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Abstract

In this paper, we present a novel method for the auto-
matic classification of medical images that learns and lever-
ages weak causal signals in the image. Our framework
consists of a convolutional neural network backbone and a
causality-extractor module which extracts cause-effect re-
lationships between feature maps that can inform the model
on the appearance of a feature in one place of the image,
given the presence of another feature within some other
place of the image. To evaluate the effectiveness of our
approach in low-data scenarios, we train our causality-
driven architecture in a One-shot learning scheme where
we propose a new meta-learning procedure which entails
meta-training and meta-testing tasks that are designed us-
ing related classes but at different levels of granularity. We
conduct binary and multi-class classification experiments
on a publicly available dataset of prostate MRI images. To
validate the effectiveness of the proposed causality-driven
module, we perform an ablation study and conduct quali-
tative assessments using class activation maps to highlight
regions strongly influencing the network’s decision-making
process. Our findings show that causal relationships among
features play a crucial role in enhancing the model’s ability
to discern relevant information and yielding more reliable
and interpretable predictions. This would make it a promis-
ing approach for medical image classification tasks.

1. Introduction
Building models that automatically perform diagnoses

from medical data could revolutionize a patient’s clinical

pathway, especially in oncology, minimizing invasive pro-

cedures and maximizing the chances of cures for the most

severe cases. The implementation of such models in the

medical field is severely limited by data availability and the

heavy domain shifts that plague the data, which make the

models non-generalizable. Especially in the magnetic res-

onance imaging (MRI) domain, different vendors yield im-

ages with different features, and that prevents the model to

be able to generalize well. In a classical fully-supervised

manner, the problem can be overcome by training a model

with lots of data that covers all the possible data distribu-

tion. In practice, however, this is not always possible, due

to the limited amounts of labelled/annotated data that affect

the medical imaging domain.

Especially when dealing with limited data, one may wish

to make an automated recognition model focus on the most

discriminative regions of the image instead of paying atten-

tion to side details. Traditional convolutional neural net-

works (CNN) and transformer networks, for instance, can

discover features hidden within input data together with

their mutual co-occurrence. However, they are weak at dis-

covering and making explicit hidden causalities between the

features, which could be the reason behind a particular out-

come. Indeed, image classification models are expected to

distinguish between the classes of images taking into ac-

count the causal relationships between the features from the

images, in a way that might resemble how humans accom-

plish the task. For this reason, several bridges between the

field of causality and computer vision are emerging in the

literature [14, 1].

A particular case would be discovering hidden causali-

ties among objects in an image dataset. Unlike tabular data,

which have a structured nature, when it comes to images,

their representation does not include any explicit indica-

tions regarding objects or patterns. Instead, individual pix-

els are used to convey a particular scene visually, and image

datasets do not provide labels describing the objects’ dispo-

sitions. Due to this, supervised machine learning as such

cannot approach them. Additionally, unlike video frames,

from a single image one may not see the dynamics of ap-
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pearance and change of the objects in the scene. Therefore,

a priori information as a hint for causal discovery is absent.

To approach the problem of learning hidden causalities

within images, Lopez-Paz et al. [7] suggest the “causal

disposition” concept as more primitive than interventional

causation (do-calculus) and causal graphs from Pearl’s ap-

proach [11, 12]. However, it could be the only way to pro-

ceed with limited a priori information. In their view, by

counting the number C(A,B) of images in which the causal

dispositions of artefacts A and B are such that B disappears

if one removes A, one can assume that artefact A causes

the presence of artefact B when C(A,B) is greater than

the converse C(B,A). As a trivial example, imagine the

image of a car on a bridge. Now, if we were to remove

the car, then this would keep the image realistically looking

(i.e., scene consistency), since an observer may see simi-

lar scenes among other images. Conversely, if we were to

remove the bridge, then this would make the scene incon-

sistent, as that scenario is likely never seen among other

images (i.e., flying cars). Therefore, we may assume that

the presence of the bridge has some effect on the presence

of the car. This concept leads to the intuition that any causal

disposition induces a set of asymmetric causal relationships

between the artefacts from an image (features, object cate-

gories, etc.) that represent (weak) causality signals regard-

ing the real-world scene. To automatically infer such an

asymmetric causal relationship from the statistics observed

in an image dataset would be a point of contact with a ma-

chine vision system.

In this work, we combine a regular CNN with a

causality-extraction module to investigate the features and

causal relationships between them extracted during training.

We build on ideas from [18] who suggest a way to compute

such an asymmetric measure for possible causal relation-

ships within images, and we propose a new scheme based

on feature maps enhancement to enable “causality-driven”

CNNs to classify images taking into account hidden causali-

ties within them. Our hypothesis is that it would be possible

and reasonable to get some weak causality signals from the

individual images of some medical datasets without adding

primary expert knowledge, and leveraging them to better

guide the learning phase. Ultimately, a model trained in

such a manner would be able to exploit weak causal dispo-

sitions of objects in the image scene to distinguish lesion

grades even with limited data and possibly domain shift on

the test set.

To evaluate how these causality-driven networks could

behave in a low-data regime, we perform the training in a

Few-shot learning (FSL) manner, and in particular in One-

shot learning (OSL). Here, we propose a novel training

scheme in which we design meta-training and meta-testing

tasks having related classes (i.e., the same clinical problem

is addressed) but at different granularity levels. To perform

such experiments, we exploit the Deep Brownian Distance

Covariance (DeepBDC) [19] method.

Our paper is structured as follows. After citing relevant

works related to our topic in Sec. 2, we present the rationale

behind causality-driven CNNs and our network proposition

in Sec. 3.1, together with a description of the DeepBDC

method of our choice in Sec. 3.2. Later, in Sec. 4, we

dive into the details of our experiments settings, regarding

both the dataset used and the meta-training and meta-testing

schemes. Finally, in Sec. 5 and Sec. 6, we provide the re-

sults of our experiments and discuss our findings, summa-

rizing our key conclusions.

2. Related works

Several approaches to integrating causality into FSL

have been proposed in the literature, leading to different di-

rections and applications. One notable example is the work

by Yue et al. [22], where they leverage causality to demon-

strate that pre-training in FSL can act as a confounder, re-

sulting in spurious correlations between samples in the sup-

port set and their corresponding labels. To address this is-

sue, they propose a novel FSL paradigm in which they per-

form causal interventions on the Structural Causal Model

(SCM) of many-shot learning employing a backdoor ad-

justment approach. Based on that work, Li et al. [6] pro-

pose a method to mitigate the influence of confounders dur-

ing the pre-training phase of the prototypical network [17].

They accomplish this by stratifying the pre-trained knowl-

edge using a backdoor adjustment based on causal inter-

vention. Specifically, the backdoor adjustment operations

are applied in the metric layer of the prototypical network.

The feature vectors of the class prototype and the query set

are divided into N equal-size disjoint subsets, and the cor-

responding subsets are fed into their respective classifiers.

The final prediction result is obtained by averaging the pre-

diction probabilities from the N classifiers. Furthermore, in

the work by Yang et al. [20], the authors propose a method

to enhance the robustness and generalizability of few-shot

text classification. They achieve this by extracting causal

associations from text using a causal representation frame-

work for FSL. The process involves performing causal in-

terventions to generate new data with label-relevant infor-

mation for each input. The original and augmented texts

turned into feature representations are fed into a factoriza-

tion module, which enforces the separation and joint in-

dependence of the representations from non-causal factors.

Finally, the feature representations are utilized by a classifi-

cation module for making predictions.
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3. Methods
3.1. Causality-driven CNNs

Preliminaries. In automatic image recognition, deep neu-

ral network classifiers obtain the essential features required

for classification not directly from the pixel representation

of the input image but through a series of convolution and

pooling operations. These operations are designed to cap-

ture meaningful features from the image. Convolution lay-

ers are responsible for summarizing the presence of specific

features in the image and generating a set of feature maps

accordingly. As these maps are sensitive to the spatial loca-

tion of features in the image, pooling is employed to con-

solidate the presence of particular features within groups

of neighbouring pixels in square-shaped sub-regions of the

feature map.

Causality signals in images. When a feature map F i

contains only non-negative numbers (e.g., thanks to ReLU

functions) and is normalized in the interval [0, 1], we can in-

terpret its values as probabilities of that feature to be present

in a specific location, for instance, F i
r,c is the probability

that the feature i is recognized at coordinates r, c. By as-

suming that the last convolutional layer outputs and local-

izes to some extent the object-like features, we may modify

the architecture of a CNN such that the n× n feature maps

(F 1, F 2, . . . F k) obtained from that layer are fed into a new

module that computes pairwise conditional probabilities of

the feature maps. The resulting k × k causality map would

represent the causality estimates for the features.

Computing causality maps. Given a pair of feature maps

F i and F j and the formulation that connects conditional

probability with joint probability, P (F i|F j) = P (F i,F j)
P (F j) ,

following [18], we heuristically estimate this quantity re-

garding the pairs of features by adopting two possible meth-

ods, namely Max and Lehmer. The Max method considers

the joint probability to be the maximal presence of both fea-

tures in the image (each one in its location):

P (F i|F j) =
(maxr,c F

i
r,c) · (maxr,c F

j
r,c)∑

r,c F
j
r,c

(1)

On the other hand, the Lehmer method entails computing

P (F i|F j)p =
LMp(F

i × F j)

LMp(F j)
(2)

where F i × F j is a vector of n4 pairwise multiplications

between each element of the two n×n feature maps, while

LMp is the generalized Lehmer mean function [2] with pa-

rameter p, which is an alternative to power means for inter-

polating between minimum and maximum of a vector x via

harmonic mean (p = −2), geometric mean (p = −1), arith-

metic mean (p = 0), and contraharmonic mean (p = 1):

LMp(x) =
∑n

k=1 xp
k∑n

k=1 xp−1
k

. Equations 1 and 2 could be used to

estimate asymmetric causal relationships between features

F i and F j , since, in general, P (F i|F j) �= P (F j |F i). By

computing these quantities for every pair i and j of the k
feature maps, the k × k causality map is obtained. We in-

terpret asymmetries in such probability estimates as weak

causality signals between features, as they provide some in-

formation on the cause-effect of the appearance of a feature

in one place of the image, given the presence of another fea-

ture within some other places of the image. Accordingly, a

feature may be deemed to be the reason for another feature

when P (F i|F j) > P (F j |F i), that is (F i → F j), and vice

versa.

Embedding causality in regular CNNs. Once the

causality map is computed, it can be embedded into the ba-

sic CNN architecture. Terziyan and Vitko [18] flatten these

suggested causality estimates, concatenate them to the set of

(flattened) feature maps, and let the CNN learn how these

estimates might influence image classification. Differently

from them, we exploit the causality map in a new way and

get a weighting vector to enhance or penalize the single fea-

ture maps during training.

Causality weights. At each epoch, as training progresses,

we look for asymmetries between elements opposite the

main diagonal of the causality map. Some features may be

more often found on the left side of the arrow (i.e., F →)

than on the right side (i.e., → F ). Therefore, we use such

learned causalities to compute causality weights to assign a

degree of importance to each feature map. Specifically, for

each feature map, we take as its weighting factor the dif-

ference between the number of times it was found to cause

other feature maps and the number of times it was found to

be caused by another feature map. Computing such quan-

tity for every feature results in a vector of causality factors,

which is then passed through a ReLU activation to set to

zero all the negative elements.

Models. At this stage, we propose two variants of the

model:

• mulcat (multiply and concatenate). The non-negative

causality factors multiply the corresponding feature

maps, resulting in a causality-driven version of these

feature maps. In this enhanced version, each feature

map is strengthened according to its causal influence

within the image’s scene. Those features are merged

with the original features by concatenation along the

channel axis and form the final feature set that influ-

ences the classification outcomes.
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• mulcatbool. Same as the previous, but before mul-

tiplication, the factors undergo boolean thresholding

where all the non-zero factors are assigned a new

weight of 1, while 0 otherwise.

The first method weighs features more according to their

causal importance (a feature that is cause 10 times more

than another receives 10 times more weight. In contrast, the

second method is more conservative and assigns all features

that are most often causes the same weight. We experiment

with both and compare results.

3.2. One-shot learning

In standard FSL, the training process occurs in episodes

or tasks. Each task is formulated as an N -way K-shot
classification problem, where N represents the number of

classes, and K is the number of support images per class.

We refer to Q as the number of query images per class.

For our experiments, we specifically focused on N-way 1-
shot classification, and we employed the DeepBDC method

introduced by Xie et al. [19]. In particular, we utilized

the meta-learning implementation of DeepBDC, known as

Meta DeepBDC. DeepBDC is a metric-based FSL method

which employs the BDC as the distance measure between

prototypes. The BDC is defined as the Euclidean distance

between the joint characteristic function and the product of

the marginal of two random variables X ∈ R
p and Y ∈ R

q .

Following [19], we provide a more formal definition of

BDC:

ρ(X,Y ) =

∫
Rp

∫
Rq

|ΦXY (t, s)− ΦX(t)ΦY (s)|2
cpcq||t||1+p||s||1+q

dtds,

(3)

where ΦX(t) and ΦY (s) are the marginal distributions of

X and Y, respectively, ΦXY (t, s) is the joint characteris-

tic function of the two random variables and cp is defined

as cp = π(1+p)/2/Γ((1 + p)/2), where Γ is the complete

gamma function. DeepBDC has demonstrated superior per-

formance compared to state-of-the-art methods while being

straightforward to deploy since it can be implemented as

a parameter-free spatial pooling layer that accepts feature

maps as input and provides a BDC matrix.

4. Experiments
4.1. Dataset and pre-processing

In our study, we conducted meta-training, meta-

validation, and meta-testing using the publicly available

1500-acquisition dataset from the PI-CAI challenge [13].

This dataset comprises mpMRI acquisitions of the prostate,

and for our experiments, we focused exclusively on cancer-

ous patients. In particular, we selected only T2-weighted

(T2w) images containing lesions by exploiting the expert

annotations provided in the dataset. The dataset contained

biopsy reports expressing the severity of each lesion as

Gleason Score (GS). The pathologist assigns a score of 1 to

5 to the two most common patterns in the biopsy specimen

based on the tumour severity. The two grades are then added

together to determine the GS, which can assume all the

combinations of scores from ”1+1” to ”5+5”. Additionally,

the dataset included the assigned GS’s group affiliation, de-

fined by the International Society of Urological Pathology

(ISUP) [4], ranging from 1 to 5, which provides the tumour

severity information at a higher granularity level. From an

even more high-level perspective, lesions with a GS ≤ 3+3
(ISUP = 1) and with GS = 3+ 4 (ISUP = 2) are considered

low-grade (LG) tumours, as patients with such lesions typ-

ically undergo active surveillance [9]. Conversely, lesions

with GS > 3+ 4 (ISUP > 2) are high-grade (HG) tumours,

as treatment is foreseen [9]. In this study, we considered

only lesions whose GS was ≥ 3 + 4 (ISUP ≥ 2), as lesion

annotations were not provided for ISUP-1 lesions. As a re-

sult, we had eight classes of GS and four classes of ISUP in

our dataset. The total number of images we used was 2049
(from 382 patients), which we divided into training, valida-

tion, and testing subsets. Specifically, we used 1611 images

for training, 200 for validation, and 238 for testing. Dur-

ing the splitting process, we ensured patient stratification,

i.e., all the images of the same patient were grouped in the

same subset, avoiding any data leakage. To replicate a real-

istic scenario involving distinct distributions in training and

testing data, we utilized data from two different vendors:

Siemens vendor data for meta-training and Philips vendor

data for both meta-validation and meta-testing. Indeed, we

chose the same validation and test distributions since, as

highlighted by Setlur et al. [16], using validation samples

that are not independent and identically distributed with the

test samples can lead to unreliable results when determin-

ing the optimal model, specifically the one that maximizes

performance on the test set.

As for the data pre-processing, we utilized the provided

whole prostate segmentation to extract the mask centroid

for each slice. We standardized the field of view (FOV)

at 100 mm in both x (FOVx) and y (FOVy) directions to

ensure consistency across all acquisitions and subsequently

cropped each image based on this value around the found

centroid. To determine the number of rows (Nrows) and

columns (Ncols) corresponding to the fixed FOV, we uti-

lized the pixel spacing in millimetres along the x-axis (de-

noted as px) and the y-axis (denoted as py). The relation-

ships used to derive the number of columns and rows are

Ncols = FOVx

px and Nrows =
FOVy

py , respectively. Fur-

thermore, we resized all images to a uniform matrix size

of 128 × 128 pixels to maintain a consistent pixel count.

Finally, we performed image normalization using an in-

volume method. This involved calculating the mean and
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standard deviation (SD) of all pixels within the volume ac-

quisition and normalizing each image based on these values

using a z-score normalization technique.

4.2. Classification experiments

In our study, we conducted experiments on two classi-

fication scenarios: (i) distinguishing between LG and HG

lesions and (ii) ISUP grading. For each scenario, we care-

fully designed meta-training and meta-testing tasks. Most

FSL approaches typically involve using unrelated classes

between meta-training and meta-testing tasks [3, 8, 10]. In-

stead, we propose a different approach where we focus on

the same clinical problem but at varying levels of gran-

ularity. Specifically, during meta-training, we designed

more challenging tasks, requiring the model to distinguish

between classes with higher levels of granularity. Con-

versely, during meta-testing, we provided the model with

easier classification tasks involving higher-level classifica-

tion. Our rationale is that this approach would lead to higher

performance on the specific task of interest performed dur-

ing meta-testing, as the model would find it relatively easier

to execute due to its exposure to more complex tasks during

meta-training. Below we provide a detailed explanation of

how we designed our meta-training and meta-testing tasks

for both experiments.

In the first scenario, we labelled the meta-training data

according to the four ISUP classes. In each meta-training

task, the model performed binary classification between two

randomly selected classes from the four provided. However,

during meta-testing, the model was tasked with a higher-

level classification, namely, distinguishing between LG and

HG lesions. For ease of reference, we will refer to this ex-

periment as the 2-way experiment. In the second scenario,

we labelled the meta-training data based on the GS. Each

training task required the model to distinguish between four

randomly selected GS classes out of the total eight. For

meta-validation and meta-testing, we labelled each patient

based on the ISUP tumour severity score and made the

model distinguish across these four classes. Henceforth, we

will refer to this experiment as 4-way experiment. We sum-

marized the labelling procedure for the two experiments in

Table 1.

In both scenarios, we employed a one-shot setting for

both meta-training and meta-testing. This means that the

model only observed a single example per class in the sup-

port set of each task. However, during the evaluation phase,

we expanded the query set by utilizing ten samples per class

in both meta-training and meta-testing tasks.

4.3. Architecture and training

Many widely-used architectures for large-scale image

recognition incorporate an adaptive average pooling layer

with an output size of 1 × 1 placed just before the classi-

fier. Its primary advantage is the ability to accommodate

input images of varying sizes, as it automatically adjusts its

parameters (such as kernel size, stride, and padding) to en-

sure that the output is consistently 1 × 1 in shape. This

dimensionality reduction, however, conflicts with the 2D

nature of feature maps for computing causalities. There-

fore, since we chose the ResNet18 as the backbone archi-

tecture in our work, we substituted its AdaptiveAvgPool2D
layer with an identity layer in our experiments. We per-

formed an optimization over the method by which com-

puting the causality maps (i.e., Max or Lehmer) and, for

the Lehmer case, over six different values of its parame-

ter p: [−100,−2,−1, 0, 1, 100]. Accordingly, we trained

seven models for each causality setting (i.e., mulcat or mul-
catbool), resulting in 14 causality-driven models plus one

baseline model for each experiment (i.e., 2-way and 4-way).

For each of the two causality settings, we chose the best-

performing model on the meta-validation set.

Given an input image, the causality-driven ResNet18 ex-

tracts 512 bidimensional feature maps of shape 4×4. While

those features proceed along the main branch of the net-

work, a copy of them enters the causality module where for

each pair, we extract their conditional probabilities by either

applying Eq 1 or Eq 2 depending on the causality method of

choice. Starting from the resulting 512×512 causality map,

the vector of 512 causality factors is obtained according to

the model variant of choice (i.e., mulcat or mulcatbool) and

then multiplied for the corresponding feature maps. Then,

after concatenation of two such feature sets, we obtain a

set of 1024 feature maps of shape 4 × 4 for each input im-

age. Figure 1 shows the proposed causality-driven network.

Although the training is performed task by task, here we

represented the functioning of our method for just one input

image.

At this point, the final set of feature maps is used to cal-

culate the image representations. Following the Prototypi-

cal Networks [17] approach, the classification is performed

by computing the BDC between the prototypes of each sup-

ported class, calculated as the mean of the BDC matrix of

each support image of that class and each query image rep-

resentation. To infuse the model with robustness to different

data selections, we performed 600 meta-training tasks, 600
meta-validation tasks, and 600 meta-testing tasks for each

experiment. As our loss function and optimizer, we em-

ployed the AUC margin loss (AUCM) [21] and the Proximal

epoch stochastic method (PESG) [5], respectively. These

were employed to maximize the Area Under the ROC curve

(AUROC), which is more stable w.r.t accuracy to the dataset

unbalancing. In addition, we performed our experiments

with the following hyperparameters: initial learning rate =

1e − 2, weight decay = 1e − 2, number of epochs = 100,

decay epochs: [20,80]. At each decay epoch, the learning

rate value is divided by 10.
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Experiment Splitting Labels

2-way

Meta-training ISUP 2, ISUP 3, ISUP 4, ISUP 5
Meta-validation LG (ISUP 2) - HG (ISUP 3, ISUP 4, ISUP 5)

Meta-test LG (ISUP 2) - HG (ISUP 3, ISUP 4, ISUP 5)

4-way

Meta-training GS 3 + 4, GS 4 + 3, GS 4 + 4, GS 3 + 5, GS 5 + 3, GS 4 + 5, GS 5 + 4, GS 5 + 5
Meta-validation ISUP 2, ISUP 3, ISUP 4, ISUP 5

Meta-test ISUP 2, ISUP 3, ISUP 4, ISUP 5
Table 1. A summary of the labelling procedure according to our training approach. ISUP = International Society of Urological Pathology,

LG = Low Grade, HG = High Grade, GS = Gleason Score.
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Figure 1. Causality-Driven ResNet18 for prostate cancer Grading from MRI. Here, the causality map can be computed with one of Max
and Lehmer options, while the causality factors can be computed using either mulcat or mulcatbool methods. For visualization purposes,

the size of the box representing the causality map has been reduced.

4.4. Evaluation metrics

In our evaluation, we utilized the AUROC as the per-

formance metric for all our experiments. For the 2-way

experiment, we computed the classical binary AUROC by

considering the HG as the positive class. In the case of the

4-way experiment, instead, we calculated the AUROC using

the One-vs-rest setting. This approach involves computing

the AUROC for each class against the rest of the classes

independently. In addition, we evaluated the binary classifi-

cation performance of the models in the 4-way experiment

by computing the AUROC of ISUP class 2 versus all the

rest.

4.5. Visualizing the impact of causality

To test the hypothesis that a causally trained model can

learn more discriminative representations for image classes,

we performed post hoc explainability evaluations. Investi-

gating the variability of visualization results with different

choices of post hoc explainable AI (XAI) methods is be-

yond the scope of our work, therefore, we employed the

popular Grad-CAM [15], which belongs to the broad litera-

ture on class activation maps (CAM) The basic idea behind

Grad-CAM is to utilize the gradients flowing back from a

chosen layer of a CNN to understand which parts of the im-

age contribute the most to the activation of a particular class.

In this case, we chose to compute the Grad-CAM heatmaps

at the BDC module level, which takes as input the final set

of feature maps. In addition, to make a fair comparison,

we computed the heatmaps w.r.t. the ground-truth target of

each image and only in the cases for which the prediction

was performed correctly by both the non-causality-driven

model and the mulcat and mulcatbool models.

5. Results

5.1. Performance of causality-driven CNNs

The main results of our analysis are reported in Table

2. We reported all those values as mean and SD AUROC
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across all the 600 meta-test tasks. Concerning the 2-way

experiment (i.e., LG vs HG), the baseline model achieved

0.539 (0.141), and embedding the causality module led

the model to improve, obtaining 0.550 (0.144) and 0.556
(0.141) AUROC for the mulcat and mulcatbool variants, re-

spectively. In particular, both these causality-driven variant

results were obtained with Lehmer causality setting, using

a Lehmer parameter of -100. Similar behaviour, with more

pronounced improvement, was observed for the 4-way ex-

periment (i.e., ISUP 2−5), where we obtained 0.585 (0.068)

multi-class AUROC for the non-causality-driven model,

whereas the mulcat and mulcatbool variants achieved 0.611
(0.069) and 0.614 (0.067), respectively. Again, both best-

performing mulcat and mulcatbool variants were obtained

employing the Lehmer setting, with Lehmer parameters

equal to 1 and -2, respectively.

Table 2 also shows the results of an ablation study. In-

deed, since in the causally-driven implementations is the

causality factors vector that ultimately determines which

(and how) feature maps are enhanced, we modify that vec-

tor to weigh features in a random manner rather than based

on a principled way based on the causality map. The abla-

tion variants of the mulcat and mulcatbool models that we

realized are:

• ablation mulcat. The 1× k vector of causality factors

(i.e., weights) is replaced with a random vector of the

same size with integer values ranging from 0 (a feature

map is never cause of another feature) and k − 1 (it is

cause of every other feature).

• ablation mulcatbool. Similar to the previous, the val-

ues of the weights are randomly assigned either to 0 or

to 1.

5.2. Visualizing activation maps

As a result of the post hoc explainability evaluations, we

obtain the visualizations shown in Figure 2. The first row

(a to e) regards a test case from models trained in the 2-way

setting, while the second row (f to j) pertains to a case from

4-way models. From left to right, the columns represent

the input test image, the annotation of the lesion in terms

of binary masks, the Grad-CAM activation for the baseline

models (not causality-driven), the Grad-CAM activation for

the mulcat models, and the Grad-CAM activation for the

mulcatbool models.

6. Discussion and Conclusion
In this study, we investigated the impact of integrat-

ing a new causality-extraction module into a traditional

CNN to enhance classification performance. We trained this

causality-driven model using an OSL approach, leveraging

meta-learning conditions with the MetaDeepBDC model

[19]. We aimed at assessing the effectiveness of such a

model in situations where only a few samples are available

for training, a challenge frequently encountered in medical

image analysis.

In Pearl’s terms, our work falls within the first rung of

the ladder of causation, where reasoning is limited to con-

ditional probabilities based on observational datasets. How-

ever, we aimed to explore whether this approach could yield

improvements in a scenario involving image data (rather

than structured tabular data), and no prior knowledge of the

data generation process. Our findings demonstrate that in-

corporating a causality-driven module into our model leads

to enhanced performance compared to the baseline. This

behaviour is evident in both the 2-way and 4-way experi-

ments. In particular, in the 4-way experiment, the causality

module provided a 3% improvement over the baseline in

terms of the multi-class AUROC and about 13% improve-

ment in terms of ISUP 2 vs. rest AUROC.

We additionally validated our numerical results both

quantitatively and qualitatively. Quantitatively, we per-

formed ablation studies on the actual impact of the causal-

ity factors on producing valuable causality-driven feature

maps. As expected, when the causal weights are replaced

with random vectors, the accuracy of the final model is

worse than its causally-driven counterpart (see Table 2).

This seems to suggest that, albeit weak, the causality signals

learned during training help the network. Qualitatively, we

generated Grad-CAM heatmaps to highlight the regions of

the input image that strongly influence the network’s output.

Figure 2 presents examples for both the 2-way and the 4-

way experiments. In both cases, we calculated the heatmaps

w.r.t. the ground truth target when all three types of models

correctly classified the images. The heatmaps reveal dis-

tinct patterns between the baseline model and the causality-

driven models. The former tends to focus on a larger area of

the image, including regions outside the prostate and lesion

boundaries. Conversely, the causality-driven models con-

centrate on smaller areas, predominantly encompassing the

prostate and the lesion. Figure 2 (c-e), which depicts the 2-

way experiment, shows that the baseline model (Figure 2 c)

primarily attends to the left half of the image, encompass-

ing the lesion as well as non-prostate tissues. In contrast,

the mulcat version (Figure 2 d) exhibits a more focused

heatmap, highlighting mainly the prostate and a portion of

the lesion. The mulcatbool case (Figure 2 e) further refines

the focus by emphasizing the prostate and a larger portion

of the lesion. Similarly, as for the 4-way experiment, the

baseline model (Figure 2 h) pays attention to the left half of

the image. In contrast, the mulcat and mulcatbool versions

(Figure 2 i-j) prioritize the lesion’s immediate surroundings.

Although all three models produce accurate predictions, the

heatmaps demonstrate that the causality-driven module en-

ables better localization of relevant regions, providing more
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Setting 2-way 1-shot 4-way 1-shot 4-way 1-shot*
Main results

Non causality-driven 0.539 (0.141) 0.585 (0.068) 0.586 (0.118)

Causality-driven mulcat 0.550 (0.144) 0.611 (0.069) 0.712 (0.118)

Causality-driven mulcatbool 0.556 (0.141) 0.614 (0.067) 0.713 (0.119)

Ablation study
Ablation mulcat 0.535 (0.143) 0.557 (0.063) 0.557 (0.111)

Ablation mulcatbool 0.540 (0.139) 0.571 (0.068) 0.612 (0.119)
Table 2. Results of the best-performing models w.r.t the causality setting and causality method compared to the non-causality choice for

2-way and 4-way experiments. *: trained to distinguish four classes (ISUP 2− 5), but the AUROC is computed between ISUP 2 vs. rest.

Figure 2. Impact of causality on the learned models. From left to right, the columns represent the input test images, the binary masks for

the annotated lesion, the Grad-CAM activations for the baseline models (not causality-driven), the Grad-CAM activations for the mulcat
models, and the Grad-CAM activations for the mulcatbool models. Each row represents a different test case. This image is best seen in

colour.

reliable explanations for the model’s predictions.

Comparing the 4-way experiment to the 2-way experi-

ment, the former produced better classification results. In-

deed, despite being a more complex task, the mean AU-

ROC across all classes is higher. We argue that two factors

contribute to this outcome, both associated with the meta-

training phase. Firstly, in the 4-way experiment, the model

encounters a more diverse range of tasks, as the four classes

can be selected from a pool of eight distinct options. In con-

trast, the 2-way experiment encompasses only four classes

in total. Secondly, for the 4-way experiment, in each meta-

training task, the model is trained to distinguish a higher

number of classes, representing a more challenging task

w.r.t. the binary case. Consequently, the model is better

equipped to handle the testing phase, resulting in improved

performance. This superiority becomes even more evident

when examining the models’ performance in the 4-way ex-

periment in classifying ISUP class 2 (representing LG le-

sions) against all other classes (representing HG lesions).

Notably, when the mulcat and mulcatbool causality-driven

modules are embedded into the model, the AUROC value

for this particular task increases by almost 16%.

Our work comes with several limitations. We only used

ResNet18 as our backbone network, and this might have

limited the opportunity to find better-suited architectures

able to detect finer details in the image and consequently

extract more informative latent representations. In addition,

we performed our experiments only in an OSL setting, so

limiting the classification performance of our models. In

fact, we must note that the performance values obtained are

not yet sufficient for the clinical practice. Finally, we vali-

dated our method on only one dataset.

Despite that, our findings indicate that integrating a

causality-driven module into a classification model can

enhance performance, even with severe data limitations,

which are common in medical imaging. The causality-

driven approach not only improves overall classification re-

sults but also helps the model focus more accurately on the

critical regions of the image, leading to more reliable and

robust predictions. This aspect is particularly critical in

medical imaging, where precise and reliable classification

is crucial for effective diagnosis and treatment planning.
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