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Abstract

Examination of chest X-ray images is currently one of
the most important methods for the screening and diagnosis
of thoracic diseases and, in some cases, for assessing re-
sponse to treatment. However, this task is time-consuming
and expensive as it requires a detailed visual inspection and
interpretation by a trained clinician. In the past decade,
several machine learning (ML) methods have been devel-
oped to remedy this issue as clinical decision support meth-
ods. However, most of these algorithms face challenges like
computational feasibility, reliability, and interoperability.

In this paper, we develop a unique feature extraction
method for chest X-rays by applying the latest topological
data analysis (TDA) methods. We observe that normal and
abnormal images produce very distinct topological patterns
for pneumonia and tuberculosis. By using cubical persis-
tence, we capture these patterns and convert them into pow-
erful feature vectors. By combining with standard ML meth-
ods, we obtain a computationally feasible and interpretable
model. In our extensive experiments, our model Topo-CXR
outperforms state-of-the-art deep learning (DL) models in
several benchmark datasets. Unlike most DL models, our
proposed Topo-CXR model does not need any data augmen-
tation or pre-processing steps and works perfectly on small
datasets. Furthermore, our topological feature vectors can
be easily integrated with any future ML and DL models to
boost their performance and improve robustness.

1. Introduction

With approximately 4 million deaths each year, Pneu-

monia is one of the leading causes of death in infants and

the elderly. It can be caused by a virus, bacteria, or fun-

gus that have a predilection for colonizing the host alveoli.

Patients with underlying disorders like asthma and immune

compromise, or fragile populations like hospitalized infants

and geriatric patients on ventilators are at increased risk for

poor outcomes.

Similarly, despite being a curable and preventable com-

municable disease, Tuberculosis (TB) was the leading cause

of death from a single infectious agent ranking above

HIV/AIDS before the emergency of COVID-19 hence mak-

ing it one of the major causes of ill health according to a

2021 Global Tuberculosis report [43]. Apart from TB and

Pneumonia, there are other pathologic thoracic (chest) dis-

eases such as; Pleural Effusion, Mass, Pneumothorax, Pul-

monary Edema, Emphysema, Pulmonary Fibrosis, Pleural

Thickening, and Atelectasis.

Chest X-rays are one of the most common types of ra-

diological examinations [11] for the initial assessment of

these thoracic diseases. However, radiology involves deci-

sion making under conditions of uncertainty and therefore

can not always produce reliable results [10]. Additionally,

it is limited by a need for qualified staff to individually in-

terpret every radiograph [40]. Therefore, there has always

been a need for a comprehensive and automated method for

detecting these diseases.

Over the past decades, scientific research has produced

tremendous innovations in medical imaging; however, chest

X-rays remain a staple in the diagnosis of thoracic diseases.

The recent advances in machine learning (ML) and deep

learning (DL) have a great potential to offer a solution for

early diagnosis and treatment planning. However, because

of various challenges like the restrictive size of the train-

ing dataset, long pre-processing times, the need for high

performance computing architectures, and the lack of in-

terpretability in decision making, most such ML and DL

methods fail to reach clinical stage implementation to ad-

dress the crucial need for an automated screening method

in this domain.

In this paper, we present a novel approach for diagnos-

ing thoracic diseases using chest X-ray images, leveraging

the application of topological data analysis (TDA). Over

the years, TDA tools have exhibited remarkable success

in medical image analysis across various domains (refer to

Section 2.2). The fundamental concept behind TDA in-

volves capturing hidden shape patterns within images and

generating reliable representations of these patterns. The
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topological features extracted by TDA tools offer distinctive

insights into the data, enabling the discovery of new infor-

mation and facilitating the determination of the most rele-

vant features for the desired outcome. When combined with

suitable machine learning (ML) models, these potent topo-

logical feature vectors empower the development of ML

models that are both interpretable and robust, while main-

taining high performance.

1.1. Our contributions

• We bring a novel perspective to chest X-ray screening

with real world clinical utility by introducing the latest

TDA methods to the field.

• By studying the evolution of topological patterns in

chest X-rays, we observe that normal and abnormal

images produce very distinct topological patterns for

Pneumonia and TB. Employing cubical persistence,

we obtain highly effective feature vectors capturing

these distinct topological patterns (Figure 1 and 5).

• Our topological ML model gives outstanding results in

detecting Pneumonia and TB outperforming the SOTA

DL methods on benchmark datasets (Table 2, 3 and 4).

• Unlike various DL models, our model does not need

any data augmentation and preprocessing and gives ex-

cellent results even in small datasets. Our model is

computationally very fast - the end to end process for

thousands of images takes only a few hours (Sec. 5.3).

• With our powerful topological descriptors, our pro-

posed model is highly explainable and interpretable

(Sec. 4.3).

2. Related Work

2.1. ML in Chest X-ray Analysis

The integration of machine learning techniques with

medical image analysis has emerged as a groundbreaking

paradigm, revolutionizing the field of healthcare diagno-

sis and treatment. With the exponential growth of avail-

able medical imaging data and the increasing complexity

of diseases, traditional manual interpretation of images has

become time-consuming and error-prone. In this context,

machine learning algorithms offer immense potential by au-

tomating image analysis tasks, extracting relevant informa-

tion, and aiding in accurate and timely decision-making.

Since the development of Convolutional Neural Networks

(CNNs), and its success in image classification in gen-

eral [66], deep learning has become a desirable technique

for most medical image analysis tasks due to its superior

performance [15].

(a) Pneumonia vs. Normal (Betti-0) (b) Pneumonia vs. Normal (Betti-1)

Figure 1: We give the median curves and 40% confidence bands of

our topological feature vectors (Betti functions) for each class in Ped-

Pneumonia dataset. x-axis represents grayscale values and y-axis repre-

sents count of components (Betti-0) or count of loops (Betti-1) (Sec. 4.3).

For chest X-ray image analysis, there are four main-

stream applications of ML tools [11]. The first is Image-

level prediction networks which are used in tasks involv-

ing making prediction of a category label (classification) or

a continuous value (regression). They are implemented by

analyzing entire chest X-ray images. Some of the successful

deep convolutional architectures for this category includes

AlexNet [38], the VGG family of models [56], the ResNet

family of models [29], DenseNet models [31], Inception

Resnet [61], and the Xception network architecture [16].

The second mainstream application is the Segmentation net-

works, e.g U-Net [54]. The third mainstream application is

the Localization networks, which include RCNN (Region

Convolutional Neural Network) [24], and its variations [2].

Finally, the forth is Image generation networks, which in-

clude Generative Adversarial Network (GAN) [26]. In this

paper, we focus only on the Image-level prediction net-

works to make predictions of chest X-ray diseases by using

TDA methods.

2.2. TDA in Image Processing

Persistent homology, the main tool in TDA, has been

quite effective for pattern recognition in image and shape

analysis in the past two decade. There have been several

works applying TDA in various fields of image analysis,

e.g. for analysis of images of hepatic lesions [1], human and

monkey fibrin images [7], fingerprint classification [22],

ophthalmology [21, 19], analysis of 3D shapes [58], neu-

ronal morphology [35], cancer detection/grading [48, 45,

17]. angiography [6], fMRI data [53, 60], and genomic

data [12]. See the excellent survey [57] for a thorough re-

view of TDA methods in biomedicine. Note also that TDA

Applications Library [25] presents hundreds of interesting

applications of TDA in various fields.

3. Background on TDA

In this paper, we use persistent homology (PH) as a pow-

erful feature extraction tool for chest X-ray images. PH

is one of the key approaches in topological data analysis

(TDA), allowing us to systematically assess the evolution

2327



of various hidden patterns in the data as we vary a scale

parameter [70, 14]. The extracted patterns, or homological

features, along with information on how long such features

persist throughout the considered filtration of a scale param-

eter, convey a critical insight into salient data characteristics

and data organization. Here, we give a basic introduction to

PH in image setting (cubical persistence) for non-experts.

For a more thorough background and PH process for other

data types (e.g., point clouds, networks), see [18, 13].

In practice, PH machinery is a 3-step process. The first

step is the filtration step, where one induces a sequence

of simplicial complexes from the data. The second step

is obtaining the persistence diagrams, where PH machin-

ery records the evolution of topological features (birth/death

times) in the filtration sequence. The final step is the vector-
ization step where one can convert these records to a feature

vector to be used in suitable ML models. For more details

on how to apply PH in image analysis, check out the refer-

ences given in Section 2.2.

Step 1 - Constructing Filtrations: As PH is basically the

machinery to keep track of the evolution of topological fea-

tures in a sequence of simplicial complexes, the most im-

portant step is the construction of this sequence. In the case

of image analysis, the most common method is to create a

nested sequence of binary images (aka cubical complexes).

For a given image X (say r×s resolution), to create such se-

quence, one can use grayscale (or other color channels) val-

ues γij of each pixel Δij ⊂ X . In particular, for a sequence

of grayscale values (t1 < t2 < · · · < tN ), one obtains

nested sequence of binary images X1 ⊂ X2 ⊂ · · · ⊂ XN

such that Xn = {Δij ⊂ X | γij ≤ tn} (See Figure 2). In

other words, we start with a blank r× s image and start ac-

tivating (coloring black) pixels when their grayscale value

reaches the given threshold. This is called sublevel filtra-
tion for X with respect to a given function (grayscale in

this case). One can also go in decreasing order to activate

the pixels, which is called superlevel filtration. Note that

if one uses all dimensions for persistent homology, then for

cubical persistence, sublevel, and superlevel filtrations have

basically the same information by celebrated Alexander du-

ality theorem [28].

Figure 2: Binary images X70,X100,X130 obtained from a chest X-ray

for threshold values 70, 100, 130.

Step 2 - Persistence Diagrams The second step in PH pro-

cess is to obtain persistence diagrams (PD) for the filtration

X1 ⊂ X2 ⊂ · · · ⊂ XN , i.e., the sequence of cubical com-

plexes (binary images). PDs are formal summaries of the

evolution of topological features in the filtration sequence.

PDs are collections of 2-tuples, {(bσ, dσ)}, marking the

birth and death times of the topological features appearing

in the filtration. In other words, if a topological feature σ ap-

pears for the first time at Xi0 , we mark the birth time bσ =
i0. Then, if the topological feature σ disappears at Xj0 , we

mark the death time dσ = j0. i.e., PDk(X ) = {(bσ, dσ) |
σ ∈ Hk( ̂Xi) for bσ ≤ i < dσ}. Here, Hk(Xi) repre-

sent kth homology group of Xi, representing k-dimensional

topological features (k-holes) in cubical complex Xi. By

construction, for 2D image analysis, only meaningful di-

mensions to use are k = 0 and k = 1, i.e., PD0(X ) and

PD1(X ). For example, 0-dimensional features are con-

nected components and 1-dimensional features are the holes

(loops). In our case, if a loop τ first appears at the binary

image X3 and it gets filled in the binary image X7, we add 2-

tuple (3, 7) in the persistence diagram PD1(X ). Similarly,

if a new connected component appears in the binary image

X5 and it merges to the other components in the binary im-

age X8, we add (5, 8) to PD0(X ). In Figure 3, we have

PD0(X ) = {(1,∞), (1, 2), (1, 3), (1, 3), (1, 4), (2, 3)} and

PD1(X ) = {(3, 5), (3, 5), (4, 5)}.

This step is pretty standard and there are various soft-

ware libraries for this task. To obtain PDs for image data

with cubical complexes, see [9]. For other types of data and

filtrations, see [44].

1 3 4 2 5 1 3 4 2 5 1 3 4 2 5 1 3 4 2 5 1 3 4 2 5 1 3 4 2 5
4 5 5 3 2 4 5 5 3 2 4 5 5 3 2 4 5 5 3 2 4 5 5 3 2 4 5 5 3 2
1 2 1 4 3 1 2 1 4 3 1 2 1 4 3 1 2 1 4 3 1 2 1 4 3 1 2 1 4 3
3 5 2 5 1 3 5 2 5 1 3 5 2 5 1 3 5 2 5 1 3 5 2 5 1 3 5 2 5 1
1 3 2 3 4 1 3 2 3 4 1 3 2 3 4 1 3 2 3 4 1 3 2 3 4 1 3 2 3 4

X X 1 X 2 X 3 X 4 X 5

Figure 3: Sublevel filtration. The leftmost figure represents an image of 5 × 5
size with the given pixel values. Then, the sublevel filtration is the sequence of binary
images X1 ⊂ X2 ⊂ X3 ⊂ X4 ⊂ X5.

Step 3 - Vectorization: PDs being a collection of 2-tuples

are not very practical to be used with ML tools. Instead,

a common way is to convert PD information into a vector

or a function, which is called vectorization [3]. A common

function for this purpose is the Betti function, which basi-

cally keeps track of the number of ”alive” topological fea-

tures at the given threshold. In particular, the Betti function

is a step function with β0(tn) the count of connected com-

ponents in the binary image Xn, and β1(tn) the number of

holes (loops) in Xn. In ML applications, Betti functions are

usually taken as a vector �βk of size N with entries β(tn) for

1 ≤ n ≤ N , i.e.,
−→
βk(X ) = [βk(t1) . . . βk(tN )]. e.g., for

the image X in Figure 3, we have
−→
β0(X ) = [5 5 2 1 1] and−→

β1(X ) = [0 0 2 3 0], e.g., β0(1) = 5 is the count of compo-

nents in X1 and β1(4) = 3 is the count of holes (loops) in

X4.
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Figure 4: Flowchart of our model: For any chest X-ray image, we first get their persistence diagrams by using grayscale values. Then, we obtain our topological feature
vectors (Betti functions) out of these persistence diagrams. We feed these vectors to our ML models (RF, XGBoost, etc.) which give highly accurate classification results.

One can consider TDA as a powerful feature extraction

method which captures the shape patterns in the image,

where the Betti vectors �β0(X ) and �β1(X ) are the corre-

sponding feature vectors. Note that there are various ways

to convert PDs into vector in PH (vectorization), e.g, Persis-

tence landscapes, Persistence Images, Silhouettes [3]. De-

pending on the data type, the choice of vectorization method

can be crucial for the performance of the model. In general,

the topological features with a short lifespan are considered

as topological noise. While the other vectorizations try to

avoid topological noises, the Betti function takes them into

account as well as the dominant features. In chest X-ray

images, most topological features have short lifespans, and

hence Betti functions work quite well to capture the topo-

logical patterns in this case. Furthermore, among these vec-

torizations, Betti functions are easiest to interpret as being

the count of topological features. Because of these reasons,

we use Betti functions as vectorizations in this study.

4. Topo-CXR Model for Chest X-ray Screening

In this part, we first describe our model and topological

descriptors of chest X-rays. Then, we elaborate on the ex-

plainability and interpretability of our model.

4.1. Topological Descriptors for Chest X-rays

In the flowchart (Figure 4), we summarized our Topo-

CXR model. Since all chest X-rays (CXR) are grayscale

images, it offers a natural filtration method for our per-

sistent homology (PH) approach (Section 3). By using

the grayscale pixel values, for any CXR image X , we de-

fine sublevel filtration as described in Section 3. While

grayscale values varies from 0 (black) to 255 (white), we

chose the number of thresholds as N = 100 in our filtra-

tion step, as further increasing the threshold steps did not

increase the performance of our model. In other words,

we normalized [0, 255] grayscale interval to [0, 100]. Af-

ter defining the filtration X0 ⊂ X1 ⊂ · · · ⊂ X100, we obtain

the persistent diagrams PDk(X ) of each CXR image X for

dimensions k = 0, 1 (Section 3). As CXRs are 2D-images,

only k = 0, 1 are meaningful dimensions for PH.

After getting persistent diagrams, we convert them into

feature vectors as explained in Section 3. In this vectoriza-

tion step, one can use several choices like Betti functions,

Silhouettes, or Persistence Images. Since most of the topo-

logical features have short life spans, Betti functions were

the natural choice as they give the count of topological fea-

tures at a given threshold. Furthermore, to keep our model

interpretable, we use Betti functions in our models. Hence,

we convert PD0(X ) and PD1(X ) into corresponding Betti

function β0(X ) and β1(X ) as our feature vectors (Figure

4-Step 2). From Figure 1, one can see that count of topo-

logical features at given threshold ranges from 0 to 3500 in

β0(X ) and 0 to 6000 in β1(X ). Note that since our number

of thresholds N = 100, both β0(X ) and β1(X ) are 100-

dimensional vectors, i.e., �βk(X ) (Section 3). Hence, our

topological feature extraction process produce 200 features

for any CXR-image X . In Figure 1 and 5, we observe the

significant difference between the Betti functions of normal

and abnormal CXR images for Pneumonia and Tuberculo-

sis. This figures prove how powerful our topological feature

extraction method is.

Then, to use ML tools more effectively, we induce func-

tions (topological summaries) out of these persistence dia-

grams.

4.2. ML Model

After obtaining our topological feature vectors, the final

step is to apply ML tools to these topological fingerprints.

To keep our model computationally feasible, we applied

tree-based ML methods like Random Forest, XGBoost to

our extracted topological features. Since the high number of

thresholds (N = 100) can bring high collinearity of the out-

put, we used feature selection methods to improve the per-

formance of our model. We give the details of our ML steps

in the experiments section (Section 5.2). We note that we

did not use any data augmentation and data pre-processing

for our model. This makes our model computationally very

feasible, and can easily be applied to very large datasets.

See Section 6 for further discussion.
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4.3. Explainability and Interpretability

As mentioned in the introduction, one of the main ad-

vantages of our model is explainability and interpretabil-

ity. In Figure 1 and 5, we illustrate the topological pat-

terns created by each class in Pneumonia and Tuberculosis

chest X-ray images. In these figures, we give median curves

and 40% confidence bands of each class for the correspond-

ing dataset. In supplementary material, we give details of

these non-parametric confidence bands and median curves.

The distinct topological features for normal and abnormal

classes in Figures 1 and 5 explain our model as our topo-

logical feature vectors embed CXR images into completely

separate clusters in the latent space.

For the interpretability of our model, we need a closer

look to our figures. In Figure 1a, we give Betti-0 curves.

Recall that in grayscale, the value 0 represents black and

255 represents white. Here, the x-axis represents the

grayscale value in [0,255], y-axis represents the count of

components. Hence, for a chest X-ray image X , for

grayscale value t ∈ [0, 255], β0(t) represent the number

of components in the binary image Xt (See Figure 2). In

Figure 1b, we give Betti-1 curves where the y-axis rep-

resents the count of loops. Similarly, for grayscale value

t ∈ [0, 255], β1(t) gives the count of holes/loops in the bi-

nary image Xt (See Figure 2 and 3). For example, in Fig-

ure 1a, we observe that median curve for normal class have

β0(100) ∼ 1500 and β0(180) ∼ 3000. This means, in this

dataset, normal chest X-rays have about 1500 components

at the grayscale value 100 while they have about 3000 com-

ponents at the grayscale value 180.

When we interpret Figure 1a in detail, we observe that

normal chest X-rays (CXR) develop much more compo-

nents than pneumonia ones. This interprets as we increase

the grayscale value, the binary image (Figure 2) we get

for normal CXR becomes highly disconnected, and de-

velops much more components than the pneumonia ones.

This means in normal CXRs when you remove lighter parts

(grayscale > t) from the image, it becomes highly discon-

nected. However, when you remove lighter parts from the

pneumonia CXRs, the image does not become as discon-

nected as the normal CXRs. The same observation is true

for Fig. 1b, too. Normal CXRs develop thousands of holes

(loops) in binary images when we increase the grayscale

value, pneumonia images develop only a few hundred such

holes. These images explicitly show that our topological

feature vectors (Betti functions) are very powerful to distin-

guish these two classes.

In the TB case, our figures again show clear distinc-

tion between the topological patterns in normal and ab-

normal images. For TB-CXR dataset, in Figure 5a and

5b, the number of components and holes is much lower

in TB images compared to normal images. In both pneu-

monia and TB cases, we observe that the induced binary

(a) TB vs. Normal (Betti-0) (b) TB vs. Normal (Betti-1)

Figure 5: In the figures above, we give the median curves and 40% confidence
bands of our topological feature vectors (Betti functions) for TB-CXR dataset. x-
axis represents grayscale values and y-axis represents count of components (Betti-0)
or count of loops (Betti-1).

images Xt of the normal class is very spread out and con-

tains much more holes than the abnormal images for most

values t ∈ [100, 200]. Note that the number of components

and holes are highly different in Ped-Pneumonia dataset and

TB-CXR dataset because of the different resolutions of the

datasets.

From ML perspective, our feature extraction method is

basically an image embedding or fingerprinting approach.

For any image, we get 100-dimensional Betti-0, and 100-

dimensional Betti-1 vectors (Grayscale values [0,255] nor-

malized to [0,100] in our persistent diagram construction).

With these vectors, we embed each image into the latent

space R
100 (or R200 if both vectors are used). The thinness

of the confidence bands shows that each class accumulates

in one cluster in the latent space for both feature vectors.

In general, for such a classification problem, each class de-

velops several clusters, and ML methods try to distinguish

them with different algorithms. In our case, one can con-

sider that the median curves represent the center of the clus-

ter for each class, and the feature vector of each image in

that class lands somewhere nearby in the latent (feature)

space. The separation between classes and the thinness of

the bands prove how powerful the topological features are

in these cases.

In Supplementary Material, we give further figures and

discussion for our topological feature vectors for TB-

Shenzen (Figure 6) and Viral vs. Bacterial Pneumonia

classes for Ped-Pneumonia (Figure 7).

5. Experiments
In this section, to evaluate the performance of our Topo-

CXR model, we compare it with the current state-of-the-art

deep learning models on the publicly available, benchmark

datasets for thoracic diseases.

5.1. Datasets

In our experiments for chest X-ray image screening,

we used well-known publicly available benchmark datasets.

The statistical details of all the dataset we used in this study

can be found in Table 1 below.
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Table 1: Benchmark datasets for chest X-ray images.

Summary Statistics of Benchmark Datasets

Dataset Image size Total Normal Abnormal Disease

Ped-Pneumonia [37] 1914× 1628∗ 5856 1583 4273 Pneumonia

TB CXR [50] 512 ×512 4200 3500 700 TB

Shenzhen CXR [33] 3000 ×3000 662 326 336 TB

CXR-14 [68] 1024 ×1024 112120 60361 51759 14 Thoracic Dis.

Pediatric Pneumonia (Ped-Pneumonia) CXR dataset
[36] is one of the largest publicly available datasets. It

comprises of a total of 5856 images, where 1583 are la-

beled normal and 4273 images are labeled as pneumonia.

CXR images (anterior-posterior) in this dataset were se-

lected from retrospective cohorts of pediatric patients of

one to five years old from Guangzhou Women and Chil-

dren’s Medical Center, Guangzhou. The resolution of the

Ped-Pneumonia images varies, with some images having a

minimum resolution of 912× 672 pixels and others having

a maximum resolution of 2916× 2583 pixels.

Shenzhen (CHN) dataset [33] was originally collected

in collaboration with Shenzhen No.3 People’s Hospital,

Guangdong Medical College, Shenzhen, China. This

dataset contains 662 frontal chest X-rays, of which 326

are normal cases and 336 are cases with manifestations

of TB. In our experiment, we considered all the images

in this dataset. All image resolutions are approximately

3000× 3000 pixels.

TB-CXR dataset [50] is a publicly available dataset on

Kaggle, accessible at the link1. It comprises of approx-

imately 4200 chest X-rays, of which 3500 are consid-

ered normal and 700 are diagnosed with TB. The dataset

is combination of several datasets on TB, namely NIAID
TB dataset [50], RSNA CXR dataset [65], Belarus CXR
dataset [64], Shenzhen (CHN) dataset [33], Montgomery
County (MC) dataset [33]. All image resolutions are 512×
512 pixels.

CXR-14 dataset [68] contains 112, 120 frontal-view X-ray

images of 30805 unique patients with each image annotated

by [68] with up to 14 different thoracic pathology labels

using automatic extraction methods on radiology reports.

The 14 thoracic pathology labels are; Infiltration, Effusion,

Atelectasis, Nodule, Mass, Pneumothorax, Consolidation,

Pleural Thickening, Cardiomegaly, Emphysema, Edema,

Fibrosis, Pneumonia, and Hernia. Their corresponding re-

spective number of images are; 19894, 13317, 11559, 6331,

5782, 5302, 4667, 3385, 2776, 2516, 2303, 1686, 1431, 227

and 60361 for no findings [71]. All image resolutions are

1024× 1024 pixels.

1https://www.kaggle.com/datasets/
tawsifurrahman/tuberculosis-tb-chest-xray-dataset

5.2. Experimental Setup

In this part, we give the details of experiments and train-

ing of our ML model.

Training:Test Split: Since the majority of datasets (Ta-

ble 1) does not have a predefined training:test split, many

models used their own split. In our accuracy tables below,

for each model, we specified their training:test split as it

has a significant effect on the performance of the model.

Because of this discrepancy between the experimental se-

tups of different methods, we give the basic details of each

method in our accuracy tables to facilitate a fair compar-

ison. We used 80:20 splits for all datasets, which is the

most common split in all datasets. We used 80% data to

build/train the model and our all predictions are based on

20% test (unseen) data.

No Data Augmentation: Note that because of the lim-

ited data, all CNN and other deep learning methods have to

use serious data augmentation (sometimes 50-100 times) to

train their model and avoid overfitting [27]. Our Topo-CXR

model are using topological feature vectors, and our feature

extraction method is invariant under rotation, flipping and

other common data augmentation techniques. Hence, we

do not use any type of data augmentation or pre-processing.

This makes our model computationally very efficient, and

highly robust against small alterations in the image.

ML Model: To increase the performance of our model in

terms of accuracy and computational efficiency, we per-

formed parametric tuning and feature selection methods.

For feature selection, we used SelectFromModel from

scikit-learn. We first assign importance to each feature.

Then we sorted them in descending order according to

threshold parameters. The features are considered unim-

portant and removed if the corresponding importance of the

feature values is below the provided threshold parameter.

Random Forest and Extreme Gradient Boosting (XGBoost)

ML models are trained on all of the datasets. We used learn-

ing rate = 0.02 and max depth = 19 for XGBoost. How-

ever, after feature selection and fine-tuning models, XG-

Boost outperformed all the datasets. We obtained the best

results with 87 features for Ped-Pneumonia, 67 features for

TB-CXR, and 53 features for Shenzhen (CHN) TB datasets.

We used Giotto-TDA [62] to obtain persistence diagrams

and Betti functions. Our code is available at the link 2.

5.3. Computational Complexity & Runtime:

While PH calculation for high dimensional data is com-

putationally expensive [44], for image data, it is highly effi-

cient. For 2D images, PH has time complexity of O(|P|r)
where r ∼ 2.37 and |P| is the total number of pixels [42].

In other words, PH computation increases almost quadratic

2https://github.com/FaisalAhmed77/Topo-Med
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with the resolution. The remaining processes (vectoriza-

tion, ML) are negligible compared to PH step.

We did all our experiments on a personal laptop with

a processor Intel(R), Core(TM) i7-8565U, CPU 1.80GHz,

and RAM 16 GB. We mentioned here only one dataset’s

time complexity. In our experiment, it took only 7443 sec-

onds (2 hours around) to extract Betti-1 features (including

PH calculation time) from the TB CXR dataset (4200 im-

ages). For the ML part (XGBoost), it took only 1.52 sec-

onds. Runtime for small datasets to extract topological fea-

tures takes much less time. We used Jupyter notebook as an

IDE for writing the code in Python 3.

5.4. Results

In this part, we present the performance of our Topo-

CXR model along with state-of-the-art deep learning mod-

els for Pneumonia and Tuberculosis(TB) screening on

benchmark datasets. In our accuracy tables below, Table

2, 3, 4, 5, we provide the most common performance met-

rics reported by other models. We used the training data to

build the model only. Our all predictions and performance

are based on the test (unseen) data. Scikit-Learn [47] library

is used for performance metric calculations.

In Tables 2, 3, and 4, the first column gives the total

number of images for each dataset used for the correspond-

ing model’s experiments. The second column (Train:Test)

describes the experimental setup of the model. The third

column (# Classes) explains if the task is multilabel or bi-

nary. In these tables, we report different performance met-

rics (AUC, Accuracy, Precision, Recall, etc.) because of the

availability of the results in the models compared. In all ta-

bles, the best result for each column is given in bold, and the

second best result is underlined. For missing data in the ta-

ble from reference papers, we used ”-”. We give our results

at the bottom row of each table.

Results for Ped-Pneumonia: We give our Pneumonia

screening results in Table 2. In Pneumonia screening, we

see our model significantly outperforms the state-of-the-

art deep learning models. Both Betti-0 and Betti-1 gave

very competitive results, but Betti-1 gave the best accuracy

99.7% and AUC 99.95. As Figure 1 suggests, the feature

vectors are very distinct for the two classes, and hence such

performance for our model is expected. Being computa-

tionally very feasible and avoiding data pre-processing, our

model can be considered a very promising approach to de-

veloping a clinical-decision support method for pneumonia

screening from chest X-rays.

Results for TB-CXR Dataset: We give our results for TB

diagnosis in Table 3. Our results outperformed again all

state-of-the-art deep learning models classifying TB. We

got accuracy 99.3% and AUC 99.8 for TB datasets. This

superior performance is again not surprising considering

the distinct behavior of two classes in Figure 5a and 5b.

Since the other papers did not mention their precision/recall

scores, we did not include them in the table. Our precision

in this dataset is 98.08%, and our recall is 99.29%.

Table 2: Accuracy results for Pneumonia diagnosis on Ped-Pneumonia

dataset for binary classification (Pneumonia vs. Normal). Best results are

given in bold, and the second best result results are underlined.

Ped-Pneumonia Dataset

Method Train:Test Recall Precision Accuracy AUC

xAI [37] 80:20 93.2 90.1 92.8 96.8

mRMR [63] 90:10 96.8 96.9 96.8 96.8

S-CNN [55] 5-fold 94.5 94.3 94.4 94.5

xVGG16 [4] 90:10 89.1 91.3 84.5 87.0

DCNN [49] 92:8 99.0 97.0 98.0 98.0

VGG16 [51] 90:10 99.5 97.0 96.2 99.0

CxNet [71] 77:23 99.6 93.3 96.4 99.3

Topo-CXR 80:20 99.8 99.7 99.7 99.9

Table 3: Accuracy results for TB diagnosis on TB-CXR dataset for bi-

nary classification (TB vs. Normal).

TB-CXR dataset

Method # images Train:Test Accuracy AUC

GoogleNet [72] 800 80:20 94.9 -

E-CNN [30] 800 90:10 86.4 -

sCNN [46] 1104 80:20 84.4 92.5

E-CNN [20] 893 70:30 88.8 -

VGG16 [41] 1007 80:20 99.0 98.0

DCNN [50] 7000 80:20 98.6 -

Topo-CXR 4200 80:20 99.3 99.8

Table 4: Accuracy results for TB diagnosis on Shenzhen (CHN) dataset

for binary classification (TB vs. Normal).

Shenzhen (CHN) TB Dataset

Method # Train:Test Accuracy AUC

F-SVM [34] 80:20 84.0 92.5

CNN [32] 70:30 83.7 92.6

sCNN [46] 80:20 84.4 90.0

PT-CNN [40] 5-fold 83.4 91.2

ResNet-BS [52] 90:10 88.8 95.4

Topo-CXR 80:20 89.5 93.6

Table 5: Classwise AUC results for six thoracic diseases from CXR-14

dataset.

CXR-14 Dataset

Model Pntx Eff Card Ede Emph Mass

DCNN [69] 79.9 75.9 81.0 80.5 83.3 69.3

ResNet50 [5] 84.6 82.8 87.5 84.6 89.5 82.1

DenseNet [73] 80.5 80.6 85.6 80.6 84.2 77.7

p-ResNet [39] 87.1 85.9 87.1 88.1 87.0 83.1
MobileNet [59] 88.0 87.6 88.5 88.4 89.1 82.6

Topo-CXR 75.8 79.6 80.9 94.8 78.5 73.2
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Results for Shenzhen TB dataset: We give our results for

TB diagnosis in Table 4. Our results are again very competi-

tive with the latest DL models for the TB Shenzhen dataset,

where we got accuracy 89.47% and AUC 93.6. For this

dataset, we provide the figure for our topological vectors in

Figure 6 in the supplementary material. Again, since most

papers did not give their precision/recall scores, we did not

include them in the table. Our precision in this dataset is

91.07%, and our recall is 84.61%.

Results CXR-14 dataset: To see the performance of our

model in other thoracic diseases, we chose the following six

additional pathologies out of 14 thoracic diseases: Pneu-

mothorax, Effusion, Cardiomegaly, Edema, Emphysema

and Mass. In our experiments, we take a small subset of

CXR-14 dataset with Pneumothorax (300), Effusion (301),

Cardiomegaly (310), Edema (349), Emphysema (304) Mass

(304) and Healthy (474). Even with this small dataset size,

and 80:20 training-test split, we get competitive results with

SOTA models. We compared our results with current deep

learning methods. For this dataset, we used the class-wise

AUC results reported in [59, Table 5] where they use 65K

images with 80:20 train-test split. Furthermore, our accu-

racy results are as follows: Pneumothorax (73.55), Effu-

sion (76.77), Cardiomegaly (77.71), Edema (91.52), Em-

physema (74.36), and Mass (69.87).

5.5. Discussion

As our figures suggest, our topological descriptors are

highly effective in distinguishing between abnormal and

normal classes for TB and Pneumonia. Remarkably, even

without employing deep learning techniques, our model

surpasses state-of-the-art models in benchmark datasets for

these diseases (Table 2 and 3). Nevertheless, our experi-

ments reveal that when it comes to other thoracic diseases,

our topological feature vectors lag behind CNN models (Ta-

ble 5). Nonetheless, our results clearly demonstrate the re-

markable capability of TDA in generating powerful feature

vectors from chest X-rays. Consequently, it is apparent that

by seamlessly integrating these topological descriptors with

deep learning models, they can significantly contribute to

the development of an effective clinical decision support

system.

5.6. Limitations

Cubical persistence exhibits invariance under rotation,

translation, or flipping, which implies that typical data aug-

mentation methods do not offer significant benefits to our

topological model. However, this characteristic bestows a

positive outcome by enhancing the robustness of the topo-

logical descriptors against noise. The primary limitation

of our approach lies in the utilization of mixed-resolution

datasets. Specifically, since our Betti functions represent

the count of topological features at specific grayscale val-

ues, they are susceptible to variations in image resolution.

Consequently, any changes in the resolution of chest X-

ray (CXR) images directly impact the topological vectors.

Therefore, when applying our model to datasets contain-

ing images of varying resolutions, it becomes necessary to

normalize the images accordingly in order to achieve satis-

factory performance.

6. Conclusion

Tuberculosis and Pneumonia are both common pul-

monary infectious processes that tremendously impact the

global population and healthcare systems with preferen-

tially higher morbidity and mortality in developing coun-

tries. Our prediction model provides a reliable screening

tool in distinguishing normal and abnormal chest X-ray

findings from a relatively small dataset with less complex-

ity and more functionality than deep learning techniques.

Further, it helps to identify the subpopulation of patients

that would most likely benefit from additional confirma-

tory testing and subsequent medical therapy. It is meant to

be used as an aid to frontline clinicians and radiologists to

quickly screen large quantities of patients for tuberculosis

and pneumonia, particularly those that do not have access

to well staffed radiology departments. Examinations with

high pretest probability for abnormality, determined by our

model, can undergo a prioritized diagnostic evaluation by a

clinician, thereby expediting diagnosis. Although the algo-

rithm struggles with other lung pathologies at this time, its

utility for pneumonia and tuberculosis is proven through the

course of our experiments. As there is a significant need for

an automated chest x-ray screening system to help the clin-

icians, our unique topological feature vectors can critically

help any future ML and DL models to boost their perfor-

mance and aid them to have more robust results.
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[11] Erdi Çallı, Ecem Sogancioglu, Bram van Ginneken, Kicky G

van Leeuwen, and Keelin Murphy. Deep learning for chest x-

ray analysis: A survey. Medical Image Analysis, 72:102125,

2021. 1, 2
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Computer-aided tuberculosis detection from chest x-ray im-

ages with convolutional neural networks. In Anais do XV En-
contro Nacional de Inteligência Artificial e Computacional,
pages 518–527. SBC, 2018. 7

[21] Kathryn Garside, Robin Henderson, Irina Makarenko, and

Cristina Masoller. Topological data analysis of high resolu-

tion diabetic retinopathy images. PloS one, 14(5):e0217413,

2019. 2

[22] Noah Giansiracusa, Robert Giansiracusa, and Chul Moon.

Persistent homology machine learning for fingerprint clas-

sification. In 2019 18th IEEE International Conference On
Machine Learning And Applications (ICMLA), pages 1219–

1226. IEEE, 2019. 2

[23] Jean Dickinson Gibbons and Subhabrata Chakraborti. Non-
parametric statistical inference. CRC press, 2014. 12

[24] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages

580–587, 2014. 2

[25] Barbara Giunti. Tda applications library, 2022.

https://www.zotero.org/groups/2425412/
tda-applications/library. 2

[26] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial networks. Commu-
nications of the ACM, 63(11):139–144, 2020. 2

[27] Balla Goutam, Mohammad Farukh Hashmi, Zong Woo

Geem, and Neeraj Dhanraj Bokde. A comprehensive review

of deep learning strategies in retinal disease diagnosis using

fundus images. IEEE Access, 2022. 6

[28] Allen Hatcher. Algebraic Topology. Cambridge University

Press, 2002. 3

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 2
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learning model for pneumonia detection applying a combina-

tion of mrmr feature selection and machine learning models.

Irbm, 41(4):212–222, 2020. 7

[64] https://grantome.com/grant/NIH/
AAI12021001-1-0-5. Belarus tb database and tb

portal. 6

[65] https://www.kaggle.com/c/
rsna-pneumonia-detection-challenge/data.

Rsna pneumonia detection challenge. 6
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