
Supplementary Material for
Extract-and-Adaptation Network for 3D Interacting Hand Mesh Recovery

JoonKyu Park1∗ Daniel Sungho Jung2,3∗ Gyeongsik Moon4∗ Kyoung Mu Lee1,2,3
1Dept. of ECE&ASRI, 2IPAI, Seoul National University, Korea
3SNU-LG AI Research Center, 4Meta Reality Labs Research

{jkpark0825, dqj5182}@snu.ac.kr, mks0601@meta.com, kyoungmu@snu.ac.kr

In this supplementary material, we provide more exper-
iments, discussions, and other details that could not be in-
cluded in the main text due to the lack of pages. The con-
tents are summarized below:
S1. Detailed architecture

S1.1. FuseFormer
S1.2. EABlock

S2. Number of adaptation stages in EABlock
S3. MPJPE comparison
S4. Measuring the pose difference
S5. Additional qualitative comparisons
S6. Discussion

S6.1. Limitations
S6.2. Societal impacts

S1. Detailed architecture
In the main manuscript, we introduce the Extract-and-

Adaptation Network (EANet) as a means of effectively ex-
tracting and processing interactions between two hands.
The proposed EANet mainly operates upon the key com-
ponent, EABlock, to extract and adapt features from the
two hands. In this section, we provide a detailed explana-
tion of the EABlock and its primary component, the Fuse-
Former, which are illustrated in Figures 4 and 5 of the main
manuscript, respectively.

S1.1. FuseFormer

In Algorithm S1, we show the inference process of Fuse-
Former in the extract stage of EABlock. From two hand
features (FL and FR), JoinToken tJ is obtained by passing
a concatenated two hand features to a fully connected layer
after reshaping. To obtain SimToken tS, we first reshape
each hand feature (FL or FR) and concatenate the reshaped
left and right hand features with a class token tcls. A con-
catenated token t is made after reshaping the concatenated
feature of tcls, FL, and FR. The concatenated token t is then
used for extracting query qSA, key kSA, and value vSA with
separate linear layers in a self-attention (SA) based Trans-

former. After preparing two tokens (tJ and tS), a cross-
attention (CA) based Transformer processes the two novel
tokens, JoinToken tJ as query qCA and SimToken tS as key-
value pair (kCA and vCA), to effectively fuse two hand fea-
tures (FL and FR) and output an interaction feature Finter.

S1.2. EABlock

We show the inference process of EABlock in Algo-
rithm S2. From left hand feature FL and right hand fea-
ture FR, a FuseFormer in the extract stage of EABlock first
extracts an interaction feature Finter. Then, with the ex-
tracted interaction feature Finter in the extract stage, each
FuseFormer in the adaptation stage of EABlock fuses each
hand feature (FL or FR) and the interaction feature Finter to
produce an adapted interaction feature for each hand (FinterL
or FinterR). Lastly, our EABlock constructs the final out-
puts (F∗

L and F∗
R) after a fully connected layer on each

adapted interaction feature (FinterL or FinterR) and then a
concatenation to each hand feature (FL or FR), respectively.

S2. Number of adaptation stages in EABlock

To adapt the extracted interaction feature to each hand
feature, our EABlock fuses an interaction feature and one
hand feature (i.e. left hand feature or right hand feature) to
obtain an adapted interaction feature for each hand. Here,
we justify our strategy to adapt only once to each hand fea-
ture. Table S1 shows that a single iteration of the adap-
tation stage shows comparable results to two iterations of
the adaptation stages. Considering the additional costs fol-
lowed by additional adaptation stages, we set the number of
adaptation stages to 1.

S3. MPJPE comparison with state-of-the-art
methods

Table 5 in the main manuscript provides a comparison of
MPVPE and MRRPE for various methods, while Table S2
presents additional results based on MPJPE. We follow the

Algorithm S1 Pseudocode of FuseFormer in a PyTorch-
style

1: class FuseFormer(nn.Module):
2: def init ():
3: FC = nn.Linear(1024, 512)
4: tcls = nn.Parameter(512, 1)
5: Q SA = nn.Linear(512, 512)
6: K SA = nn.Linear(512, 512)
7: V SA = nn.Linear(512, 512)
8: Q CA = nn.Linear(512, 512)
9: K CA = nn.Linear(512, 512)

10: V CA = nn.Linear(512, 512)
11: ψ : R1024×8×8 −→ R64×1024 # reshape
12: ϕ : R512×8×8 −→ R512×64 # reshape
13: η : R512×64 −→ R129×512 # reshape
14: softmax = nn.Softmax(dim=-1)
15: MLP = nn.Sequential(
16: aaaaaaaaaaaaaaaaaaaa nn.Linear(512, 512*4),
17: aaaaaaaaaaaaaaaaaaaa nn.Linear(512*4, 512))
18: MLP′ = nn.Sequential(
19: aaaaaaaaaaaaaaaaaaaa nn.Linear(512, 512*4),
20: aaaaaaaaaaaaaaaaaaaa nn.Linear(512*4, 512))
21: dkSA , dkCA = 512, 512

22: def forward(FL, FR): # FL and FR ∈ R512×8×8

23: # get JoinToken
24: tJ = FC(ψ(torch.cat((FL,FR)))) # ∈ R64×512

25: # get SimToken
26: FL = ϕ(FL)# ∈ R512×64

27: FR = ϕ(FR)# ∈ R512×64

28: t = η(torch.cat((tcls,FL,FR))) # ∈ R129×512

29: qSA, kSA, vSA = Q SA(t), K SA(t), V SA(t)
30: r = softmax((qSA@kSA

T)/
√
dkSA)vSA + t

31: tS = r + MLP(r)
32: # process two tokens
33: qCA = Q CA(tJ)
34: kCA, vCA = K CA(tS), V CA(tS)
35: r′ = softmax((qCA@kCA

T)/
√
dkCA)vCA + tJ

36: Finter = r′ + MLP′(r′)
37: return Finter

of adaptation
MPJPE MPVPE

MRRPE
Single Two All Single Two All

0 10.66 11.81 11.25 8.37 11.24 9.61 21.00
1 9.62 11.54 10.58 7.86 10.78 9.13 18.82
2 9.60 11.90 10.75 8.14 10.66 9.19 18.82

Table S1: Comparison of models with various number of
adaptation stages.

evaluation protocol of prior studies by using a pre-defined
joint regression matrix to obtain the joint positions from
the estimated meshes, which are scaled using the ground
truth bone length. Note that the MPJPE results for Keypoint

Algorithm S2 Pseudocode of EABlock in a PyTorch-style

1: class EABlock(nn.Module):
2: def init ():
3: FuseFormer extract = FuseFormer()
4: FuseFormer L = FuseFormer()
5: FuseFormer R = FuseFormer()
6: FC = nn.Linear(512,128)
7: def forward(FL, FR): # FL and FR ∈ R512×8×8

8: # interaction feature extract
9: Finter = FuseFormer extract(FL, FR)

10: # interaction feature adaptation
11: FinterL = FuseFormer L(FL, Finter)
12: FinterR = FuseFormer R(FR, Finter)
13: F∗

L = torch.cat((FL, FC(FinterL)))
14: F∗

R = torch.cat((FR, FC(FinterR)))
15: return F∗

L, F∗
R

Transformer in Table S2 differ from those reported in their
main manuscript, as our results are obtained using their of-
ficial codes and pre-trained weights based on the mesh rep-
resentation, while their reported numbers were based on a
2.5D representation. Our results demonstrate that EANet
outperforms other methods in 3D joint estimation, indicat-
ing its effectiveness.

Methods
MPJPE

Single Two All
Zhang et al. [8] - 13.48 -

Keypoint Transformer [2] 11.04 16.22 13.82
IntagHand [3] - 8.79 -
EANet (Ours) 5.19 6.57 5.88

Table S2: Quantitative comparison with state-of-the-art
methods on InterHand2.6M [4] dataset.

S4. Measuring the pose difference for Figure 9

In L833-L850 and Figure 9, we present the pose differ-
ence between two hands across different sequences of the
InterHand2.6M dataset. To compute the pose difference for
each selected sequence, we begin by flipping a right hand to
a left hand. Next, we subtract the root joint (wrist) position
of each hand. Finally, we align the global rotation of the
two hands to solely determine the finger pose symmetricity.

S5. Additional qualitative comparisons

In the below figures, we further show the qualitative
comparisons with other state-of-the-art methods [3, 2].
Specifically, in Figure S1 and S2, we show visual compar-
isons on InterHand2.6M [4] dataset. In Figure S3, we show
visual comparisons on in-the-wild interacting hand images.

S6. Discussion
S6.1. Limitations

Despite recent progress on domain adaptation [1, 5, 6]
that provides several techniques for reducing the discrep-
ancy between training data and test data, our work has not
yet employed such designs for better generalization ability.
In Figure S3, our EANet shows reasonable results on in-
the-wild images without such designs. However, we believe
that additional designs to improve generalization ability on
in-the-wild images can further improve the performance of
EANet in future works.

S6.2. Societal impacts

Our EANet performs robust 3D interacting hand mesh
recovery with potential applications on technologies con-
necting real-world and virtual-world such as AR and VR.
Especially, the work is useful in cases where two hands
are often interacting, including virtual meetings and virtual
events.

License of the Used Assets

• InterHand2.6M dataset [4] is CC-BY-NC 4.0 licensed.
• HIC dataset [7] is publicly available dataset.
• Zhang et al. [8] codes are released for academic research

only, and it is free to researchers from educational or re-
search institutes for non-commercial purposes.

• Keypoint Transformer [2] codes are released for aca-
demic research only, and it is free to researchers from ed-
ucational or research institutes for non-commercial pur-
poses.

• IntagHand [3] codes are released for academic research
only, and it is free to researchers from educational or re-
search institutes for non-commercial purposes.

https://mks0601.github.io/InterHand2.6M/
https://files.is.tue.mpg.de/dtzionas/Hand-Object-Capture/
https://github.com/BaowenZ/Two-Hand-Shape-Pose
https://github.com/shreyashampali/kypt_transformer
https://github.com/Dw1010/IntagHand

Image Front view Other viewFront view Other viewFront view Other view

AAAAAAAAAAAAAAAAAAIntagHand [3]AAAAAAAAAAKeypoint Transformer [2]AAAAAAAAAAEANet (Ours)AAAAAAAAA

Figure S1: Visual comparison with state-of-the-art methods on InterHand2.6M [4]. The red circles highlight regions
where our EANet is correct, while others are wrong.

Image Front view Other viewFront view Other viewFront view Other view

AAAAAAAAAAAAAAAAAAIntagHand [3]AAAAAAAAAAKeypoint Transformer [2]AAAAAAAAAAEANet (Ours)AAAAAAAAA

Figure S2: Visual comparison with state-of-the-art methods on InterHand2.6M [4]. The red circles highlight regions
where our EANet is correct, while others are wrong.

Image Front view Other viewFront view Other viewFront view Other view

AAAAAAAAAAAAAAAAAAIntagHand [3]AAAAAAAAAAKeypoint Transformer [2]AAAAAAAAAAEANet (Ours)AAAAAAAAA

Figure S3: Visual comparison with state-of-the-art methods on in-the-wild images. The red circles highlight regions
where our EANet is correct, while others are wrong. The images are crawled from Google and YouTube.

References
[1] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain

adaptation by backpropagation. In ICML, 2015. 3
[2] Shreyas Hampali, Sayan Deb Sarkar, Mahdi Rad, and Vincent

Lepetit. Keypoint Transformer: Solving joint identification
in challenging hands and object interactions for accurate 3D
pose estimation. In CVPR, 2022. 2, 3, 4, 5, 6

[3] Mengcheng Li, Liang An, Hongwen Zhang, Lianpeng Wu,
Feng Chen, Tao Yu, and Yebin Liu. Interacting attention graph
for single image two-hand reconstruction. In CVPR, 2022. 2,
3, 4, 5, 6

[4] Gyeongsik Moon, Shoou-I Yu, He Wen, Takaaki Shiratori,
and Kyoung Mu Lee. InterHand2.6M: A dataset and baseline
for 3D interacting hand pose estimation from a single RGB
image. In ECCV, 2020. 2, 3, 4, 5

[5] Zhongyi Pei, Zhangjie Cao, Mingsheng Long, and Jianmin
Wang. Multi-adversarial domain adaptation. In AAAI, 2018.
3

[6] Yaniv Taigman, Adam Polyak, and Lior Wolf. Unsupervised
cross-domain image generation. In ICLR, 2017. 3

[7] Dimitrios Tzionas, Luca Ballan, Abhilash Srikantha, Pablo
Aponte, Marc Pollefeys, and Juergen Gall. Capturing hands
in action using discriminative salient points and physics sim-
ulation. IJCV, 2016. 3

[8] Baowen Zhang, Yangang Wang, Xiaoming Deng, Yinda
Zhang, Ping Tan, Cuixia Ma, and Hongan Wang. Interact-
ing two-hand 3D pose and shape reconstruction from single
color image. In ICCV, 2021. 2, 3

	. Detailed architecture
	. FuseFormer
	. EABlock

	. Number of adaptation stages in EABlock
	. MPJPE comparison with state-of-the-art methods
	. Measuring the pose difference for Figure 9
	. Additional qualitative comparisons
	. Discussion
	. Limitations
	. Societal impacts

