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Abstract

This paper introduces a novel technique called counter-
factual knowledge distillation (CFKD) to detect and remove
reliance on confounders in deep learning models with the
help of human expert feedback. Confounders are spurious
features that models tend to rely on, which can result in
unexpected errors in regulated or safety-critical domains.
The paper highlights the benefit of CFKD in such domains
and shows some advantages of counterfactual explanations
over other types of explanations. We propose an experiment
scheme to quantitatively evaluate the success of CFKD and
different teachers that can give feedback to the model. We
also introduce a new metric that is better correlated with
true test performance than validation accuracy. The pa-
per demonstrates the effectiveness of CFKD on syntheti-
cally augmented datasets and on real-world histopatholog-
ical datasets.

1. Introduction
Deep learning has made remarkable progress in recent

years. Despite this progress, models are still not well under-

stood and often rely on spurious features, i.e. confounders,

leading to so-called Clever Hans predictors [13, 11]. Such

predictors may fit the training set well and even maximize

validation accuracy, but may result in fatal errors when used

in practice. This is particularly important in regulated and

safety-critical domains such as medical image processing

or autonomous driving, where avoiding such failures is cru-

cial.

*Corresponding author: gregoire.montavon@fu-berlin.de

In this paper, we introduce a novel technique called

counterfactual knowledge distillation (CFKD) to detect and

remove reliance on confounders with the help of human ex-

pert feedback. The idea consists of generating counterfac-

tuals that inform the human-expert on the model’s decision

strategy and leveraging the human-expert’s feedback to ar-

rive at a model that is more accurate and is less reliant on

confounders. Our contributions are as follows:

• We motivate the practical need for CFKD, and

present a use case for ovarian follicle detection from

histopathology data.

• We highlight some advantages of counterfactual expla-

nations over common attribution-based explanations

for finding confounders

• We develop a methodology based on augmented or re-

sampled datasets for quantitatively evaluating the suc-

cess our method at reducing Clever Hans effects

• We demonstrate how CFKD can be used with different

forms of explanatory feedback such as human-in-the-
loop or oracle models.

• We propose a new metric which we show empirically

to be better correlated with the true test accuracy than

the usual accuracy on the validation set.

We show that our method works quantitatively on 1) a sanity

check dataset, 2) a family of artificial datasets that check

for different types of confounders and different strength of

correlation between the confounder and the true feature and

3) a histopathological dataset with a known confounder.

2. Motivating Example

The original motivation for our work lies in the applica-

tion of machine learning techniques to detect, classify and

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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quantify ovarian follicles in histopathology images1. The

tissue samples are cut into slices and the so-called growing

and primordial follicles can be counted (see Figure 1).

Manual counting and classification of follicles is a te-

dious and time-consuming task that requires highly-trained

personnel. Therefore, these analyses would benefit greatly

from computerized automation.

Recently, architectures like Yolo [14] have shown to be

very successful at detecting visual objects in a broad range

of image data, including histopathology [18]. Currently,

EU legislation for AI systems is being prepared. Despite

the fact that GLP validation is not in the scope of such leg-

islation, the prospective requirements for AI systems in a

regulated environment like in toxicology give reasons for a

comprehensive investigation of the explainability of models

in such systems.

We started our investigation with a trained Yolo model

and a dataset of 1600 rats follicles, both provided by our

industry partner. The trained Yolo model achieved high test

set accuracy (cf. Figure 1 for a few examples). According

to histopathology, a follicle can be recognized by having a

spherical membrane surrounding it and a nucleus in the cen-

ter. The distinction between primordial and growing folli-

cles can be done by looking at the number of Granulosa cell

layers (see Figure 2).

To inspect the decision strategy used by our ML model,

we adapted the LRP [3] explanation technique to the Yolo

architecture so that pixels supporting the Yolo model’s de-

cision are highlighted, resulting in heatmaps shown in Fig-

ure 3. We can observe that the expected strategy outlined

above does not appear in LRP heatmaps. This indicates that

the ML model uses a different strategy. However, the pro-

duced explanations fail to reveal what actual strategy the

ML model uses.

Hence, we further explored the model’s decision strat-

egy using another type of XAI method: a counterfactual
explainer [4, 5] (cf. Figure 4 for the resulting explanations).

A black mask is applied outside the incircle of the detected

cells to ease the process of generating counterfactuals and

a classifier is trained on the dataset that is created like this.

Interestingly, the new counterfactual explanations indicates

a reliance of the classifier on the size of the follicle, a con-

founder that was not apparent in previous explanations.—

This suggests that attribution-based explanations may only

detect a subset of confounders and that refinement tech-

niques based on counterfactuals are needed in complement

to techniques based solely on classical attributions (such as

presented in [2]).

1as required for the assessment of reproductive toxicity according to

OECD guidelines 443 and 416. More specifically, primordial follicles and

growing follicles (with a granulosa cell layer of up to 5 cells of thickness)

in the ovary have to be quantified.

Figure 1. Left: follicle annotations provided by a human expert

on a histopathological slide. Right: predictions by the Yolo model.

Figure 2. Columns 1 and 2 are Primordial follicles. They have

exactly one ring of Granulosa cells. Columns 3 and 4 are Growing
follicles. The have multiple rings of Granulosa cell. In order to

distinguish them from Primordial Follicles one has to find a second

layer of Granulosa cells. Features that should in theory support the

classification decision are indicated by white rectangles.

Figure 3. Heatmaps produced by LRP for the predictions made in

Figure 1. Red color indicates pixels supporting the classification

into the correct class.

Figure 4. Left: produced counterfactuals transforming a primor-

dial follicle into a growing follicle. Right: counterfactuals for

transforming a growing follicle into a primordial one.

3. Methods

In this section we first introduce a recently proposed

Counterfactual Explanations method which generates plau-

sible counterfactuals using a generative model. Then we
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present our main contribution, counterfactual knowledge

distillation (CFKD), which enables us to refine a model

based on the counterfactuals and feedback of a teacher

whether they are actually correct counterfactuals. Finally,

we present different teachers that can be used for CFKD and

a novel metric called “Feedback Accuracy” to better predict

the true generalization capabilities of the refined model.

3.1. Diffeomorphic Counterfactuals with normaliz-
ing flows

We base our counterfactual explainer on the work of

Dombrowksi et al. [4, 5] and give a short review of the

method here.

Let f : X → R
C be a classifier that assigns the probabil-

ity f(x)c of input x ∈ X belonging to class c ∈ {1, . . . , C}.

Counterfactual explanations of f provide minimal deforma-

tions x′ = x + δx such that the prediction of the classifier

is changed.

Denote c′ �= argmaxc f(x)c be a target class. In prac-

tice, the perturbation δx is applied iteratively. Denote the

perturbation at each step τ as δxτ and xτ+1 = xτ + δxτ .

The update is repeated until argmaxc f(xτ+1)c = c′, and

x′ = xτ+1. A traditional approach is to use δxτ propor-

tional to ∂f(xτ )c′/∂xτ . But, this update step could lead to

changes in x that is imperceptible, hence x′ being an ad-

versarial sample. In many data modalities like images, the

data lies approximately on a submanifold D ⊂ X with sig-

nificantly lower dimensionality ND than the dimensionality

NX of the input space X . This is known as the manifold

hypothesis. In such cases, it is more reasonable to find the

counter factual x′ that is close to the data manifold D. De-

note g : Z → X be a generative model, mapping from a

latent variable z ∈ Z to a sample x ∈ X . [4, 5] show that

optimizing on the latent space Z of the generative model g
leads to the update direction δx being close to the tangent

space of the data manifold D at the point xτ . We refer to

[4, 5] for the proofs. As a result, the procedure leads to

meaningful changes in x that are visible and semantically

sound.

Since our goal is not directly to create minimal counter-

factuals, but to change the decision boundary of the student

(by adding new samples directly on the decision boundary

to the training dataset not much changes about the decision

boundary) we do not stop directly when reaching the deci-

sion boundary, but empirically set the target confidence the

counterfactual search should reach to 0.8. Here a tradeoff

between not entirely destroying the connection between the

original sample and the counterfactual and creating very in-

formative false counterfactuals deep on the other side of the

decision boundary is to consider.
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Figure 5. Creation of counterfactual explanations by first inverting

the original image into the latent space of the generative model

and then iteratively applying gradient ascent through the classifier

and the generator towards the desired target class. One can see that

counterfactuals created by using adversarial attacks (blue border)

are uninformative for human experts since they look exactly the

same as the original images (black border), counterfactuals created

by walking through the latent space of the generative model (red

border) are informative and one can see in the example that the

model actually looked at the copyright tag instead of the hair color

(see section 5.2)

Input: Trained classifier f , dataset D, teacher t,
number of iterations n

Output: Finetuned classifier f ′

for i = 1 to n do
for x, y ∈ D do

Choose ytarget �= y. Generate

counterfactual image x′ based on x and

ytarget;
t(x, x′) decides change was based on

teacher preferred feature;

if change was based on confounder then
yselected = y;

end
else

yselected = ytarget;
end
Add the counterfactual image x′ and

yselected to the training data;
end
Retrain the classifier f on the augmented

training data;

Measure the feedback accuracy;
end
return f

Algorithm 1: Counterfactual Knowledge Distillation

3.2. Counterfactual Knowledge Distillation

The Counterfactual Knowledge Distillation algorithm

(see Algorithm 1) aims to distill knowledge from a teacher

to a student and thereby improve the performance of it in the

presence of confounding variables by iteratively generat-

ing counterfactual images, using them to determine whether
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a confounder is present, and then adding the counterfac-

tual images to the training data with the appropriate label.

The algorithm needs a trained classifier, a dataset, and a

teacher. In each iteration, for each data point in the dataset,

a counterfactual image is generated using an explainer. The

teacher determines whether the counterfactual image was

created by changing a confounder. If it was, the original

label for the data point is selected. If it was not, the target

label of counterfactual search is selected. The counterfac-

tual image and selected label are then added to the training

data. The classifier is retrained on the augmented training

data and the feedback accuracy (see section 3.4) is mea-

sured. The algorithm continues for a specified number of

iterations and the refined model is selected based on the

feedback accuracy. Contrary to other knowledge distilla-

tion approaches the feedback can be given by a human since

the (image, counterfactual)-pairs are human-interpretable.

Contrary to other confounder detection approaches feed-

back can be given by an oracle model, since the counter-

factuals can be fed into the oracle model and assuming the

oracle model is correct one can determine whether the cor-

rect feature was changed or a spurious one. This is a very

important benefit, since objective and resource-wise feasi-

ble experiments can be done with with the oracle model and

for real applications where no oracle model exists human

experts can be used. CFKD has in principle the same ro-

bustness against teacher mislabels like supervised machine

learning, which is trained with the same objective and also

relies on human labels.

3.3. Teachers

There exist various alternatives that can serve as teach-

ers. The initial option tested, the oracle teacher, is rather

theoretical in nature as it requires additional information

regarding the underlying dataset. Nonetheless, it facil-

itates conducting experiments on a large scale and pro-

duces easily reproducible results. The other two teachers,

namely, human and SpRAy, are universally applicable to

any dataset provided that the user has expertise in deter-

mining the model’s decision boundary. Nevertheless, these

options present the disadvantage of necessitating significant

effort to conduct experiments on a large scale and producing

results that are dependent on the quality of feedback pro-

vided by the human expert. This paper proposes conduct-

ing experiments using the oracle teacher for the purpose of

automating the workflow and producing reproducible out-

comes. However, we demonstrate that human feedback

yields comparable results in one of the experiments.

3.3.1 Oracle model

The Oracle model operates by utilizing an additional neural

network that has been trained on a much more representa-

tive dataset, and is as a result not relying on confounders.

This neural network is employed to address the shortcom-

ings of the student model by accepting/rejecting the coun-

terfactuals produced by the latter. This approach is particu-

larly useful to evaluate the counterfactual technique by itself

but is unsuitable in real-world setting because the extended

dataset is not available (or if it were, the model should of

course be trained on that extended dataset).

3.3.2 Human-in-the-loop

The human-in-the-loop teachers provide explanatory feed-

back through a human expert via a user interface. We pro-

pose two possible human-in-the-loop teachers. The human

teacher is a simple web interface for sequentially evaluat-

ing pairs consisting of an image and a counterfactual, and

making a determination as to whether the explanation pro-

vided is accurate or not. While this approach offers a high

level of precision, it is also time-consuming and resource-

intensive, particularly if an expert with significant domain

knowledge is required. The SpRAy teacher (as illustrated

in Figure 6) is designed to reduce the effort required by hu-

man experts to provide feedback and is based on the work of

Anders et al. [11] and implemented with Virelay [1]. It ac-

complishes this by utilizing t-SNE [21] to embed the differ-

ences between the latent representation of an image and its

corresponding counterfactual into a two-dimensional space.

The latent representation is directly extractable by the gen-

erative model utilized for building the counterfactuals. The

counterfactuals that are generated using similar strategies

are then clustered together in the embedded space. The hu-

man expert can then identify and select clusters of invalid

strategies by drawing boxes around them. These clusters of

invalid data points are returned as negative feedback, while

the rest are considered positive. This approach is less labor-

intensive than the human teacher, as it enables the human

expert to review multiple strategies simultaneously, reduc-

ing the need to evaluate each sample individually. Addition-

ally, the clustered display of similar strategies can help the

expert more easily identify the actual strategy being used.

However, this method relies on the assumption that t-SNE

can accurately cluster the strategies, which may be less pre-

cise if a broad range of incorrect strategies are employed or

the latent space of the generative model is highly entangled.

3.4. Feedback Accuracy

When the training and validation datasets are derived

from the same pool of data the resulting model’s valida-

tion accuracy cannot be trusted as a reliable indicator of

its true performance. However, we still require a perfor-

mance indicator to estimate the model’s true test perfor-

mance. To address this issue, we introduce the feedback

accuracy, defined as follows: ACCfeedback = Ncorrect

Ntotal
. This
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Figure 6. The web interface of the SpRAy teacher. One can see the

t-SNE embedded changes of the latent respresentations between

image and counterfactual as the red and turquoise point clouds.

The (image, counterfactual) pairs of the selected turquoise point

cloud alongside with an additional visualization of their differ-

ences are shown in the lower part of the window.

accuracy measures the proportion of counterfactuals gener-

ated on the validation dataset that are accepted as legitimate

by the teacher. In essence, ACCfeedback tracks the teacher’s

evaluation of the model’s ability to generate counterfactu-

als that correctly identify the generalizing strategy, which is

assumed to be the solution to the real task.

The intuition behind the name counterfactual knowledge

distillation is that if one would execute Algorithm 1 longer

and longer the decision strategy of the student will become

more and more like the teachers. Furthermore, the feedback

accuracy will go against one since both the student and the

teacher would decide more and more similar. Hence, the

teacher distills its knowledge into the student based on the

counterfactual explanations.

4. Related Work

Clever Hans Detection Reducing reliance on con-

founders (Clever Hans effects) is a two step process, which

first requires to find such effects before they can be re-

moved. Methods such as Spectral Signature [20] are able

to identify backdoors in neural networks, which are a par-

ticularily strong type of confounders, as they must be the

strongest feature in order surpass the true class of the sam-

ple. Spurious correlations which lead to Clever Hans effects

are weak confounders that influence predictions less, since

they are always found alongside true class-relevant features.

Apart from manual inspection of the samples, feature attri-

bution approaches [3] can provide more insight into whether

features are relevant for a model’s prediction. Explanatory

Interactive Learning (XIL) [17, 19] finds weak confounders

by presenting features attributions to human experts. Spec-

tral Relevance Analysis (SpRAy) [11, 2] attempts to find

confounders by presenting embeddings and clusterings of

feature attributions to human experts in order to reduce the

work load. It is arguably hard for an expert to find con-

founders in plain samples or feature attributions as provided

by XIL, or even in clusters and embeddings as provided by

SpRAy. Our approach simplifies the task presented to the

expert, as they only need to decide whether a counterfactual

has or hasn’t shifted away from the actual class.

Feature Unlearning Various approaches for the allevi-

ation or removal of confounders have been developed be-

yond the basic removal of afflicted samples from the train-

ing data. While some methods provide their own or de-

rived approaches for confounder detection [17, 19, 2], other

works assume the confounders are known a priori. For in-

stance, eXplanatory Interactive Learning (XIL) uses human

generated labels during training to provide feedback to the

model by replicating samples affected by CH phenomena

and replacing the confounding features with noise or oth-

erwisely generated patterns [17, 19]. The work of Kim et

al. [8] introduces a model regularization scheme, in which

an additional “artifact detector” learning specific biasing

features is attached to the original predictor. The original

model is then driven to minimize the shared information

with the dedicated bias predictor, and thus to unlearn to use

artifactual features for inference. Ross et al. [16] aim to

guide the model towards the correct behavior by penalizing

high attribution scores in undesired regions by extending

the optimization function with a “Right for the Right Rea-

sons (RRR)” loss term. Similarly, Rieger et al. [15] pro-

pose Contextual Decomposition Explanation Penalization

(CDEP), a method for regularizing model behavior based

on explanations obtained from Contextual Decomposition

(CD) [12], by complementing the classification error of the

loss function with an explanation error term.

Class Artifact Compensation To the best of our knowl-

edge, the approach we propose is most closely related to

Class Artifact Compensation (ClarC) [2]. In the original

work, the confounder detection is implemented through an

extended Spectral Relevance Analysis, yielding class-wise

labels for each confounder. Feature unlearning is accom-

plished using these confounder labels through two variants

of the method: augmentative (A-ClarC) and projective (P-

ClarC).

The feature unlearning provided through ClArC can

be decoupled from the confounder detection provided by

SpRAy. To detect confounders, our work presents coun-

terfactuals to a human expert, while SpRAy presents em-

beddings and clusterings of feature attributions. In ClArC,

the confounder labels are used to construct a confounder

model (either explicit or using a linear model motivated by

Concept Activation Vectors (CAV) [9]) to either introduce

the confounder into unafflicted samples for augmented fine-

tuning in A-ClArC, or to remove CAV of the confounder

through linear projection in P-ClArC.

Our proposed method, Counterfactual Knowledge Distil-

lation (CFKD), can be considered as a confounder detection
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approach coupled with a version of A-ClarC with the added

benefit that our counterfactual generation already provides

a confounder model in order to remove or introduce con-

founders used for the augmented fine-tuning.

5. Experiments

This section presents four experiments that demonstrate

the capabilities of the proposed CFKD approach: 1) A qual-

itative analysis shows the ability of CFKD to adjust the

decision strategy of a follicle classifier to align with the

biologically correct strategy. 2) An extensive experiment

with different augmentation-based confounders and poison-

ing levels on CelebA is conducted to evaluate the perfor-

mance of counterfactual knowledge distillation in address-

ing the problem with confounders in a BlondHair classifier.

The results demonstrate the effectiveness of the proposed

approach. 3) The ability of counterfactual explanations to

identify and quantitatively address confounders in subsam-

pled real-world datasets is demonstrated using the colorec-

tal cancer tissue 100K dataset [7] with a known staining

issue. CFKD is shown to be effective in addressing these

confounding factors as well. For all our experiments we

used ResNet-18 [6] as classifier and Glow [10] as genera-

tive model.

5.1. Qualitative Results on the Follicle Dataset

We apply our method to the motivating example of Sec-

tion 2. Note that there is no unpoisoned dataset and no

reproducible teacher model for this showcase (the only

one available is our own interaction via the human-in-the-

loop teacher), hence, we report qualitative results and de-

fer quantitative evaluation to the next experiment. We per-

formed 3 iterations of CFKD with 100 counterfactuals each.

Counterfactuals produced after teaching are given in Figure

7 (compare with Figure 4 before teaching).

Figure 7. Counterfactual explanations after applying CFKD on

the follicle dataset, and exhibiting a change of strategy after teach-

ing. (Compare to Figure 4).

One can see, that instead of just changing the size of the

follicle now the counterfactual explainer attempts to remove

the Granulosa cells in order to transform growing follicles

to primordial follicles, thereby showing that the decision

strategy lost much of its ‘Clever Hans’ nature and now relies

on the more meaningful Granulosa cells patterns.

5.2. CelebA Dataset with augmentation-based Con-
founders

As a second experiment, we consider a subset of CelebA,

where we select 40K samples, so that 50% of the depicted

persons are blond and 50% are not. Furthermore, we cre-

ated 3 versions of such a dataset each of them poisoned with

a particular type of confounder: one with a copyright tag

in the bottom right of the image that mimics known con-

founders like the copyright tag on PASCAL VOC, one with

an intensity shift of the images and one with a color shift.

In order to mimic our motivational example more closely

we smooth these confounders and base them on a contin-

uous transition. Concretely, the copyright tag confounder

is based on a transition from being 100% opaque to being

0% opaque and a sample is considered having a confounder

when the opaqueness is lower than 50%. The intensity shift

confounder is based on adding up to 24 (on the 0–255 inten-

sity scale) on each pixel of the samples with the confounder

and subtracting up to 24 of each pixel for the samples with-

out confounder and then clipping all pixel values back to

a range between 0 and 255. The color shift is created by

adding up to 24 on the red channel and subtract up to 12 of

the green and the blue channel of the image for the images

with confounder and vice verse for the ones without. For

each version 36K images are used for training and valida-

tion and 4K samples are held out as test set. Therefore we

ensure, that the percentage of all four possible combinations

of containing a person with blond hair and having the con-

founder are 25% both in the training and the test set. For

our poisoned classifiers we select the 16K sample subset of

the dataset, that only contains images, that contain a pro-

portion of α images that either contain a blond person and

the confounder or that contain no blond person and no con-

founder and 1−α images that either contain a blond person

without containing the confounder or a non-blond person

that contains the confounder. However, we still ensure that

this subset contains the same amount of blond as non-blond

persons. We refer to these datasets as the poisoned datasets.

Training classifiers on these achieves close to perfect accu-

racy on their training and validation set. However, if the

classifier is evaluated on the unpoisoned test dataset, where

there is no correlation between having a confounder and the

person being blond they achieve down to 50% unpoisoned

test accuracy (see Figure 9), which is the random perfor-

mance due to the balanced nature of the dataset.

Further analysis shows that most errors are made on pic-

tures that either contain a blond person but no confounder or

contain no blond person, but a confounder. When training

a generative model on the poisoned dataset and creating a

counterfactual explanation we can see in Figure 8 on the top

left, that the counterfactual for a blond person is created by

removing the copyright tag and not by changing the color

of the hair. Next we train an oracle classifier, that objec-
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Generated
Counterfactual After CFKD

Original Image
with label:

Blond

Generated
Counterfactual After CFKD

Original Image
with label:

Blond

Generated
Counterfactual After CFKD

Original Image
with label:
Not Blond

Figure 8. Qualitative result for CelebA with 100% poisoning. The leftmost sample come from the copyright tag poisoned dataset, the

middle sample from the intensity shifted dataset and the rightmost from the color shifted dataset. One can see that before applying CFKD

the counterfactuals are created by changing the confounder e.g. on the left by blurring the copyright tag. After CFKD the true feature,

namely the hair color is changed. However, in some case like the middle sample it is not that obvious what was changed by the model and

what changed after applying CFKD even though we know from Figure 9 that CFKD quantitatively works.

Figure 9. Quantitative Results on CelebA. One can see, that with stronger correlation between the BlondHair class and the confounders

the unpoisoned test accuracy of the uncorrected classifier drops drastically. For all modalities CFKD systematically improves the results

significantly.

tively mimics human feedback on the full training dataset.

Probably due to dataset noise (e.g. some people in CelebA

are bold or wear a hat) it is also not able to achieve 100%

accuracy on the test set, but at least it achieves 91%. Now

we use this oracle classifier to give feedback for CFKD. We

used CFKD with 500 randomly sampled datapoints from

the dataset per iteration for which counterfactuals are build

and a maximum of 5 iteration except for the strongest poi-

soning where the maximum are 12 iterations. We can see in

the bottom of Figure 8, that the counterfactual explanation

for the same sample changes towards actually changing the

color of the hair and not removing the confounder anymore.

Furthermore, as can be seen in Figure 9, the unpoisoned

test accuracy is getting closer to the classification accuracy

of the oracle classifier. In Figure 10 we show, that the feed-

back accuracy is correlated to the unpoisoned test accuracy

while the validation accuracy is not. Moreover, we show

that all suggested teachers behave similar.

Due to the possible interpretation of CFKD as A-ClarC

we compared with P-ClarC (since A-ClarC does not pro-

vide an automated way how to augment samples) and also

provide our implementation of P-ClarC. However, P-ClarC

was developed for a setting where the confounder is only

present on one class and is a localized object that is either

there or absent. Furthermore, it assumes that at least one

sample of the class does not contain the confounder. Our

experiment setting derived in analogy to our motivational

example potentially has confounders in both classes. More-

over, our definition of a confounder is based on the thresh-

old of a continuous transition from an underlying variable

like the size of the follicle, the opaqueness of the copyright

tag, the strength of the intensity/color shift. In the case of

the strongest poisoning of 100% there is not a single sample

of a blond person without a confounder. Additionally, deriv-

ing feedback can not be automated with an oracle model and

for distributed confounders like the intensity / color shift it

is not possible for a human expert to see them based on the

attribution maps, since they mark the whole image. Even for

the copyright tag confounder an attribution map that high-

lights the region where the copyright tag is can not be guar-

anteed to detect an artifact, since it is not clear whether the

region of the image was marked because there is a copy-
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Figure 10. Training ablation in regard to different trainers for a 100% poisoned CelebA with intensity shift. Shows that validation accuracy

which is higher than the oracle test performance in the beginning is anti proportional to unpoisoned test accuracy while feedback accuracy

is proportional. Furthermore, it shows that Oracle, Human and SpRAy teacher behave similar.

right tag with low opaqueness or since it was solely marked

due to the model measuring the opaqueness of the copyright

tag and the opaqueness might in fact be high. Due to this

reasons our implementation of P-ClarC was not capable to

improve over the uncorrected classifier at all.

In a summary CFKD is very effective in removing con-

founders qualitatively and quantitatively and we not aware

of related work that could do it in the same way.

5.3. Colorectal Cancer Tissue Dataset

In this experiment, we investigate the performance of

a classifier trained on the colorectal cancer tissue 100K

dataset [7], which includes nine classes of histopatholog-

ical images. We address the issue of staining-based con-

founders, which is well-known in the histopathology com-

munity, especially when distinguishing between benign

muscular tissue and malign cancer-associated stromas. To

address this issue, we train a classifier that only separates

these two classes. To create an oracle classifier, we utilize

the full dataset. Then subsample a poisoned training dataset

where the strength of the hematoxylin staining is strongly

correlated with the cancer-associated stroma and train our

uncorrected model on it. Our explainer effectively utilizes

this correlation to create counterfactuals, as demonstrated

in Figure 11 (top row). Whether the change in strategy

caused by CFKD and shown in Figure 11 is reasonable from

a medical viewpoint remains open for interpretation, but the

CFKD corrected model performs quantitatively better on

the test dataset without the correlation between the hema-

toxylin stain and the class, as illustrated in Figure 12. Over-

all, our experimental results highlight the effectiveness of

our approach in improving the classifier’s decision strategy

and subsequent performance on the challenging colorectal

cancer tissue 100K dataset.

6. Conclusion
In conclusion, we have presented a novel technique,

CFKD, to detect and remove reliance on confounders in

Generated
Counterfactual After CFKD

Original Image
with label:

Muscle

Generated
Counterfactual After CFKD

Original Image
with label:

Cancer

Figure 11. The figure shows the qualitative results of the correc-

tion of the confounder on the Colorectal cancer tissue dataset.

Figure 12. One can see, that CFKD effectively increases the un-

poisoned test accuracy in the quantitative experiment on the col-

orectal cancer tissue datset. Furthermore, it shows that the peak

in feedback accuracy coincides with the peak in unpoisoned test

accuracy while the peak in validation accuracy does not.

deep learning models by generating counterfactuals and

leveraging explanatory feedback. We demonstrated the ef-

fectiveness of CFKD on both augmented and real-world

datasets, and could measure the performance increase either

on the true test accuracy when available or using our newly

proposed feedback accuracy metric. Our method is flexible,

and can work together with a variety of teacher models and

explanation/counterfactual generation techniques. Overall,

the paper contributes to improving the interpretability and

reliability of deep learning models, and has the potential to

impact a wide range of applications.
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