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Abstract

While current style transfer models have achieved im-
pressive results for the application of artistic style to
generic images, they face challenges in achieving photore-
alistic performances on indoor scenes, especially the ones
represented by panoramic images. Moreover, existing mod-
els overlook the unique characteristics of indoor panora-
mas, which possess particular geometry and semantic prop-
erties. To address these limitations, we propose the first
geometry-aware and shading-independent, photorealistic
and semantic style transfer method for indoor panoramic
scenes. Our approach extends semantic-aware genera-
tive adversarial architecture capabilities by introducing two
novel strategies to account the geometric characteristics of
indoor scenes and to enhance performance. Firstly, we in-
corporate strong geometry losses that use layout and depth
inference at the training stage to enforce shape consistency
between generated and ground truth scenes. Secondly, we
apply a shading decomposition scheme to extract the albedo
and normalized shading signal from the original scenes,
and we apply the style transfer on albedo instead of full
RGB images, thereby preventing shading-related bleeding
issues. On top of that, we apply super-resolution to the re-
sulting scenes to improve image quality and yield fine de-
tails. We evaluate our model’s performance on public do-
main synthetic data sets. Our proposed architecture outper-
forms state-of-the-art style transfer models in terms of per-
ceptual and accuracy metrics, achieving a 26.76% lower
ArtFID, a 6.95% higher PSNR, and a 25.23% higher SSIM.
The visual results show that our method is effective in pro-
ducing realistic and visually pleasing indoor scenes.

1. Introduction

With the recent advances in deep learning, style trans-

fer has become a popular technique in the field of com-

puter graphics/vision. It enables the transfer of styles from

one image to another while maintaining the content of the

original image. This technique has been applied in various

fields, including photography, advertising, and digital art.

This technology has seen significant improvements over the

last years, and, by now, style transfer can be used efficiently

for automatic creation of compelling images through the ap-

plication of artistic styles to casual photography [55, 6], or

for the generation of high-quality, photo-realistic images re-

lated to specific categories like low-resolution portraits [59]

or natural scenes [4].

Simultaneously, panoramic or spherical images, capable

of capturing complete environments in a single shot, have

become increasingly popular, particularly for representing

indoor scenes in applications like virtual staging [57]. In

this context, photo-realistic style transfer methods, if they

were availabile, would offer a significant advantage for au-

tomatically creating immersive indoor environments. How-

ever, despite recent advances, even the most up-to-date style

transfer approaches have yet to effectively handle indoor

panoramic images. As a result, the generated images ex-

hibit noticeable artifacts that limit their practical usability

in virtual reality or architectural design applications.

In general, the application of style transfer to indoor

panoramic images presents several significant challenges,

including the following.

• Complex illumination patterns: Indoor environments

consist of various reflective surfaces, diverse lighting con-

ditions (both direct and indirect), and occlusions, leading

to intricate illumination patterns. Style transfer architec-

tures often struggle to accurately interpret and preserve

these complex illumination patterns during the transfer

process.

• Incorporating 3D characteristics: Automatic processing

methods need to incorporate knowledge about the specific

3D characteristics of indoor scenes, such as their layout

and clutter. Style transfer algorithms should consider the

spatial relationships between objects and surfaces within
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the panoramic image to ensure coherent and realistic style

transfer results.

• Equirectangular projection distortions: Panoramic in-

door images typically use equirectangular projections,

which introduce distortions due to the transformation

from the spherical to the planar domain. Style transfer

methods need to account for these distortions to maintain

the visual quality and consistency of the transferred styles

across the entire panoramic image.

• High-resolution requirements: To enable immersive ap-

plications and professional editing purposes, panoramic

images need to have a high resolution. Meeting these res-

olution requirements poses a challenge as current style

transfer technologies may struggle to handle the compu-

tational demands and memory constraints associated with

high-resolution panoramic images.

This paper addresses all these challenges by propos-

ing the first semantic, geometry-aware and shading-

independent architecture dubbed PanoStyle. Our architec-

ture can generate photo-realistic indoor panoramic images

in a controlled fashion (cf. Fig. 1). Our architecture is a

custom-built evolution of classical style-based generative

adversarial network [34, 59] for panoramic indoor scenes

and incorporates the following technical contributions.

• Shading-independent style encoding: We propose to

model the illumination of an indoor scene according to

intrinsic image decomposition, and we approximate shad-

ing as a normalized neutral modulation signal; we encode

styles by considering reflectance in a way that prevents

intricate lighting patterns from creating bleeding artifacts

in the generative process (Sec. 3.1).

• Geometry-aware discrimination: We design specific

losses for supporting the adversarial process that take into

account the particular 3D characteristics of the indoor

scenes, in terms of clutter, layout, and edges. We achieve

this by using state of the art models for depth and layout

inference, and we compensate the equirectangular projec-

tion through area-based weighting. Finally, we exploit the

latent features extracted during depth and layout predic-

tion for deriving geometry style losses enforcing global

and local similarity (Sec. 3.2).

Furthermore, we improve the resolution of the gener-

ated images by applying GAN-based super-resolution mod-

els [47]. To evaluate the effectiveness of our approach, we

provide an extensive empirical evaluation on the synthetic

Structured3D data set [56], using a wide range of quantita-

tive and qualitative metrics. This data set provides a suit-

able benchmark for testing our method’s performance, as

it has comprehensive ground truth annotations for indoor

panoramas. PanoStyle significantly improves the quality of

generating photo-realistic panoramic images compared to

state-of-the-art methods [59, 17], as demonstrated by clear

improvements in quantitative and perceptual metrics (such

as SSIM, PSNR, and ArtFID score [49] (see also Table 1)

and visual inspection (see also Figs. 4 and 5). The result-

ing stylized panoramic images can be visualized in 3D us-

ing various 3D-Viewers [43], and can be used for VR and

metaverse-based applications. This has significant implica-

tions for industries such as real estate, furniture retail, and

interior design, where users can visualize the edited space in

a more immersive and realistic manner. Despite the signifi-

cant advantages, however, the architecture also has a signif-

icant drawback limiting the applicability to real world sce-

narios: it depends on the availability of high quality anno-

tated data, in the form of semantic segmentation of input

images and pre-computed reflectance signals.

Figure 1. We present the first geometry-aware and shading-

independent, photorealistic and semantic style transfer method for

indoor panoramic scenes. Left column: Content images. Remain-

ing columns: different editing scenarios. Top row: target style

images. Remaining rows: successive edits (floor, wall, ceiling).

Some edits also include doors, windows, towels, and toilets.

2. Related work
Generative Adversarial Networks (GANs) have emerged

as a fundamental tool in the field of Neural Style Transfer

(NST) and have demonstrated remarkable efficacy in im-

age synthesis tasks. The inception of GANs in 2014 [10]

marked a groundbreaking development. Since then, they

have been utilized in various domains, including image

inpainting [54], image editing [1], and texture genera-

tion [8]. Constant advancements in GAN architecture [34],

loss function design [29], and regularization techniques [30]

have contributed to the production of increasingly realis-

tic and high-quality images. Recently, Ruder et al. [39]

adapted the original artistic image style transfer method to

spherical images based on energy minimization [9] . One

notable example of the progress in GANs is the StyleGAN

model [21], which enables the generation of remarkably de-

tailed and high-fidelity human facial images. Traditional

GANs suffer from a lack of user control as they rely on

noise vectors as input. To address this limitation, condi-
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tional GANs (cGANs) [31] were conceived, allowing users

to provide conditioning data to the generator and regulate

the synthesis process. By incorporating conditional infor-

mation such as class labels [33], textual descriptions [52],

or reference images [45], cGANs can produce tailored and

contextualized outputs, expanding the creative possibilities

and enhancing the user experience.

Image-conditional GANs have proven to be versatile so-

lutions for various image-to-image translation challenges.

The effectiveness of employing image-conditional GANs

was showcased in the seminal work of Isola et al. [18],

demonstrating their applicability in diverse scenarios, in-

cluding unsupervised learning [58], few-shot learning [27],

high-resolution image synthesis [45], multi-modal image

synthesis [15], and multi-domain image synthesis [5].

Among these applications, semantic image synthesis stands

out as an invaluable form of image-to-image translation,

as it enables users to manipulate the input semantic lay-

out image and exercise effortless control over the synthe-

sis process. For what concerns photorealistic style trans-

fer, recently various solutions have been proposed: for ex-

ample, Li et al. [25] developed a method with a styliza-

tion step and a smoothing step for ensuring spatial consis-

tency, Yoo et al. [53] propose a wavelet correction scheme

based on whitening and coloring transforms (WCT2) pre-

serving the structural information and statistical properties

of VGG feature space during stylization, and Xia et al. [50]

propose a feed-forward neural network learning local edge-

aware affine transforms in a way to enforce the photoreal-

ism constraint. However, all these methods do not consider

the semantic content and the geometry content of the scene.

The conventional network architecture [45, 18] employed

in GANs consists of stacked convolutional, normalization,

and non-linearity layers. However, this architecture tends to

diminish the information present in input semantic masks,

which can negatively affect the quality of synthesized im-

ages. To overcome this challenge, Spatially-Adaptive Nor-

malization (SPADE) was introduced [34], leveraging condi-

tional normalization layers to effectively propagate seman-

tic information throughout the network. By modulating ac-

tivations based on input semantic layouts through a spatially

adaptive, learned transformation, SPADE ensures enhanced

information preservation and utilization. Furthermore, in

order to exert individual control over the style of each se-

mantic region within an image, Zhu et al. [59] proposed

Semantic Region-Adaptive Normalization (SEAN). While

SEAN demonstrated excellent performance on facial im-

ages, its application to indoor panoramic images revealed

limitations. These limitations stem from the neglect of fac-

tors such as depth preservation and coherence of details,

which are considered crucial for assessing the visual qual-

ity of NST algorithm results [19]. In this work, we build

on top of the architecture proposed by Zhu et al. [59] by

incorporating Spectral Norm [32] in both the generator and

discriminator modules together with a shading independent

style encoding module operating on reflectance signals.

The preservation of both the depth and the structural

characteristics is crucial for generating aesthetically pleas-

ing stylized images. Consequently, some researchers [28, 3]

have focused on enhancing structural characteristics, partic-

ularly for images with faces or varying object depths, by

adjusting the amount of retained structure during styliza-

tion. Integrating depth preservation as an additional loss

function has also been explored, utilizing deep residual

convolutional networks and advanced depth prediction net-

works [17]. However, preserving both depth and seman-

tic information simultaneously remains a challenge. More-

over, an innovative technique called StyleMesh [14] rev-

olutionizes mesh stylization in room-scale interior scenes

by extending style transfer into the immersive 3D domain.

It overcomes limitations of traditional methods by leverag-

ing mesh depth and surface normals, employing a metic-

ulously designed loss calculation methodology. However,

this method is designed for perspective images and relyies

on intrinsic and extrinsic camera estimation. It is, thus,

not adaptable to panoramic images. Instead, we preserve

the depth and structural characteristics of panoramic indoor

scenes by designing geometry constraints that take into ac-

count the characteristics of panoramic images, the scene

content, and the layout of the represented environments.

Apart from the aforementioned studies, the realm of

panoramic depth estimation has seen various research

endeavors, including approaches using deformable con-

volutional filters [42], specialized encoder-decoder net-

works [60], and perspective views in cubemap formats [44].

Other methods involve encoding panoramic inputs into

vertical slices [37, 41], leveraging stereomatching con-

cepts [26], and utilizing transformer architectures to

align/merge depth maps [24]. Contributions also include

techniques for stitching perspective depth maps [38] and

computing high-resolution depths for panoramas [36]. All

of these advancements aim to improve accuracy and effi-

ciency in panoramic depth estimation.

In our work, we exploit the most advanced pre-trained

depth and layout inference architectures [37, 40] to con-

strain the generation process such that it preserves the ge-

ometric details of the indoor scene, and we incorporate a

normalized shading decomposition component to preserve

the lighting information. In this way, our architecture is

able to produce high-quality photo-realistic panoramic im-

ages. For what concerns reflectance models and albedo

disentanglement, they have been exploited successfully for

applications related to makeup simulation [23], but, to our

knowledge, the concept of intrinsics image decomposition

has never been applied to panoramic indoor scenes.
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3. Methodology

Figure 2 depicts PanoStyle’s architecture. It is com-

posed by a generative adversarial architecture exploiting

semantic-aware style encoding [59], in which we integrate

the following novel components.

1. A normalized shading decomposition component for ex-

tracting neutral illumination signals from the original

scene to be used in the discriminator process and in the

application of style transfer (Sec. 3.1);

2. A geometry consistency component exploiting the par-

ticular features of indoor scenes through custom losses

that consider the geometry content of the scene in terms

of depth, layout, and edge signals to be applied as ad-

ditional constraints in the discriminator network of the

GAN architecture (Sec. 3.2).

The training process of PanoStyle takes as input an RGB

image of indoor scenes, together with precomputed seman-

tic content, original depth, and reflectance (albedo) signals.

Once trained, our PanoStyle model can be used for generat-

ing novel indoor scenes by applying different style images

to indoor scenes in a controlled fashion through the inter-

active modification of semantic signals: casual users can

adaptively select which parts of the style scene are applied

to the original scene (Sec. 3.3).

3.1. Shading-independent encoding

Normalized shading decomposition. Figure 2 provides

a schematic overview of our shading decomposition com-

ponent. We base our method on classical intrinsic image

decomposition, that is, the process of extracting the under-

lying components of an image, namely reflectance (albedo)

and shading (illumination) [2]. The reflectance component

represents the actual color (or albedo) of an object, unaf-

fected by illumination or camera viewpoint. On the other

hand, the shading component includes various photometric

effects like direct light, ambient light (reflections within and

between objects), and shadows. Employing intrinsic images

instead of raw RGB images has proven to offer advantages

in various computer vision applications, ranging from fab-

ric re-colorization [51] to 3D shape reconstruction [11]. In

our case, we start with an original RGB image Irgb and the

available reflectance signal Ialb to define a normalized il-

lumination modulation scalar signal Ishad as the Euclidean

norm of the Hadamard division between Irgb and Ialb:

Ishad := max
(‖Irgb � Ialb‖2 , 1

)
, (1)

in a way to neutralize all secondary effects that would pro-

vide color artifacts during the application of different re-

flectance signals to the same scene. In this way, the appli-

cation of the illumination signal would lead to an approxi-

mated shaded scene in the form of

Îrgb = Ishad · Ialb. (2)

We carried out a preliminary analysis of the effects of this

first approximation shading model using the Structured3D

data set, and we found that the difference with respect to

the ground truth signals are perceptually negligible (see

Sec. 4). We represent the shading signal as 16-bit resolution

single channel images, and we apply this intrinsic image

decomposition scheme during pre-processing to generate

a shading archive to be used during the application of the

style transfer.

Shading-independent style encoder. The style encoder

in the GAN architecture is composed of a bottleneck con-

volutional neural network (CNN) and a region-wise aver-

age pooling layer (see also Fig. 2). It takes the style im-

age (albedo) and its corresponding segmentation mask as

inputs and produces style codes as outputs. To avoid bleed-

ing issues that can arise from shading effects, especially in

panoramic indoor scenes, we use albedo instead of RGB.

In this way, we ensure that the generated images are not af-

fected by variations in lighting conditions. This is of partic-

ular importance in the context of photo-realistic style trans-

fer, since we aim to preserve the style of the input image

while transferring it to a new scene.

Moreover, by utilizing a bottleneck CNN architecture (as

also used by SEAN [59]), we increase the receptive field

while managing computational cost. The resulting gradual

dimension reduction is important for compact style codes

and, in more general frameworks than ours (left for future

work), allows to apply loss functions at different image res-

olutions. In addition, the latent space can be further reg-

ularized for better control of the generation process. The

region-wise average pooling layer further enhances the per-

formance of the style encoder by allowing it to capture spa-

tial information about the image at a higher level of abstrac-

tion.

3.2. Indoor geometry consistency

Our geometry consistency component is integrated in the

discriminator network of the semantic-aware generative ad-

versarial architecture [59, 34], in form of losses added to

the classical discriminator components (the conditional ad-

versarial loss, the feature matching loss [45], and the per-

ceptual loss [20]). To this end, we introduce the following

geometry constraints that enforce the consistency of the ge-

ometry content created during the training process by the

generator architecture.

1. A loss contribution Ldepth to enforce the geometric and

latent consistency of the depth signal of the generated

scene;
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Figure 2. PanoStyle framework. (A) PanoStyle uses a GAN model exploiting semantic-aware style encoding, integrated with a shading

decomposition component and geometry constraints in the discriminator. (B) PanoStyle applied to target, style reflectance, and semantic

signals to generate a new scene. Using a target shading signal followed by super-resolution to enhance details results in the stylized image.

2. A contribution Llayout to enforce the geometric and la-

tent consistency of the layout of the generated scene;

3. A contribution Ledge to enforce the geometric consis-

tency of the edges of the generated scene.

Concerning the metrics involved, we applied standard

L1 losses in all cases but we also performed experiments

with other metrics like berHu (inverse Huber) [7] without

obtaining significant advantages.

Depth consistency. In order to enforce depth consistency

of the generated scenes, we exploit the capabilities of state-

of-the-art depth inference models (in our experiments we

considered Slicenet [37]) to predict the depth signal of gen-

erated fake scenes DG to be compared to the original real

scenes DR. We use the tensors DG and DR to compute a

pure geometry loss with a weighting scheme that considers

the change in area when uniformly distributed samples from

the equirectangular domain are mapped to the spherical sur-

face representing the scene:

Lgeo
depth =

∑
ij

wij

∥∥DG
ij −DR

ij

∥∥
1
, (3)

where the spherical weights are computed in a way to pe-

nalize pixels close to the poles of the sphere:

wij = cos

(
π

N

(
j +

1

2
− N

2

))
, (4)

N being the height in pixels of the panoramic images.

Moreover, from the depth inference model, we extract

the latent features Fn of both the generated image and

ground truth depth for computing additional loss compo-

nents incorporating the philosophy of style-transfer [1], for

preserving the global content of the scene:

Lglob
depth =

∑
n

∥∥Fn(D
G)− Fn(D

R)
∥∥
1

(5)

Similarly, we consider an objective function for enforcing

local similarity, acting as a sort of style loss, based on the

Gram matrix function of the same latent features Fn:

Lloc
depth =

∑
n

∥∥∥Kn

(
Fn

(
DG

)T
Fn

(
DG

)−
Fn

(
DR

)T
Fn

(
DR

))∥∥∥
1
,

(6)

where Kn is the Gram matrix normalization factor 1/(s×l)
for the nth layer. The complete depth consistency loss is a

weighted sum of the three aforementioned components:

Ldepth = λd1Lgeo
depth + λd2Lglob

depth + λd3Lloc
depth (7)

Layout consistency. For enforcing layout consistency, we

designed a set of losses representing similar concepts con-

sidered for deriving depth constraints: pure geometric con-

sistency, and local and global similarity in the latent fea-

ture space. In this case, we use the popular HorizonNet

model [40] for predicting indoor scene layouts in the form

of 1D parameterized functions for both the floor and ceiling,

and the three loss contributions are computed on predicted

layouts for the original scene LR and for the generated im-

age LG, and the corresponding latent features Hn in similar

fashion as for depth objective functions (see Eqs. 5 and 6),

leading to the weighted layout consistency loss

Llayout = λl1Lgeo
layout + λl2Lglob

layout + λl3Lloc
layout. (8)

Edge consistency. For constraining the edge content of

the generated scene to be consistent with the original image,

we approximate the gradient components of the generated

and real depth signals DG and DR through a convolution

with Sobel filters of width 3 for the horizontal and verti-

cal derivatives that we use for an additional geometric loss

related to edge content [35],

Lgeo
edge = λe

∥∥∇ (
DR −DG

)∥∥
1
. (9)
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Figure 3. Comparison between original RGB image and prediction using our shading decomposition system (Structured3D data set). We

report PSNR, W-PSNR, and SSIM. Depicted are visual comparisons, color-mapped differences, and accompanying shading/albedo signals.

3.3. Semantic image synthesis

The semantic-aware style transfer task involves gener-

ating a realistic image based on a given semantic layout

that contains pixel-level labels. This problem is inherently

challenging, especially for indoor panoramic images, since

multiple feasible images may correspond to a single seman-

tic layout. Consequently, in order to extract styles specific

to each region, PanoStyle’s generator employs the style en-

coder network described in Sec. 3.1, to simultaneously dis-

till the corresponding style code from every semantic region

of an input image (see also Fig. 2 A). The style encoder pro-

duces a style matrix, denoted as SC, which has dimensions

of 512× the number of labels (representing the number of

semantic regions present in the input image). Each column

in the matrix (SC) corresponds to the style code of a spe-

cific semantic region. To focus solely on style-related infor-

mation and eliminates irrelevant details regarding shapes of

semantic regions, the per-region style encoder utilizes a bot-

tleneck structure. Intermediate feature maps, consisting of

512 channels, generated by the convolution layers network

block, undergo region-wise average pooling. This pooling

operation reduces the feature maps into a collection of 512-

dimensional vectors. It is important to note that we handle

cases where the number of semantic labels in the data set

may differ. In such instances, we set the columns corre-

sponding to non-existent regions in an input image to zero,

ensuring consistency and accurate representation. Thus, our

proposed model enables the user to control both semantic

and style during image synthesis. The semantic informa-

tion, such as the presence of a cabinet in an indoor envi-

ronment, can be controlled via a label map. The style can

be controlled on a region-by-region basis, as demonstrated

in the generated stylized image of Fig. 2(B)) in which the

style is applied to cabinet, floor, wall, ceiling only, and of

Fig. 7, where the style is applied to only floor, wall, and ceil-

ing. In Fig. 6 the style was applied to all semantic classes.

Additionally, our model supports style crossover, allowing

multiple style images to be applied to a single content im-

age, as illustrated in Fig. 8. Furthermore, our model being

trained on albedo necessitates multiplication of the resulting

generated images with the shading information that was ini-

tially extracted from the original RGB and albedo frames to

generate a stylized RGB image. Finally, we apply a super-

resolution model [46] on the generated stylized RGB image,

which results in a more visually appealing, immersive, and

photo-realistic image with fewer artifacts (cf. Fig. 2(B)).

4. Results
Implementation and training details. Our PanoStyle

framework has been implemented in Python on top of the

PyTorch library. For the generative adversarial architecture,

the learning rates for the generator and discriminator are set

to 0.0001 and 0.0004, respectively [12], and we employ the

ADAM optimizer [22] with β1 = 0 and β2 = 0.999. All ex-

periments are performed on a single NVIDIA Quadro RTX

8000 equipped with 48GB GPU. Due to PanoStyle work-

ing on high-resolution images with a size of 1024 × 512
pixels and on a single GPU, we have opted for a batch size

of 2. Moreover, in all the experiments detailed in the pa-

per, we trained for 100 epochs and we estimated a train-

ing time of 3.6 seconds per image per epoch. We use the

following parameters for the geometry consistency losses:

λd1 = 0.1, λd2 = 105, and λd3 = 109 for depth consis-

tency, λl1 = 105, λl2 = 105, and λl3 = 109 for layout

consistency, and λe = 109 for the edge constraint.

Table 1. Quantitative Comparison and Ablation Study of Self-

Style Semantic Image Synthesis Results on the Structured3D data

set. We conduct a comparison between SEAN [59], DANST [17],

and our approach, PanoStyle. To ensure a fair comparison with

our competitors, the superresolution has not been applied to both

our method and the competing approaches.

Method PSNR ↑ SSIM ↑ ArtFID ↓
SEAN 18.9147 0.6326 10.7989

DANST 10.1023 0.5742 23.5553

Ours 20.2289 0.7922 7.9094
Ours(w/o layout) 19.8277 0.7715 9.3261

Ours(w/o depth) 19.5962 0.7857 8.9405

Ours(w/o geometry) 19.3729 0.7847 9.1599

Ours(w/o shading) 18.9932 0.6522 10.4410

Data sets. Our experiments make use of the Structured3D

data set, which comprises over 18,000 RGB-D images

sourced from 3,500 different scenes (house designs). This

data set offers an ideal benchmark for testing the efficacy of
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Figure 4. Qualitative comparisons of results (Structured3D data

set) using SEAN [59], DANST [17], and ours, PanoStyle. We

report PSNR and SSIM. We show the comparison between ground

truth and predicted stylized images and color-mapped (viridis) L2

distance between ground-truth and generated stylized images.

Figure 5. Visual comparison of the self-style semantic image

synthesis results on the Structured3D data set. We compare

SEAN [59], DANST [17], and our method, PanoStyle. For a fair

comparison, the superresolution is applied to both our method and

the competing approaches.

Figure 6. Visual comparison of SEAN [59] and our method on

external image style transfer results using Structured3D data set.

The style is applied to all components of the content image.

our proposed method due to its comprehensive ground truth

annotations for indoor panoramas, including semantic,

depth, normal, albedo, and RGB. The data set includes

41 region categories, such as wall, floor, cabinet, chair,

sofa, and table, among others. To support the training and

inference process, we developed several pre-processing

scripts: a script to pre-compute shading images from the

albedo and RGB frames, a script to extract label images

from color-mapped semantic signals, and a clustering

technique that groups similar images together based on

their label association. This approach reduces the number

of training iterations required and the inference time by

Figure 7. Visual comparison of SEAN [59] and our method on

external image style transfer results using the Structured3D data

set. The style is applied only to floor, wall, and ceiling.

Figure 8. Style-crossover. Our method can select different styles

from different reference images for different regions of an input

image. Here, a scene is reconstructed by using two different style

images (Style1: wall and door, Style2: floor and ceiling).

clustering images containing similar semantic classes (e.g.,

kitchen with kitchens, toilet with toilets, bedroom with

bedrooms, living room with living-rooms, etc.).

Performance metrics. In order to assess the perfor-

mance of our method, we utilize well-established metrics

commonly employed in the field of computer vision and

image processing to compare our results with state-of-the-

art methods. These metrics include ArtFID [49], Peak

Signal-to-Noise Ratio (PSNR), and Structural Similarity

(SSIM) [48]. By utilizing these well-established metrics,

we can provide a comprehensive evaluation of the perfor-

mance of our method and compare it to state-of-the-art

approaches in a quantitative and objective manner.

Quantitative assessment. For a preliminary assessment

of the validity of the approximated shading decomposition

on the Structured3D data set, we performed a comparison

between the reconstructed RGB images, Îrgb, and the

original ones, Irgb, and we obtained an average structural

similarity of 0.92 and ArtFID of 4.23, meaning that the

reconstructed images are perceived very similar to the

1559



original ones (see also Fig. 3). To ensure a fair comparison

with our competitors, we have employed quantitative

comparisons by assessing the reconstruction performance

on uniformly selected samples that were used across all

methods. It is important to emphasize that the results

presented in Table 1 reflect a scenario in which super-

resolution has not been applied to both our method and

the competing approaches. This approach guarantees a

more equitable comparison. Since SEAN is our main

baseline, both our method and SEAN were trained under

the same setup configuration, while other competitors were

trained using their recommended training conditions. The

metrics are reported in Tab. 1 (refer also to the video in

the supplemental materials). As can be seen, our method

outperforms current leading methods on all metrics used

(SSIM, PSNR, and ArtFID). In our analysis, we have

selected SEAN [59] as the current best state-of-the-art

method, and DANST [16] as the second-best competitor

method. We have also conducted a visual inspection of the

results and found that ArtFID [49], a recently introduced

quantitative metric for neural style transfer, is the most

indicative of visual quality of the results. Based on our

findings, we can confidently state that our framework has

outperformed the state-of-the-art on all the reported metrics

(PSNR, SSIM, and ArtFID).

Qualitative assessment. In this section, we present the

qualitative results of our proposed method on selected sam-

ples from the Structured3D data set. We demonstrate the

effectiveness of our method by showcasing the generated

images using different style transfer techniques. Fig. 4

shows a colormapped comparison between methods, while

Fig. 5 compares the RGB generated by application of

self-style transfer. On the other side, Fig. 6 and 7 demon-

strate style transfer results on the application of external

scenes. Our method outperforms SEAN and DANST [17]

in terms of visual quality, as shown in Fig. 4. We attribute

the success of our method to its suitability for learning

more of the variability in the data while preserving the

global structure of the original content. We achieve this by

incorporating strong geometry losses at the discriminator

stage and by training the network using albedo instead of

RGB. We refer the reader to the accompanying video for

more results as visual inspection is critical for generative

modeling. Additionally, our per-region style encoding

enables new image editing operations on panoramas, such

as iterative panoramic image editing with per-region style

control (see also Figs. 1 and 7) as well as style crossover

(see Fig. 8).

Ablation study. To evaluate the effectiveness of our de-

sign choices, we conducted an ablation study on different

versions of our model (summarized in Tab. 1). Our analysis

shows that all our variations improve results compared to

our competitors across all utilized metrics. To validate this

finding, we trained using the following scenarios. i) Shad-

ing decomposition without geometry constraint losses; ii)

Geometry constraint losses without shading decomposition;

iii) Shading decomposition and geometry constraint losses

without depth consistency; iv) Shading decomposition and

geometry constraint losses without layout consistency. The

numerical results support the significance of both shading

decomposition and geometry constraints in generating im-

proved outcomes, emphasizing the importance of their com-

bined incorporation.

5. Conclusions and future work
We have presented PanoStyle, the first semantic,

geometry-aware, and shading-independent photo-realistic

style transfer method for indoor panoramic scenes. Our

approach addresses the limitations of existing models

by incorporating strong geometry losses based on layout

and depth inference to ensure shape consistency, and by

applying a shading decomposition scheme that prevents

color bleeding problems. Additionally, we employ super-

resolution techniques to enhance image quality and cap-

ture fine details. Experimental evaluations on public do-

main synthetic data sets demonstrate that our proposed ar-

chitecture outperforms state-of-the-art style transfer mod-

els. The visual results further validate the effectiveness of

our method in producing realistic and visually pleasing im-

ages that maintain the semantic, global structure, layout,

edge, and depth information of the input scenes. Our work

paves the way for future research in style transfer for indoor

panoramic scenes and opens up new opportunities for ap-

plications in the metaverse, virtual reality, real-estates, fur-

niture retails, interior design, and architecture. Despite the

promising results, our proposed system contains still limi-

tations, that we plan to address in the future:

• Network for extracting multiple signals from the same
image: Currently, we use the Structured3D synthetic data

set which includes nearly all the necessary ground-truth

signals required for training and evaluating our approach.

We plan to investigate technologies for extracting the re-

quired signals from one single captured panorama [13];

• Develop accurate shading models: we plan to investi-

gate networks able to infer different direct and indirect

shading components, depending on reflectance, geometry

content, and illumination information [57].
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