ence. PoInt-Net’s shading map, based on light direction and

surface normal, accurately separates shading from the com-

posite image. Consequently, the output images display re-

alistic and consistent shading even when the surface color

is ambient. The ablation results further highlight the im-

portance of the shader net; without it, the network cannot

accurately estimate shading. Overall, the results underline

PoInt-Net’s effectiveness and robustness in producing high-

quality, visually appealing outputs that accurately capture

the objects’ intrinsic properties.

MIT-intrinsic. The quantitative results are presented in Ta-

ble 2, showcasing PoInt-Net’s superior performance in pro-

ducing state-of-the-art shading results on the MIT-intrinsic

dataset across all metrics. Notably, our method achieves the

best LMSE and ranks second in albedo output performance,

in terms of MSE and DSSIM metrics. It is worth noting

that [4] utilizes an additional input to enhance albedo esti-

mation. Fig. 3 provides a visualization of our results, where

our method surpasses others in accurately identifying the

spots on the frog’s back—a detail missed by PIE-Net [4].

The high-quality shading results stem from PoInt-Net’s use

MSE×102 LMSE×102 DSSIM×102

A S A S A S

SIRFS [1] 1.47 1.83 4.16 1.68 12.38 9.85

Ma et al. ∗ [14] 3.13 2.07 1.16 0.95 - -

Janner et al. [9] 3.36 1.95 2.10 1.03 - -

CGIntrinsics [11] 1.67 1.27 3.19 2.21 12.87 13.76

USI3D∗ [12] 1.57 1.35 1.46 2.31 - -

FFI-Net [18] 1.11 0.93 2.91 3.19 10.14 11.39

PIE-Net [4] 0.28 0.35 1.36 1.83 3.40 4.93

Ours 0.89 0.34 0.97 0.37 4.39 3.02

∗ Unsupervised methods but finetune on the dataset.

Table 2: Results for MIT Intrinsic.

Figure 4: Real-world intrinsic estimated by PoInt-Net.

of light direction estimation and surface normal calculation,

underscoring its ability to render intricate details.

Real-world generalization. Fig. 4 shows the robust gen-

eralization of PoInt-Net on real-world images. The point

clouds are generated based on the estimated depth maps

from [19], accordingly. Although, PoInt-Net is trained on

the single object level dataset. It can still accurately esti-

mate the surface reflectance and shading, for single objects

and complex scenes.

5. Conclusion
We introduced a novel method, Point Intrinsic Network

(PoInt-Net), utilizing point intrinsic representation for 3D
intrinsic appearance decomposition. PoInt-Net effectively
decomposes light direction, surface reflectance, and shading
maps by leveraging the unique properties of point clouds.
Experiments showed that our method outperforms 2D rep-
resentation methods and exhibits reasonable generalization
capabilities. In line with the short paper theme, the pro-
posed framework presents a work in progress. The future
work plan is to extend the work to non-Lambertain sur-
faces. Other directions include the impact of different qual-
ity depths on estimate results and network pruning.
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