
Supplemental Material: Efficient 3D Reconstruction, Streaming and Visualization
of Static and Dynamic Scene Parts for Multi-client Live-telepresence in

Large-scale Environments

Leif Van Holland1 Patrick Stotko1 Stefan Krumpen1 Reinhard Klein1 Michael Weinmann1,2

1University of Bonn 2Delft University of Technology

In the following, we explain some steps from the main
publication in more detail. Additionally, more information
about the dataset and hyperparameters we used are given.
Finally, a more in-depth performance analysis of different
stages in the pipeline and a speed comparison of different
methods for instance segmentation and optical flow estima-
tion are shown.

A. Methodology
A.1. Segmentation Post-Processing

The raw output of the segmentation network fseg may
consist of multiple, potentially overlapping region propos-
als M1, ...,Mn, which we integrate into the instance and
label maps using non-maximum suppression. More specifi-
cally, the Mj are represented as Boolean masks that indicate
the membership of each pixel, i.e. Mj(u) = 1, if pixel u be-
longs to proposal j, and Mj(u) = 0 otherwise. In addition,
each mask is associated with a class label lj and a confi-
dence score cj ∈ [0, 1]. To produce the per-pixel class label
Lk and instance ID maps ιk, we have to integrate potentially
overlapping region proposals, taking the confidence scores
into account. We accomplish this by first removing propos-
als with a confidence smaller than a threshold τconf. For each
pixel u, we then find the instance ID of the proposal with
maximum confidence, i.e. for the filtered indices j′1, ..., j

′
n′

we compute j∗(u) = argmaxj′{cj′ |Mj′(u) = 1}. The re-
sulting assignment is again filtered by removing IDs that do
not exceed a minimum pixel count in j∗. In other words,
we set the instance ID map as

ιk(u) =

{
j∗(u), if |{i∗(u) = i}| ≥ τcount

0, otherwise.
(3)

The label map Lk is set to the corresponding class labels of
the instance at each pixel, i.e., Lk(u) = lιk(u). Note that the
temporal smoothing step requires instance IDs of consecu-
tive frames to be associated with one another. More details
about this step can be found in Appendix A.5.

A.2. Optical Flow Weights

In order to filter out bad correspondences present in the
output of NVIDIA’s Optical Flow Accelerator (NVOFA)
[8], we additionally compute the forward flow estimate
F̄k = fflow(Ik−1, Ik). The estimator also provides per-pixel
costs Ck, C̄k for the estimates, which we combined with an
error measure between forward and backward flow into a
weight map Wk. For regions of small, smooth motion, the
sum of forward and backward flow approximately cancels
out and results in a vector field of small values. We there-
fore look at the norms of the vectors, ∥Fk + F̄k∥2, as an
error between the two flows.

To get a single weight per pixel, we compute the geomet-
ric mean between the three terms

Wk = 3

√
(1 + ∥Fk + F̄k∥2)−1 (1 + λCk)−1 (1 + λC̄k)−1

(4)
such that each term lies in the same range [0, 1] and the
result represents the level of confidence of the estimate at
each pixel. λ ∈ R is a hyperparameter that scales the cost
values of the estimator appropriately.

A.3. Expected Flow Computation

Using the current depth Dk, we can compute the ex-
pected flow Ψk(u) as the offset between u and the corre-
sponding point u′ projected from frame k − 1 into k.

More specifically, let π−1 be the backprojection opera-
tion, such that x = π−1(u,Dk(u)) ∈ R3 is the 3D coordi-
nate of pixel u with depth measurement Dk(u) in the lo-
cal coordinate system of the camera, and let π be the cor-
responding projection operation transforming x back to u.
The expected flow is therefore given as

Ψk(u) =
[
π ◦ Tk−1 ◦ T−1

k ◦ π−1(u,Dk(u))
]
− u. (5)

Note that we imply proper conversion between Eu-
clidean and homogeneous coordinates by using the concate-
nation operator to keep the notation simple.

A.4. Error Histogram Mode

To reduce the influence of the fluctuations of the average
errors, we analyze the histogram H = (H1, ...,Hn) ∈ Nn

of the set of errors {Ek(u) | ιk(u) = i, u ∈ U} belong-
ing to instance i. We chose the width c of the n histogram
bins empirically as c = 0.05, based on the error values pro-
duced by our approach. Hj describes the number of pixels
falling in bin j, which therefore corresponds to all pixels u
of instance i where j c ≤ Ek(u) < (j + 1) c. The number
of bins is chosen dynamically such that all error values are
covered by a bin. As an indicator of the highest motion of i,
we look for the rightmost mode sk(i) ∈ R≥0 of H that con-
sists of at least rmode ·

∑
l Hl values, where rmode ∈ [0, 1] is

a hyperparameter. A bin j is a mode if the two adjacent bins
have a smaller value, i.e., Hj−1 < Hj ∧Hj+1 < Hj . This
means, we look for the bin index j∗(i) with

j∗(i) = max

{
j

∣∣∣∣Hj is a mode,
Hj∑
l Hl

≥ rmode

}
, (6)

which, in turn, allows the mode sk(i) to be de-
fined as the center of the histogram bin j∗(i), i.e.
sk(i) = (j∗(i) + 0.5) c.

A.5. Temporal Smoothing of Dynamicity Scores

To make the dynamicity estimates more robust against
noise in the error values when looking at multiple frames,
we experimented with smoothing the normalized rightmost
error modes s′k(i) temporally using the maximum over
the current and a decaying previous score, such that the
smoothed score of instance i in frame k is given as

ŝk(i) := max{α ŝk−1(i), s
′
k(i)}. (7)

This maximum operation causes the smoothing to react to
increasing dynamicity instantaneously, while slowly decay-
ing if no increase in movement is detected. To compare the
scores of instances in two consecutive frames, we have to
re-identify instance i from frame k − 1 in frame k. A pri-
ori, instance IDs do not have any relation to each other, be-
cause fseg is assumed to only be dependent on a single im-
age. We use information about the mask overlap between
ιk−1, Lk−1 and ι′k, L

′
k , where the latter maps result from

warping ιk, Lk according to the backward flow Fk, align-
ing them with the maps of frame k − 1. A confusion matrix
C of the pairwise overlaps of the instance masks of the same
class in ιk−1 and ι′k is computed, such that

Cij = |{u | ιk−1(u) = i, ι′k(u) = j, Lk−1(u) = L′
k(u)}|.

(8)
We identify instance i with instance j′ from the previous
frame, if j′ = argmaxj{Cij} and Cij′ is larger than a min-
imum overlap ratio rtrack ∈ [0, 1]. For instances that cannot
be associated with an instance in the previous frame, we

Initial norm. score s′k(i)

Tracking
successful?

smooth with
class mean

max{αs̄k−1(i), s
′
k(i)}

smooth with
instance mean

max{αŝk−1(i), s
′
k(i)}

Class seen
before?

initialize class mean
with observation
s̄k−1(li) = s′k(i)

update class
mean s̄k(li)

(Equation (9))

Final score s̃k(i)

noyes

yes

no

Figure 6: Flowchart visualizing the procedure for the temporal
smoothing of the dynamicity score of instance i with class label
li in frame k. If the tracking matches instance i with an instance
from the previous frame, the resulting score is smoothed as shown
in Equation (7). Otherwise, we first check whether the class was
observed in a previous frame. In this case, we smooth the score
similarly to Equation (7) but using the smoothed class mean from
the last frame instead. In case the class is observed for the first
time, we keep the initial score and use it as the new class mean for
li. Lastly, the class mean for li is updated.

keep a mean for the dynamicity scores of each class that is
smoothed according to the scheme shown in Equation (7).
More specifically, let s̄k : L → R≥0 be defined as a map-
ping from the set of class labels L to the mean dynamicity
scores for frame index k, where

s̄k(l) := max

{
αclass s̄k−1(l),

1

|Il|
∑
i∈Il

ŝk(i)

}
. (9)

Figure 6 depicts the steps taken to compute the temporally
smoothed score s̃k(i) of some instance i with label li from
the initial normalized score s′k(i). Importantly, we also han-
dle the case that a class is observed for the first time in the
current frame, where we set the class mean to the only avail-
able observation s′k(i).

Note that this covers situation 2 (Section 3.2), because
the decay parameter α prevents a sudden drop of the scores,
which leads to objects being considered dynamic for some
time when they stop moving. Even though it takes a short
time for the static reconstruction to integrate and stream
the voxels of the state-changing object, we found this to
be more intuitive when observing the live scene to have the
object stop first than to suddenly disappear. To ease this
transition further, we added a small overlap period, in which
objects in situation 2 are shown both as static and dynamic.

Symbol Description Value

τconf Min. segmentation confidence 0.2
τcount Min. pixel count for class acceptance 2300
τ Dynamic threshold 1.2
τη Voxel weight dynamicity threshold 1.2
τSDF SDF invalidation threshold 1.2
Ŵη Static max. voxel weight 255
W̌η Dynamic max. voxel weight 3
c Histogram bin width 0.05

rmode Histogram relative min. bin count 0.01
rtrack Instance tracking min. overlap ratio 0.2
α Instance dynamicity decay factor 0.99

αclass Class dynamicity decay factor 0.99
δ Dynamicity norm. scale factor 0.01
λ NVOFA cost buffer scale factor 0.03

Table 3: Choices for the hyperparameters of the pipeline used for
all sequences during the evaluation.

A.6. Moving Average of Voxel Weights

Instead of applying a global maximum voxel weight
Wη > 0 in the integration step [7], we store a separate value
Wη,k(v) > 0 for each voxel v in our model and compute the
new weight Wk(v) ∈ R≥0 as

Wk(v) = min(Wk−1(v) +W ′
k(v),Wη,k). (10)

These maximum weights are computed directly from the
dynamicity score. We found that a simple step function
leads to good results, i.e.,

Wη,k(v) =

{
Ŵη, Sk(uv) ≤ τη

W̌η, Sk(uv) > τη
, (11)

given the corresponding ray casting source pixel uv ∈ U of
voxel v, a threshold τη > 0 and weight caps 0 < W̌η ≤ Ŵη .

B. Experimental Results
A short description and some exemplary images of each

scene we used for the evaluation of our method are shown
in Table 6. Hyperparameters were fixed for all experiments
and are listed in Table 3.

B.1. Detailed Performance Analysis

In Table 5, we list the raw computation speed of indi-
vidual components of our pipeline during evaluation. Note
that the components run in parallel, so the actual process-
ing speed of each component is limited by the output speed
of the previous one. The measured values therefore only
represent a lower bound for the execution speed that each
component can reach in our implementation. For exam-
ple, for scene items 1, the segmentation inference compo-
nent has the highest latency with 42.95 ms. All components

Segmentation Optical Flow FPS [1/s]

SCNet [1]

NVOFA [8]

4.47 (0.36)
PointRend [6] 6.60 (0.66)

Mask R-CNN [2] 8.04 (1.09)
SoloV2 [10] 14.95 (5.31)

YoloV8 [5]

GMA [4] 2.75 (0.11)
RAFT [9] 3.02 (1.04)

MaskFlowNet [11] 9.45 (1.17)
LiteFlowNet2 [3] 13.69 (3.10)

YoloV8 [5] NVOFA [8] 18.95 (5.75)

Table 4: Performance comparison of our pipeline using different
approaches for instance segmentation and optical flow on the scene
items 1. For this purpose, we provide the resulting frame-rate
(standard deviation) our approach reaches using the given com-
binations of networks.

can therefore process frames with a maximum frequency of
1000

42.95 ms ≈ 23.28 Hz. An example of this parallel execution
is also visualized as a Gantt chart in Figure 7.

B.2. Comparison with Further Segmentation and
Optical Flow Networks

To evaluate the choice of the instance segmentation net-
work [5] and optical flow estimation [8] used in our ap-
proach, we compared the performance differences with
some other recent segmentation [2, 1, 6, 10] and optical
flow [9, 4, 11, 3] techniques. Table 4 shows our pipeline’s
performance in terms of frames per second when replacing
either the segmentation or the optical flow approach. It can
be seen that the combination we chose (bottom row) yields
the highest processing speed.

Scene System Components

Odometry Optical Flow Segmentation Dynamicity Voxel Hashing
Inference Tracking EPE Postproc. Acc.

items 1 24.55 28.40 42.95 15.00 26.60 21.75 25.75 33.45
items 2 21.80 28.80 44.70 13.60 25.70 19.80 25.10 38.60
people 1 24.10 28.70 42.45 14.90 25.80 19.80 25.55 34.05
people 2 24.80 29.20 44.70 15.90 26.60 21.00 26.00 43.30
people 3 25.20 29.60 45.10 16.40 26.90 20.80 26.70 46.10
people 4 22.55 29.05 46.20 15.75 26.10 20.85 26.20 41.35
people 5 25.10 28.53 41.97 14.47 26.10 19.80 25.30 40.90
ego view 24.85 28.55 43.20 14.65 25.95 20.20 25.75 39.95

oof 1 24.30 28.90 38.25 12.20 25.15 18.85 24.75 41.00
oof 2 22.10 28.60 40.60 12.70 26.20 18.75 25.05 39.70

mean 23.94 28.83 43.01 14.56 26.11 20.16 25.62 39.84

Table 5: Raw computation speeds in milliseconds for the major components of our pipeline, evaluated separately for each of the 10 scenes
used for the evaluation. The last row shows the mean over all scenes. The dynamicity computation is split into end-point-error computation
(EPE), post-processing (Postproc., which includes normalization, temporal smoothing, and object propagation), accumulation (Acc.) and
updating the static model (Voxel Hashing).

100 200 300 407

Odom.

Flow

Seg.

Track.

EPE

Post.

Acc.

Vox.

Net

Figure 7: Gantt chart showing the compute durations of the major components of our pipeline on a single frame from arriving at the first
process of the pipeline (0ms) to being received at the exploration client (407ms) from the evaluation of scene items 1. The highlighted
bars correspond to the observed frame. System components are odometry (Odom.), optical flow estimation (Flow), instance segmentation
(Seg.), instance tracking (Track.), end-point-error computation (EPE), dynamicity post-processing (Post.), dynamicity accumulation (Acc.),
integration into the static model (Vox.) and network latency (Net.). It can be seen that faster components of the pipeline have to wait for
the next frame to become available to continue processing. Additional gaps result from scheduling and process communication.

Scene Description Exemplary Images from Scene

items 1
A person moves around items
(books and boxes) on an office
table.

items 2
A person picks up and drops
off items on a table in a
medium-sized office.

people 1 Two persons meet at a coffee
table and exchange a box.

people 2
Chairs and a boxes are moved
around in an office seating
area.

people 3 Two persons exchange a small
box.

people 4 Two persons meet in a library
corner and exchange books.

people 5 Two persons briefly meet and
talk in a seating area.

ego view Balloons are kicked around in
a medium-sized office.

oof 1
An office door is moved once
while seen by the camera and
once unseen.

oof 2
A box is moved multiple times
while the camera is not
observing it.

Table 6: Short description and exemplary images for each of the scenes used for the evaluation.

References
[1] Kai Han, Rafael S Rezende, Bumsub Ham, Kwan-Yee K

Wong, Minsu Cho, Cordelia Schmid, and Jean Ponce. SC-
Net: Learning semantic correspondence. In ICCV. 2017. 3

[2] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask R-CNN. In ICCV. 2017. 3

[3] Tak-Wai Hui, Xiaoou Tang, and Chen Change Loy. A
lightweight optical flow CNN—revisiting data fidelity and
regularization. TPAMI, 2020. 3

[4] Shihao Jiang, Dylan Campbell, Yao Lu, Hongdong Li, and
Richard Hartley. Learning to estimate hidden motions with
global motion aggregation. In ICCV. 2021. 3

[5] Glenn Jocher, Ayush Chaurasia, and Jing Qiu.
YOLOv8: The state-of-the-art YOLO model. https:
//github.com/ultralytics/ultralytics, 2023.
Accessed: 2023-07-19. 3

[6] Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Gir-
shick. PointRend: Image segmentation as rendering. In
CVPR. 2020. 3

[7] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, et al.
KinectFusion: Real-time dense surface mapping and track-
ing. In ISMAR. 2011. 3

[8] Nvidia Corporation. Nvidia optical flow sdk. https://
developer.nvidia.com/opticalflow-sdk, 2019.
Accessed: 2023-07-19. 1, 3

[9] Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field
transforms for optical flow. In ECCV. 2020. 3

[10] Xinlong Wang, Rufeng Zhang, Tao Kong, Lei Li, and Chun-
hua Shen. SOLOv2: Dynamic and fast instance segmenta-
tion. NeurIPS, 2020. 3

[11] Shengyu Zhao, Yilun Sheng, Yue Dong, et al. Mask-
Flownet: Asymmetric feature matching with learnable oc-
clusion mask. In CVPR. 2020. 3

