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Abstract

Whole-body pose estimation localizes the human body,
hand, face, and foot keypoints in an image. This task is chal-
lenging due to multi-scale body parts, fine-grained local-
ization for low-resolution regions, and data scarcity. Mean-
while, applying a highly efficient and accurate pose esti-
mator to widely human-centric understanding and genera-
tion tasks is urgent. In this work, we present a two-stage
pose Distillation for Whole-body Pose estimators, named
DWPose, to improve their effectiveness and efficiency. The
first-stage distillation designs a weight-decay strategy while
utilizing a teacher’s intermediate feature and final logits
with both visible and invisible keypoints to supervise the
student from scratch. The second stage distills the student
model itself to further improve performance. Different from
the previous self-knowledge distillation, this stage finetunes
the student’s head with only 20% training time as a plug-
and-play training strategy. For data limitations, we explore
the UBody dataset that contains diverse facial expressions
and hand gestures for real-life applications. Comprehen-
sive experiments show the superiority of our proposed sim-
ple yet effective methods. We achieve new state-of-the-art
performance on COCO-WholeBody, significantly boosting
the whole-body AP of RTMPose-1 from 64.8% to 66.5%,
even surpassing RTMPose-x teacher with 65.3% AP. We re-
lease a series of models with different sizes, from tiny to
large, for satisfying various downstream tasks. Our code
and models are available at https://github.com/
IDEA-Research/DWPose.

1. Introduction

Whole-body pose estimation plays a crucial role in nu-
merous human-centric perception, understanding, and gen-
eration tasks, including 3D whole-body mesh recovery [,
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Figure 1. Comparison of our model and related models for whole-
body pose estimation on COCO-WholeBody.

25, 31, 65], human-object interaction [7, 42], and pose-
conditioned human image and motion generation [10, 24,
27, 59]. Furthermore, capturing human poses for virtual
content creation and VR/AR has gained significant popu-
larity, relying on user-friendly algorithms like OpenPose [2]
and MediaPipe [29, 62]. Despite the convenience of these
tools, their performance remains unsatisfactory, limiting
their potential. Therefore, further advancements in human
pose estimation technology are essential to fully unleash
the potential of user-driven content creation. Compared
with human pose estimation with body-only keypoints de-
tection, whole-body pose estimation faces more challenges
from 1) the hierarchical structures of the human body for
fine-grained keypoints localization; 2) the small resolutions
of hand and face; 3) the complex body parts matching for
multiple persons in an image, especially for occlusion and
complex hand poses; 4) data limitation, especially for di-
verse hand pose and head pose for the whole-body images.

Besides, before deploying a model, it is essential to com-
press it into a lightweight network. The basic compression
tools comprise distillation [14], pruning [8], and quanti-
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zation [60]. Knowledge distillation (KD) is proposed to
enhance the efficiency of a compact model without incur-
ring extra costs during inference. This technique enables a
student to inherit knowledge from a larger teacher and has
found widespread application in various tasks, such as clas-
sification [69], detection [49], and segmentation [28].

In this paper, we explore KD for whole-body pose esti-
mation to benefit many downstream applications, resulting
in a series of real-time pose estimators with high perfor-
mance and efficiency. Specifically, we propose a novel two-
stages pose distillation framework DWPose, which achieves
state-of-the-art performance, as shown in Fig. 1. We adopt
the latest pose estimator RTMPose [18] as the basic model,
which has been trained on COCO-WholeBody [19, 26].

In the first-stage distillation, we natively leverage the
teacher’s (e.g., RTMPose-x) intermediate layer and final
logits to guide the student model (e.g., RTMPose-1). Previ-
ous pose training distinguishes keypoints via visibility and
only uses visible keypoints for supervision. Unlike that, we
use the teacher’s complete outputs with both visible and in-
visible keypoints as final logits, which can impart reason-
able and comprehensive values to facilitate the student’s
learning process. Meanwhile, we employ a weight-decay
strategy to enhance the efficacy, gradually reducing the dis-
tillation’s weight throughout the entire training phase. Due
to a better head will determine a more precise localization,
the second-stage distillation proposes a head-aware self-KD
to enhance the capacity of the head. We construct two iden-
tical models and select one as the teacher and the other as
the student to be updated. The student backbone is frozen,
and only its head is updated through the logit-based dis-
tillation. Notably, this plug-and-play approach allows the
student to achieve better results with 20% training time,
whether trained from scratch with distillation or without,
and can be used for any dense prediction heads.

Data volume and diversity addressing different scales of
human body parts will affect the model performance. Suf-
fering from the limited holistic annotated keypoints on ex-
isting datasets, existing estimators fail to localize well on
fine-grained fingers and face landmarks. Thus, we explore
the data impact by incorporating an additional UBody [25]
dataset, primarily comprising diverse face and hand key-
points captured in various real-life scenes.

Therefore, our contributions can be summarized as:

e We introduce a two-stage pose knowledge distillation
method, pursuing efficient and precise whole-body
pose estimation.

* To break the whole-body data limitation, we explore
more comprehensive training data, especially on di-
verse and expressive hand gestures and facial expres-
sions, making it practical for real-life applications.

e Based on the latest RTMPose as our base model, our
proposed distillation and data strategies can signifi-
cantly improve RTMPose-1 from 64.8% to 66.5% AP,
even surpassing RTMPose-x teacher with 65.3% AP.
We also validate the powerful effectiveness and effi-
ciency of DWPose on the generation task.

2. Related work
2.1. 2D Whole-body Pose Estimation

This task targets locating expressive body, hand, feet,
and face keypoints for all persons in an image simulta-
neously [2, 13, 19]. Due to the lack of whole-body an-
notations, most previous models are designed for body-
only [22, 40, 47, 53], hand-only [6, 32, 62, 68], or face-
only [21, 46, 67]. Openpose [3] combines different datasets
for separate body parts. MediaPipe [29, 62] builds a per-
ception pipeline for easy-to-use applications, especially for
whole-body landmark detection. With the emergence of
whole-body data [9, 19], the models for whole-body pose
estimation make great progress [13, 18, 48]. Specifically,
ZoomNet [19] proposes the first top-down method with a
hierarchical single network to solve the scale variance of
different body parts. ZoomNAS [48] further explores a
neural architecture search framework for jointly searching
the model architecture and the connections between differ-
ent sub-modules to promote both accuracy and efficiency.
TCFormer [61] introduces progressive clustering and merg-
ing vision tokens for various locations, sizes, and shapes in
multiple stages, preserving different scale information well.
Recently, RTMPose [18] has discussed key factors in pose
estimation and built a real-time model, achieving state-of-
the-art results on COCO-WholeBody. However, it still suf-
fers from redundant model designs and data limitations, es-
pecially for diverse hand and face poses.

2.2. Knowledge Distillation

Knowledge distillation is a way to compress the model.
Hinton et al. [14] first proposed to supervise the student
with the soft labels from the teacher’s output. The method
is originally designed for classification and is also called
logit-based distillation. Some following works [15, 52, 54]
utilize teacher’s logits in different ways, transferring more
knowledge from soft labels, target and non-target log-
its [16, 58, 64, 66, 58]. From the logit-based distillation to
feature-based distillation, the knowledge is transferred from
intermediate layers [17, 55, 57] and it extends the distilla-
tion to various tasks, including detection [4, 56], segmenta-
tion [38], generation [30] and so on.

Utilizing KD in human pose estimation has been rarely
studied [23, 35, 45, 50]. Existing works either distill the
heavy heatmaps for body-only pose estimation [23, 35] or
focus on gathering separate body-part experts’ knowledge
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Figure 2. Pipeline of Two-stages Pose Distillation (TPD). On the left, the first-stage distillation adopts a traditional style leverage both
feature and logit level. On the right, the second-stage distillation employs the student itself to teach a new head for enhanced performance.

into a single deep network designed for whole-body 2D-3D
pose detection [45]. 2D whole-body pose estimation is a
basic task for 3D pose estimation and is more holistic than
body-only pose estimation. Our proposed DWPose is the
first work to explore efficient KD strategies for this task.

3. Method

In the following, we provide a detailed exposition of
the two-stage pose distillation (TPD). As shown in Fig. 2,
it comprises two distinct stages. The first-stage distilla-
tion involves a pre-trained teacher guiding the student from
scratch at both the feature and logit levels. On the other
hand, the second-stage distillation can be considered a self-
KD approach. The model employs its own logits to train its
head without any labeled data, leading to significant perfor-
mance enhancements within a concise training period.

3.1. The First-stage distillation

We denote the feature from the teacher’s and student’s
backbone as F* and F'®, and the teacher and student’s final
output logit as 7; and .S;. The first-stage distillation forces
the student to learn the teacher’s feature F* and logit T;.

3.1.1 Feature-based distillation

For the feature-based distillation, we force the student to
mimic the teacher’s layer from the backbone directly. We
utilize MSE loss to calculate the distance between the stu-
dent’s feature F'* and the teacher’s feature F'*. To learn the

knowledge from the teacher’s feature map, the distillation
loss of the feature can be formulated as:

cC H W

Lfea = CHWZZZ FF0)’s

c=1h=1w=1

where f is a 1x1 convolutional layer to reshape the F'*
to the same dimension as Ft. H, W, C denote the height,
width and channel of the teacher’s feature.

3.1.2 Logit-based distillation

RTMPose [18] predicts pose keypoints with a SimCC-
based [22] algorithm that treats keypoint localization as a
classification task for horizontal and vertical coordinates.
Following this design, we can also apply the logit-based
knowledge method to it. To begin with, we review the orig-
inal classification loss for RTMPose as follows:

R DA

n=1k=1

where N is the number of the person samples in a batch,
K is the number of keypoints, e.g., 133 for COCO-
WholeBody [19], L is the length of the x or y localization
bins. W, ;. is a target weight mask to distinguish invisible
keypoints. V; is the label value.

For the logit-based distillation, we follow the form of the
original loss L,,;. It’s worth noting that we drop the target

Vilog(S. @)
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weight mask W for distillation. Different from the label
value, the invisible keypoints can also be distributed a rea-
sonable value by the teacher. So we argue such value is also
helpful, and we also verify it in Sec. 5.6. The distillation
loss of the logits can be formulated as:

N K L

1
Liogit = N Z ZTilOg(Si)~ 3)
n=1k=11:=1

3.1.3 Weight-decay strategy for distillation

With feature distillation loss L s, and logits distillation loss
Liogit, we can train the student with the total loss as:

L=Ly;+ aLfea + BLlogih (4)

where « and 3 are hyper-parameters to balance the loss.

Inspired by a detection distillation method TADF [41],
we apply a weight-decay strategy for the distillation to re-
duce the distillation penalty gradually. This strategy helps
the student to focus more on the label and achieve better
performance. We utilize a time function r(¢) to implement
the strategy, which is as follows:

T(t) =1- (t - 1)/tmaa:a )

where t € (1, ..., tmaz) is the current epoch and ¢, is the
total epochs for training. Then the final loss for the first-
stage distillation can be formulated as:

le = Lo’ri + T(t) . aLfea + T(t) . BLlogity (6)
3.2. The Second-stage distillation

In the second distillation stage, we try to utilize the
trained student model to teach itself for a better perfor-
mance. In this way, it can bring improvements for the stu-
dents, whether trained from scratch with distillation or not.

The pose estimator comprises the encoder (backbone)
and decoder (head). Based on the trained model, we first
build a student with a trained backbone and an untrained
head. The teacher is the same model with a trained back-
bone and head. During training, we freeze the student’s
backbone and update the head. Because the teacher and the
student have the same architecture, we only need to extract
the feature from the backbone once. Then, the feature is fed
into the teacher’s trained head and the student’s untrained
head to get the logits 7; and .5;, respectively. Following
the form in Eq. 3, we train the student with L;,4;¢ for the
second-stage distillation. It’s worth noting that we drop the
original loss L,,.;, which is calculated with label value. Us-
ing 7 to denote the hyper-parameter for loss scale, the final
loss for the second-stage distillation can be formulated as:

Ly = ’YLlogit- (7

Different from previous self-KD methods, our proposed
head-aware distillation can efficiently distill the knowledge
from the head with only 20% training time and further im-
prove the localization capability.

4. Experiments
4.1. Datasets and Details

Datasets. We conduct experiments on COCO [19, 26]
and UBody [25]. For the COCO dataset, we follow the
standard splitting of train2017 and val2017, which use the
118K train images for training and 5K val images for test-
ing, respectively. Unless specifically, we adopt a commonly
used person detector provided by SimpleBaseline [47] with
56.4% AP for the COCO val dataset. UBody consists of
over 1M frames from 15 real-life scenarios. It provides the
corresponding 133 2d keypoints and SMPL-X parameters.
Notably, the original dataset only focuses on 3D whole-
body estimation and does not validate the effectiveness of
2D annotations. we pick every frame at an interval of 10
frames from the video used for both training and testing.

Implementation details. For the first-stage distillation,
we utilize two hyper-parameters « and (5 in Eq. 6 to bal-
ance the loss scale. For all the experiments, we adopt
{a = 0.00005, 8 = 0.1} on both COCO and UBody. The
second-stage distillation has one hyper-parameter v to bal-
ance the loss scale in Eq. 7. For all the experiments, we
adopt v = 1. The training setting, such as the optimizer,
learning rate, and training epochs for the first-stage distil-
lation, is the same as training the student without distil-
lation [18]. For the two-stage distillation, we only need
a short training time of about 1/5 of the whole training
epochs. The other training settings still remain the same.
This early stopping method helps to save much time for
training. We use 8 GPUs to conduct the experiments with
MMPose [5] based on Pytorch [36]. As a top-down pose
estimator following RTMPose, we use the person detection
boxes with 56.4 AP on the COCO val2017 dataset and the
provided ground-truth box on Ubody.

4.2. Main Results

For a fair comparison, we evaluate our models on the
public COCO-WholeBody dataset. As shown in Tab. I,
we utilize the larger RTMPose-x and RTMPose-1 as the
teacher to guide DWPose-l and the other student mod-
els, respectively. With our TPD, the models with differ-
ent sizes and input resolutions all achieve significant im-
provements. Specifically, DWPose-m gets 60.6 whole AP
with 2.2 GFLOPs. The performance is 4.1% higher than
the baseline, while the consumption for the inference still
remains the same, making it friendly to deploy. Interest-
ingly, DWPose-l achieves 63.1 and 66.5 whole AP under
two different input resolutions, which both beat the teacher
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‘ Method ‘ Input Size ‘ GFLOPs ‘ whole-body ‘ body ‘ foot ‘ face ‘ hand
‘ ‘ ‘ ‘AP AR‘AP AR‘AP AR‘AP AR‘AP AR

Whole- | SN [13] N/A N/A 3277 456 | 427 583 | 99 369 | 649 69.7 | 40.8 58.0
body OpenPose [2] N/A N/A 442 523 | 563 612 | 532 645|765 840 | 386 433
Bottom- | PAFT [3] 512x512 329.1 295 405 | 381 526 | 53 278 | 656 70.1 | 359 528
up AE [34] 512x512 212.4 44.0 545 | 58.0 66.1 | 57.7 725 | 58.8 654 | 48.1 574
DeepPose [43] 384288 17.3 335 484 | 444 568 | 36.8 537|493 663|235 410
SimpleBaseline [47] 384288 204 573 67.1 | 66.6 747 | 63.5 763 | 73.2 812 | 53.7 64.7
HRNet [40] 384 <288 16.0 586 674 | 70.1 773 | 58.6 692 | 727 783 | 51.6 604
PVT [44] 384288 19.7 589 689 | 673 76.1 | 66.0 794 | 745 822 | 545 654
FastPose50-dcn-si [9] | 256192 6.1 592 665 | 70.6 756|702 775|715 825|457 539
ZoomNet [19] 384288 28.5 63.0 742|745 810|609 708 | 88.0 924|579 734
ZoomNAS [48] 384x288 18.0 654 744 | 740 80.7 | 61.7 71.8 | 88.9 93.0 | 625 74.0

Top- ViTPose+-S [51] 256x192 5.4 54.4 - 71.6 - 72.1 - 559 - 453 -

down | ViTPose+-H [51] 256x192 122.9 61.2 - 75.9 - 77.9 - 63.3 - 54.7 -
RTMPose-m 256x192 22 582 674 | 673 750|615 752|813 &87.1 | 475 589
RTMPose-1 256x192 4.5 61.1 700 | 69.5 769 | 658 785 | 833 887|519 628
RTMPose-1 384288 10.1 648 730 | 71.2 781 | 693 81.1 | 882 919|579 67.7
RTMPose-x 384 <288 18.1 653 733 | 714 784 | 692 81.0 | 88.8 922 | 59.0 685
RTMPose-1+ UBody | 256x192 4.5 62.1 706 | 69.7 769 | 655 78.1 | 84.1 893 | 551 654
RTMPose-1 + UBody | 384x288 10.1 654 732 | 71.0 779 | 68.6 80.2 | 885 922|606 69.9
DWPose-t 256x192 0.5 485 584 | 585 670 | 465 63.6 | 73.5 80.7 | 35.7 49.0
DWPose-s 256x192 0.9 53.8 632 | 633 713 | 533 69.0 | 77.6 84.1 | 42.7 549
DWPose-m 256x192 22 60.6 69.5 | 685 76.1 | 63.6 77.2 | 828 88.1 | 52.7 634
DWPose-1 256x192 4.5 63.1 71.7 | 704 777 | 66.2 79.0 | 843 89.4 | 56.6 66.5
DWPose-1 384 %288 10.1 66.5 743 | 722 789 | 704 81.7 | 88.7 92.1 | 62.1 71.0

Table 1. Results of Whole-body pose estimation on COCO-WholeBody [19, 48] V1.0 dataset. The teacher that guides DWPose-1 and
DWPose-m,s,t is RTMPose-x and RTMPose-1, respectively. “i” indicates multi-scale testing. Flip test is used.
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Figure 3. Qualitative comparisons of RTMPose-1 (left) and DWPose-1 (right). Best viewed in color with zoom-in for small parts.

RTMPose-x with fewer parameters and flops. DWPose- TPD and more data, we provide a series of effective models
1 also achieves the new state-of-the-art model for human with competitive accuracy.
whole-body pose estimation. With the proposed distillation Fig. 3 shows some qualitative comparisons of how our
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Figure 4. Qualitative comparisons with two popular whole-body pose estimators. (a) OpenPose; (b) MediaPipe; (c) Our DWPose-1.

Method ‘ RTMPose* x-1
UBody - v v
TPD - - v
body 69.5 69.7 70.4
foot 65.8 65.5 66.2
face 83.3 84.1 84.3
hand 51.9 55.1 56.6
whole-body 61.1 62.1 63.1

Table 2. Ablation study of the Two-stages Pose Distillation (TPD)
method and the UBody Dataset. The teacher and student models
used are RTMPose-x and RTMPose-1, respectively.

distillation helps the students to perform better. TPD helps
the model to predict more accurately, reduces false pose de-
tection, and increases true pose detection, especially for the
improvement of finger keypoint localization. We also com-
pare our state-of-the-art model with two widely used mod-
els OpenPose [2] and MediaPipe [29, 62], as presented in
Fig. 4. Our DWPose also surpasses the other two methods
significantly, especially for the robustness of truncation, oc-
clusion, and effectiveness of fine-grained localization. This
enables our method to replace these popular methods to
benefit corresponding downstream applications effectively.

5. Analysis
5.1. Effects of TPD Method and UBody Data

We explore the effects of the proposed distillation
method TPD and the used UBody dataset of improv-
ing whole-body pose estimation in Tab. 2. The model
achieves considerable AP improvements with an extra
UBody dataset, especially for hand pose detection. For ex-
ample, RTMPose-1 achieves 62.1 whole-body AP and 55.1
Hand AP, which is 1.0 and 3.2 higher than the model trained
just on COCO-Wholebody. Our distillation method TPD
further boosts the model’s performance, helping the model
to get 63.1% whole AP. The results demonstrate the effec-
tiveness of the TPD method and UBody dataset.

‘body foot face hand whole-body

RTM-1 (256x192) | 67.6 16.8 712 359 542
RTM-I* 69.3 243 713 49.6 59.8
DWPose-1* 69.5 245 71.6 499 60.1
RTM-1 (384x288) | 68.6 18.1 73.8 41.1 58.1
RTM-1* 694 247 724 546 62.9
DWPose-1* 69.8 250 734 557 63.4

Table 3. Results of evaluating the models on the UBody dataset.
“** indicates the models trained on both COCO and UBody
datasets. The numbers are AP scores for two different input sizes.

5.2. Performance on UBody

We first evaluate our method on the COCO WholeBody
dataset, as we describe above. In this subsection, we eval-
uate the models on the UBody dataset, as shown in Tab. 3.
We compare the models under two different input resolu-
tions and report the corresponding AP of different human
parts. The extra UBody data for training and our distillation
method TPD are both helpful to the students, bringing them
significant improvements under both input resolutions. Dif-
ferent from COCO, the gains that our TPD brings on UBody
mainly focus on the face and hand. As for COCO, the per-
formance on the body, foot, and hand all get significant im-
provements, but the gains on the face are limited, as shown
in Tab. 2. The results on UBody also demonstrate the effec-
tiveness of our distillation method TPD.

5.3. Effects of First and Second Stage Distillation

We propose the two-stage pose distillation (TPD), which
includes the first and second stage distillation. To evalu-
ate the impact of each distillation stage, we conduct exper-
iments by using RTMPose-x to distill RTMPose-1 on the
mixed dataset, as presented in Tab. 4. Both two distillation
stages are beneficial for the students, and their combina-
tion leads to further improvements in performance. When
combining the first-stage and second-stage distillation to-
gether, we achieve 63.1 whole AP, which surpasses the per-
formance achieved by using either distillation loss alone.
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Method RTMPose* x-1
First-stage - v - v
Second-stage - - v v
body 69.7 70.4 69.7 70.4
foot 65.5 65.8 65.9 66.2
face 84.1 84.1 84.2 84.3
hand 55.1 56.4 554 56.6
whole-body 62.1 62.9 62.2 63.1

Table 4. Ablation study of the two distillation stages. The teacher
and student are RTMPose-x and RTMPose-1. “*’ denotes the
model is trained on COCO + UBody.

| body foot face hand whole-body

RTMPose-m 69.1 648 81.8 498 60.0
RTMPose-m +S2 | 69.4 65.1 819 503 60.4
RTMPose-1 69.5 658 833 519 61.1
RTMPose-1 + S2 69.6 66.1 832 523 61.3
RTMPose-m* 68.6 636 825 523 60.4
RTMPose-m* +S2 | 68.5 63.6 828 527 60.6
RTMPose-I* 69.7 655 84.1 55.1 62.1
RTMPose-1* +S2 | 69.7 659 842 554 62.2
RTMPose-x* 703 653 849 564 63.0
RTMPose-x*+S2 | 704 653 849 56.6 63.2

Table 5. The impact of the proposed head-aware self-KD in the
second-stage distillation (S2) on existing estimator RTMPose. ‘*’
denotes the model is trained on COCO + UBody. All results are
reported with AP on COCO-WholeBody.

It’s worth noting that the second-stage distillation just needs
to fine-tune the head, which helps to save much training
time. Interestingly, it helps the student to surpass the teacher
RTMPose-x with 63.0% AP.

5.4. Second-stage Distillation for Trained Models

Our second-stage distillation is available not only for the
models trained with our first-stage distillation but also for
those trained without distillation. So it can be applied when
there lacks a better and larger teacher. We can utilize the
model itself as a teacher to improve it with a short training
time. As shown in Tab. 5, we pick three different models
and evaluate our second-stage distillation on COCO and the
combination of COCO and UBody. For all settings, models
with S2 significantly improve, especially for the foot and
hand. Compared with traditional distillation and self-KD,
it saves much time in training the model from scratch and
costs to obtain a better model.

5.5. Ablation Study of the First-stage Distillation

As we describe in Eq. 6, our first-stage distillation calcu-
lates the loss through the ground-truth label (GT), teacher’s
feature (Fea), and teacher’s logits (Logit). Furthermore, we
apply a weight-decay strategy (Decay) to further improve

the student. In this subsection, we analyze the effects of ev-
ery component by using RTMPose-1 to distill RTMPose-m,
as shown in Tab. 6. The knowledge from the feature brings
the student 1.4% AP gains. When combing the distillation
on the logit, the AP gains get to 1.6%. This proves that
the knowledge from the feature and logit are both helpful
and complementary to each other. Finally, the weight-decay
strategy brings another 0.3% AP gains, helping the student
to achieve 62.3% AP.

Interestingly, we try to drop the GT label and train the
student just with the teacher’s logit. The student achieves
60.9% AP, which is even 0.5% higher than the model
trained with the GT label. This indicates we can label the
new data through a teacher model instead of annotating
manually, which can save much cost in time and manual
efforts, and achieve a better model through such data for
training. However, when combining the feature distillation
together, the performance with the teacher’s logit gets lower
than that with the GT label. Thus, we adopt the GT, Fea, and
Logit together for distillation.

GT Fea Logit Decay ‘ whole-body
v - - - 60.4
v v - - 61.8
- - v - 60.9
- v v - 61.4
v v v - 62.0
v v v v 62.3

Table 6. Ablation study of the components of first-stage distilla-
tion. The teacher and student are RTMPose-1 and RTMPose-m.
The performance is the whole-body AP on COCO with GT boxes.

Logit Mask ‘ whole-body
v - 60.9
v v 59.8

Table 7. Ablation study of the target weight mask. The teacher
and student is RTMPose-1 and RTMPose-m. The performance is
the whole-body AP on COCO with GT boxes.

5.6. Target Mask for Logit-based Distillation

In our logit-based distillation, we deliberately omit the
target weight mask W, which is employed to differentiate
between visible and invisible keypoints, as shown in Eq. 3.
We conducted an in-depth investigation into how this target
mask affects the distillation process. As indicated in Tab. 7,
it is evident that the presence of the target weight mask sig-
nificantly hampers the distillation performance, resulting in
a notable 1.1% drop in the student’s performance. These
results underscore the significance of the teacher’s input for
invisible keypoints, affirming its positive impact on the stu-
dent’s learning process.
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OpenPose

OpenPose

OpenPose OpenPose

(a) Input images (b) Whole-body keypoints

(c) Generated images (a) Input images

(b) Whole-body keypoints (c) Generated images

Figure 5. Visualization of skeleton-guided image generation results. The upper images depict the baseline using the pre-trained ControlNet
v1.1 with the original estimator OpenPose. In contrast, the lower images showcase ControlNet with our DWPose-1 as inputs. The prompts,
random seeds, and other settings remain constant.

Num. of persons 1 2 3 4 5 6 7 8 9
OpenPose 5.78 6.28 7.55 8.90 9.16 10.4 15.2 16.86 18.91
Ours 0.068 0.070 0.077 0.082 0.084 0.088 0.094 0.098 0.108

Table 8. Comparison of pose estimation speed with OpenPose. The table displays the average time cost (in seconds) for inferring an image

on an Nvidia RTX 3090 with varying numbers of persons present. We use YOLOX-1 and DWPose-1 to test the speed.

5.7. Better Pose, Better Image Generation

Recently, controllable image generation [12, 37, 39, 63,
33, 20] has witnessed significant advancements. For human
image generation, precise skeleton information is crucial
to guide the pose, particularly for whole-body skeletons.
Mainstream techniques like ControlNet [63] often rely on
OpenPose [2] due to its efficiency and user-friendly nature
in generating human poses. However, OpenPose’s perfor-
mance, as shown in Tab. 1, reaches only 44.2% AP, which
leaves room for improvement. Consequently, we aim to re-
place OpenPose with our DWPose to enhance ControlNet’s
image generation without the need for additional training.
Utilizing a top-down approach, we first employ YOLO-
X [11] to detect all individuals and then use our pose es-
timator to extract keypoints from the detection results, thus
boosting the overall image generation process.

In Fig. 5, we employ ControlNet to visualize and com-
pare the generated images using both OpenPose and our
DWPose, demonstrating that a more precise and expressive
skeleton leads to higher-quality image generation. Addi-
tionally, we present a comparison of inference speed with
OpenPose in Tab. 8. Thanks to the efficient architecture of
RTMPose [18], DWPose requires only about one percent of
the time taken by OpenPose to infer the same image. More-
over, as the number of persons in the image increases, the

runtime for OpenPose significantly increases. For a single
person, the inference times for OpenPose and DWPose are
5.78 s and 0.068 s, respectively. However, when the num-
ber of persons reaches nine, the inference time for Open-
Pose triples, whereas the inference time for DWPose is only
about 1.5 times longer.

6. Conclusion

In this paper, we aim to obtain both an efficient and ef-
fective model for human whole-body pose estimation. To
this end, we apply distillation to the latest effective RTM-
Pose. Accordingly, we first propose a Two-stage Pose Dis-
tillation to enhance the lightweight model’s performance.
Moreover, the second-stage distillation is available when a
larger teacher lacks, and it only needs a short training time
to obtain a better model. Then, we investigate the UBody
dataset to further improve its performance, obtaining DW-
Pose. Extensive experiments prove that our method is sim-
ple yet effective. We also explore the impact of a better pose
estimator on the controllable image generation task.
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