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Abstract

Building archetypes, representative models of building
stock, are crucial for precise energy simulations in Urban
Building Energy Modeling. The current widely adopted
building archetypes are developed on a nationwide scale,
potentially neglecting the impact of local buildings’ ge-
ometric specificities. We present Multi-scale Archetype
Representation Learning (MARL), an approach that lever-
ages representation learning to extract geometric features
from a specific building stock. Built upon VQ-AE, MARL
encodes building footprints and purifies geometric infor-
mation into latent vectors constrained by multiple archi-
tectural downstream tasks. These tailored representa-
tions are proven valuable for further clustering and build-
ing energy modeling. The advantages of our algorithm
are its adaptability with respect to the different build-
ing footprint sizes, the ability for automatic generation
across multi-scale regions, and the preservation of geomet-
ric features across neighborhoods and local ecologies. In
our study spanning five regions in LA County, we show
MARL surpasses both conventional and VQ-AE extracted
archetypes in performance. Results demonstrate that ge-
ometric feature embeddings significantly improve the ac-
curacy and reliability of energy consumption estimates.
Code, dataset and trained models are available on the
project page: https://github.com/ZixunHuang1997/MARL-
BuildingEnergyEstimation.

1. Introduction
The built environment plays a significant role in global

climate change, accounting for approximately 34% of

worldwide final energy consumption in 2020 [21]. In light

of the urgent worldwide issues concerning sustainability

and energy efficiency, there has been a concentrated focus

on research in Urban Building Energy Modeling (UBEM)

[3]. UBEM has evolved into a crucial computational tool

*Equal Contribution

that enables the analysis and forecast of energy consump-

tion at an urban scale. Given the impracticability or infeasi-

bility of modeling each individual building in minute detail,

developing building archetypes for the study area has be-

come a critical determinant for precision for urban scale en-

ergy estimation. These archetypes represent specific groups

of buildings sharing similar characteristics and energy per-

formance within the area of interest. Their strategic use in

UBEM allows for efficient and effective energy modeling at

the urban scale.

Recent studies have established global building

archetypes [10, 18, 22]. However, many of these are

designed at a country scale, depend on expert input [10],

and don’t integrate actual building geometry, leading to

potential inaccuracies and limiting their scalability, par-

ticularly in areas where computational resources and data

accessibility present challenges. Additionally, urban-scale

energy estimation demands significant computational

resources, often inaccessible to disadvantaged communities

and neighborhoods. Such disparities can introduce data

biases, curtail global applicability, and limit the UBEM’s

diversity mainly to major cities like Boston [4, 6] and San

Francisco [6]. These limitations hinder the effectiveness

of building archetypes in energy-efficient design and

implementation.

In response, we present Multi-scale Archetype Repre-

sentation Learning (MARL, Figure 1), a method designed

to automate local building archetype construction through

representation learning. Our proposed method addresses

the aforementioned challenges by refining the essential ele-

ments of building archetypes for UBEM. Our main contri-

butions are summarized as follows:

• We introduce building geometry into the building

archetype construction process.

• We provided a cost-effective solution for Urban Build-

ing Energy Modeling (UBEM).

• We propose an image reconstruction-based framework

that streamlines the archetype creation process.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. Building Archetype Finding Pipeline. Besides data

collection, our method consists of 2 stages: archetype representa-

tion learning and clustering, and energy simulation.

• We introduce the integration of downstream tasks into

the building archetype construction process, which in-

creases the accuracy of our models, thereby enabling

more precise and reliable energy consumption esti-

mates at an urban scale.

• We conduct open-set experiments to demonstrate that

our trained model possesses transferable and reusable

characteristics in similar urban and geographical envi-

ronments.

2. Related Studies
2.1. Representation learning

Representation learning offers effective strategies for

dealing with high-dimensional data forms such as images

and 3D models. Integral to these methods are a variety of

neural compression algorithms [27], such as normalizing

flows [24], variational autoencoders [16], diffusion prob-

abilistic models [15], and generative adversarial networks

[13]. Recent advancements have also seen variations of

these models, such as Vector Quantized Variational Autoen-

coders (VQ-VAEs) [25] and Auto Decoders [20]. These

techniques leverage the latent space as a compact repre-

sentation where the high-dimensional data is encoded into

lower-dimensional vectors, preserving the underlying fea-

tures. A wealth of recent research showcases various ap-

plication areas ranging from natural language processing to

image classification [12, 14, 17].

2.2. Building archetype for energy estimation

Building archetypes are a representative subset of build-

ings to model an entire building stock, and are critical to

the process of Urban Building Energy Modeling (UBEM).

The prevailing methodologies for constructing the repre-

sentative building archetype leverage statistical analysis or

use generalized assumptions informed by expert knowledge

[5, 11], and remain a time-consuming task [11]. Existing

archetypes define representative buildings based on categor-

ical attributes such as construction material, vintage, area,

stories, and energy system [10, 22]. Nevertheless, these

models usually do not incorporate the actual geometries of

buildings into the construction of building archetypes, thus

potentially overlooking the nuanced variations and distri-

butions of prevailing geometries among different building

stocks.

Recent years have witnessed exploration into data-driven

methods for the creation of building archetypes [3, 19, 23],

but most of these methodologies continue to exclude build-

ing geometry parameters, largely as a result of technical

intricacies [5]. Instead, the building geometry is simpli-

fied to numerical data, such as areas and shape ratio, with

limited studies directly addressing the actual geometry [9].

Despite the significant impact of building geometry on en-

ergy consumption ([5, 7], its exclusion raises the potential

for inaccuracies and unreliability for energy estimation in

UBEM. This underscores the necessity for methods capa-

ble of incorporating building geometry to represent build-

ing stock comprehensively, thereby augmenting the preci-

sion and granularity of locally tailored building archetypes.

3. Method
Besides data collection, our method consists of 2 stages:

archetype representation learning and clustering, and en-

ergy simulation. Our method follows the bottom-up ap-

proach for constructing a building archetype model [23]

with a representation learning module to characterize the

building stock. Multi-scale Architectural Representation

Learning (MARL) is developed to encapsulate the implicit

features of the input building stock into a compact, reduced-

dimensional space, i.e., the latent space. Following this, we

apply k-means clustering in the latent space to identify the

representative building footprints, which are then converted

into to building archetypes with the same parameters docu-

mented in PBM [10].

We then conduct energy simulations on PBM and our

building archetypes and compare the aggregated energy

profiles. The aim is to investigate whether utilizing real-

world building geometries for a specific district enhances

the accuracy of urban-scale energy estimation and to evalu-

ate the extent to which the accuracy of such energy model-

ing can be improved.

3.1. Archetype learning and clustering

Our model for representation learning (Figure. 2) con-

sists of an auto-encoder and an optional downstream task

pool (DTP). The auto-encoder aims at compressing and pu-

rifying the geometric contours of the building, while the

downstream tasks add a restriction and punishment on it

to conserve geometric information related to vital building
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Figure 2. Model Architecture for multi-scale archetype learning and clustering. This stage consists of one auto-encoder and multiple

downstream tasks.

properties. After the representation learning is finished, we

then feed all footprints in a certain region back into our

trained encoder and get the clustering centers of the corre-

sponding latent vectors to acquire archetypes in this region.

3.1.1 Footprint reconstruction

Since the sizes of different footprints vary widely, to en-

sure that our model is flexible enough in its choice of data

about building contours at different scales, a single footprint

is scaled into 3 different sizes. Detailed implementation is

described in Section 4.2. Both the encoder and decoder for

the image reconstruction task are built with a CNN-based

structure with residual connections. The scaled footprints

are fused together and encoded into a latent vector with a di-

mension of 28×28×32 by the encoder. A vector quantizer

[25] is then used to decouple the implicit representation and

map it to discrete embedding vectors (a code book) prior to

forwarding the vector to the decoder. During the quantiza-

tion step, each continuous vector output from the encoder

is matched to the nearest vector in the code book, which is

then forwarded to the decoder. This helps to better control

the quality and diversity of the generated data based on the

clustering centers in further steps.

Based on VQ-AE, our image reconstruction process in-

corporates both reconstruction loss and vector quantization

loss in the proposed representation learning. The training

Figure 3. Examples of MARL footprint reconstruction.

objective for the reconstruction part becomes equation 1:

L = log(p(x|zq(x))) + ‖sg(ze(x))− e‖22 (1)

The first term corresponds to the reconstruction loss, while

the second term represents the codebook loss. Here, we use

the notations x, zq(x), ze(x), and e to refer to the inputs, de-

coder inputs, encoder outputs, and embedding vectors, re-

spectively. And the operator sg stands for the stop gradient

operator.

3.1.2 Downstream task pool

Supervised by a downstream task pool (DTP), our MARL

model excels in producing a more valuable latent space

compared to normal auto-encoders, making it ideal for ar-

chitectural purpose-driven applications. By leveraging the
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insights from the additional tasks, our model is capable of

preserving implicit geometry features closely related to cru-

cial meta information of buildings.

The primary task focuses on predicting the building’s

program or purpose, while the secondary task involves pre-

dicting the ’vintage’ of a building, defined as the year it was

constructed. Some other simple tasks are incorporated as

well to gain further constraints on the encoder, such as pre-

dicting building heights from image grayscales. All tasks

are meticulously tailored and hold a strong connection to

traditional building energy modeling. Moreover, they di-

rectly or indirectly influence and even shape architectural

geometry to a significant extent.

The first task aims at predicting the building program,

specifically within the context of residential categories in

Los Angeles. These categories are manifold, spanning from

Mobile Homes, Units, and Rooming Houses to Apartments.

The wide scope of categories caters to the diverse types

of residential architecture prevalent within the region. For

the second task, we operationalize the concept of ’vintage’

as a sequence of categorical variables that encapsulate dis-

tinct temporal spans: pre-1980, 1980-2004, 2004-2013, and

2013 to the present. These divisions correspond with sig-

nificant revisions to the California Building Code, serving

as crucial epochs for analyzing the energy performance of

structures. This segmentation is used for energy perfor-

mance analysis [26].

By incorporating these tasks, our model is expected to

gain a more nuanced understanding of building properties,

thereby contributing to more precise and sophisticated pre-

dictions. These tasks reinforce the model’s robustness and

increase its applicability across a range of building types.

3.2. Energy Simulation

After generating the representative footprints, we ex-

trude them to their corresponding heights, which are coded

in greyscale. We then apply energy parameters, includ-

ing the window-wall ratio, U-value of the envelope, heat-

ing type, etc., consistent with the PBM [10]. Subse-

quently, we employ Climate Studio, an EnergyPlus plug-in

for Rhino3D, to simulate the annual energy use intensity

(EUI) of each representative building under the LA airport

climate data sourced from [2]. After this, we aggregate the

annual EUIs for each cluster based on their respective total

areas and sum these to calculate the cumulative EUI for the

entire neighborhood.

4. Experiments
4.1. Geographic dataset

We selected five distinct neighborhoods within Los An-

geles County, each encompassing an area in excess of 100

km2 and comprising a dense residential building popula-

Figure 4. Dataset Visualization. Selected Neighborhood in Los

Angeles County. (a) Santa Monica, Westwood, Brent Wood, Bev-

erly Hills, west Hollywood (b) Manhattan Beach, Hawthorne, El

Segundo, Lawndale Redondo Beach and Gardena (c) Rancho Pa-

los and Rolling Hills (d) Downey, south gate, Commerce, East Los

Angeles, Pico Rivers, Whitter (e) Long Beach and Lakewood

tion surpassing 10,000 units. These specific areas have been

graphically illustrated in Figure 4. The building footprint,

alongside other building metadata including vintage, height,

and building type, are derived from the Assessor Parcels

Data provided by Los Angeles County [8]. In the interest

of maintaining focus on residential aspects, we narrowed

down our dataset to exclusively incorporate buildings des-

ignated for residential usage (single and multi-family build-

ings). Building heights were normalized into the range of 0-

255 and translated into greyscale values. This color-coded

scheme allows for intuitive visualization of height distribu-

tion within residential buildings. Representative samples of

these building footprints are showcased in Figure 5.

Region (b), (c), and (e) each consist of 6959, 7736, 6064

footprints. Among them, 90% of randomly selected foot-

prints are utilized for the training process of our model,

while the remaining portion is allocated for validation. Re-

gions (a) and (d) are held out and encompass 9870, 11767

footprints each, intended for conducting open-set experi-

ments.

4.2. Implementation details and Metrics

A single footprint with dimensions of 1410×1410 is ini-

tially divided into three sizes: 700 × 700, 224 × 224, and

112 × 112. Subsequently, all of these sizes are uniformly

resized to 112× 112 before being combined into a concate-

nated format.

The image embedding network consists of a 3-layer

CNN and 1 residual block serving as the encoder, along
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Figure 5. Examples of the building footprints.

with a vector quantizer, 3 up-sampling layers, and 1 residual

block as the decoder. All meta-information encoders in the

downstream task pool are constructed with only 1 convolu-

tion layer and 1 fully-connected layer. Feature embedding

fed into both the vector quantizer and the downstream task

pool is of dimension 28× 28× 32.

Regarding the training strategy for our MARL integrated

with DTP, we adopted a pre-training phase focusing solely

on the reconstruction loss. Following this, we fully fine-

tune the entire model’s weights for one epoch through a

weighted sum of the reconstruction loss and the down-

stream task losses.

Ground truth. Given the privacy concerns, obtain-

ing real-world data regarding building energy consumption

poses a challenge. As a workaround, we used a simu-

lated dataset, the Integrated Multisector Multiscale Model-

ing (IMMM) data [26], as our ground truth for energy esti-

mation. This dataset presents a thorough simulation of en-

ergy consumption for every building across the entire Los

Angeles County.

Baseline. For comparison, we adopt two prototype

models from Prototype Building Models (PBM) set forth by

[10]: single-family housing model and multi-family hous-

ing model under climate zone 3C for Los Angeles County.

The PBM is a well-established building archetype dataset

applicable nationwide and adaptable to various climate con-

ditions. We conduct energy simulations for both single and

multi-family models. The energy consumption estimation

for the baseline is the sum of the product of energy con-

sumption and the respective area for both single-family and

multi-family housing models.

Metrics. To evaluate the efficacy of the proposed

algorithm, we use the accuracy of the aggregated energy

consumption for a selected area as the evaluation metrics

(3). The absolute error AE is denoted as the difference be-

tween the total estimated energy consumption ECest and

the ground truth ECgt. With the building stock clustered

and the representative footprint selected, create a building

archetype model based on these footprints, supplementing

with energy-related parameters that are identical to PBM.

In this way, the only variable parameter remains the build-

ing geometry. Following this, we conduct energy simula-

tions for each archetype model and aggregate the energy

consumption results by the total area the cluster represents.

The resulting aggregated energy consumption is compared

with the ground truth and the energy baseline in Table 2.

AE = |ECest − ECgt| (2)

Accuracy = 1− AE

ECgt
(3)

4.3. Ablation experiments

In this experimental section, we would like to an-

swer the following questions: (1) To what extent can our

MARL framework improve the accuracy of current UBEM

in a fully self-supervised manner with only reconstruc-

tion tasks? (2) Whether our MARL framework, when

constrained by downstream tasks with a more disciplinary

scope, can further improve our accuracy of UBEM?

To answer these two questions, we evaluated the perfor-

mance of our method with or without DTP in each of the

three neighborhoods of Los Angeles County as shown in

Figure 4: (b) Manhattan Beach, etc., (c) Rancho Palo, etc.,

and (e) Long Beach, etc. We input the archetype derived

from our method into the energy simulations and compare

the results to the one derived from the PBM [10].

As residential structures represent a significant portion

of energy consumption in densely populated urban zones,

our analysis concentrates on these residential areas, particu-

larly single-family housing (SFH) and multi-family housing

(MFH). We feed the data from residential buildings across

various regions into our trained encoder, thereby securing

the latent representation for each structure.

For each representative footprint within the clustered

building stock, we construct a building archetype for energy

estimation. We use the building height and footprint to re-

construct the building envelope. Other specifications, such

as the window-wall ratio and material are in alignment with

the PBM building archetype from zone 3C [10]. Following

the archetype construction, we perform energy simulation

under Los Angeles International Airport climate data as ex-

tracted from [1].

4.3.1 Single archetype

The archetypes provided by PBM only contain one each for

SFH and MFH [10]. So we first compute one center of

the latent vectors for SFH and one for MFH respectively

in Rancho Palos. Taking SFH as an example, when we ob-

tain the center of the latent vectors corresponding to all the

buildings in Rancho Palos, we input the nearest samples ad-

jacent to that center as archetypes into the UBEM to obtain
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Archetype offered by EUI (kWh/m2) Building Area (m2) Energy (kWh) Accuracy (%)

PBM [10]
MFH 75.14 861123.64

137344567 71.62
SFH 60.79 1194889.74

MARL (Ours)
MFH 89.3 861123.64

179539369 93.62
SFH 85.9 1194889.74

MARL + DTP MFH 92.5 861123.64
183609344 95.74

(Ours) SFH 87 1194889.74

Energy Consumption GT [26] 2056013.38 191779982 /

Energy Estimation Accuracy Boosted by
Our Reconstruction Task 22.00 ↑

Our Downstream Task 2.12 ↑
Table 1. Experiment Results. We tried our method with single archetype generation for MFH and SFH in the region Rancho Palos etc.

Region
Energy Consumption PBM [10] MARL with Only MARL Restricted by

GT[26](kWh) Accuracy(%) Reconstruction Task (%) DTP (%)

Rancho Palo etc. 191779982 71.62 90.36 18.74 ↑ 91.08 18.74 ↑ + 0.72 ↑
Long Beach etc. 104117941 73.10 98.96 25.86 ↑ 97.58 25.86 ↑ - 1.37 ↓
Manhattan Beach etc. 121545524 70.51 90.43 19.92 ↑ 92.88 19.92 ↑ + 2.45 ↑
SUM 417443447 71.66 92.52 20.86 ↑ 93.23 20.86 ↑ + 0.70 ↑

Table 2. Experiment Results on Multiple Regions. Our estimation compared with PBM using multiple archetypes.

Figure 6. Within-cluster sum of squares for k-means clustering on

latent space for different neighborhoods.

the average energy consumption of that region. This aver-

age energy consumption is weighted and summed over the

building area to get the energy consumption of the whole

region.

Table 1 shows the result of this experiment. When there

is only the image reconstruction task, the UBEM accuracy

from our MARL-provided archetypes is 22 percent higher

Figure 7. UMAP visualization of k-means clustering on latent

space of region (c) with corresponding cluster center

than the one from PBM’s, and when the downstream tasks

are added during model training, our method is 24.12 per-

cent more accurate than the traditional method.

In the training of our model, our method is not super-

vised by the ground truth of energy consumption, and the

whole process is only supervised by the self-supervision

from the building footprints and the labeled supervision

from the building meta information. However, it can be

seen that when we consider the geometric features and ar-

chitectural attributes of local buildings in a certain region,
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Region
GT[26] PBM [10] MARL+DTP (Ours)

(kWh) (kWh) (%) (kWh) (%)

Downey etc. 187349182 144685496 77.23 201129362 92.64 15.42 ↑
Santa Monica etc. 211891201 151819183 71.65 192191917 90.70 19.05 ↑
SUM 399240383 296504678 74.27 393321279 98.52 24.25 ↑

Table 3. Open Set Experiment Results. Energy consumption estimation in unseen regions.

our method is able to learn more valuable representations

and produce more locally characterized archetypes, which

leads to a more accurate simulation of building energy con-

sumption.

4.3.2 Multiple archetype

Based on our trained model, we use k-means clustering to

the dimensionally reduced latent space to find representa-

tive building footprints prevalent in the selected neighbor-

hoods. To evaluate the clustering results and determine

the optimal number of clusters, the within-cluster sum of

squares (WCSS) is used as an inertia measure. We select the

number of clusters based on the elbow of WCSS, implying

the optimal cluster number is within 2 to 5 (Figure 6). With

SFH numbers reaching 5537, 5317, and 5510, significantly

surpassing the MFH counts of 1422, 2419, and 554 in Re-

gions (b), (c), and (e), respectively, we opt for 4 archetypes

among SFH and 2 among MFH for this experiment.

We designate the center of each cluster as the represen-

tative building for that particular group. An example of the

clustered latent space, along with the representative foot-

print, is visualized by Uniform Manifold Approximation

and Projection (UMAP) in Figure 7.

We further tried our algorithm on three regions, Table 2

shows our results. The archetypes derived from our algo-

rithm still perform significantly better than the conventional

archetype in terms of accuracy on UBEM. And the down-

stream tasks’ restriction further improves the performance

of our model in general.

4.4. Open set

Energy modeling for all buildings in a region is costly,

not all regions have energy consumption data or simula-

tion for each building, and most regions can only use one

archetype for each building category [10], which is de-

signed at a country-wide scale. From this perspective,

our approach is valuable and efficient because it can pro-

vide locale-specific building types, and does not require all

building energy data as labels to oversee the entire model

training process. We can train on any piece of area as long

as GIS data is available.

We can even directly use our trained model for encod-

ing building footprints in an open set. The experimental

results presented in Table 3 show the performance of our

model in two unseen LA regions: (a) Santa Monica etc.

and (d) Downey etc. Our experimental results demonstrate

that despite not being trained on these regions at all, our

model still performs remarkably well in encoding new ar-

chitectural footprints, leading to excellent representations

and archetypes that enable it to succeed in the UBEM tasks.

5. Conclusion

In this research, we introduce Multi-scale Archetype

Representation Learning (MARL) for the automated cre-

ation of building archetypes adaptable to diverse regions.

This methodology incorporates building geometry into the

building archetype construction process. Utilizing repre-

sentation learning and downstream task restriction, we ex-

tract implicit features from building stock and then employ

k-means clustering to identify representative building foot-

prints as archetypes. We further refine our approach by

constraining the footprint reconstruction process with en-

ergy performance-related metadata such as vintage year and

building use type.

As a result, we propose an automated building archetype

construction method. We validate the efficacy of our model

by benchmarking its energy estimation performance against

conventional building archetypes, both for seen and unseen

neighborhoods. Our experimental outcomes demonstrate

that our approach outperforms conventional models, accen-

tuating the potential of our method in enhancing the preci-

sion and adaptability of Urban Building Energy Modeling,

and presenting an advancement in the domain of building

archetype development and building energy modeling.

By integrating building geometries into the archetype

construction process, architects and urban planners can

make informed choices about neighborhood configurations,

building orientations, and other design elements impacting

energy consumption. Our method can also identify areas

with suboptimal energy performance, indicating opportuni-

ties for retrofitting and design modifications. Furthermore,

by focusing on locale-specific geometric nuances, we offer

a nuanced approach to building archetypes, fostering de-

signs that harmonize with local characteristics. This pro-

motes energy efficiency and locale-specific design, and pro-

vides insights into the wider implications of building mor-

phology on energy and environmental factors.
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