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Abstract

This paper explores feature selection and fusion methods
for predicting the clinical outcome of post-stroke aphasia
from medical imaging data. Utilizing a multimodal neu-
roimaging dataset derived from 55 individuals with chronic
aphasia resulting from left-hemisphere lesions following a
stroke, two distinct approaches, namely Early Fusion and
Late Fusion, were developed using Support Vector Regres-
sion or Random Forest regression models for prognosticat-
ing patients’ functional communication skills measured by
Western Aphasia Battery (WAB) test scores. A supervised
learning method is proposed to reduce the number of fea-
tures derived from each imaging modality. The fusion ap-
proaches were then applied to find combinations of these
reduced feature sets that yield the most accurate WAB pre-
dictions. The same nested training/validation/test sets were
used for the feature selection and fusion methods. Exper-
iments showed that the best model based on the correla-
tion metric is a Late Fusion RF model (r=0.63), while the
best model based on the RMSE is an Early Fusion SVR
model (RMSE=16.72). Experiments also revealed several
feature set combinations that yielded more accurate predic-
tions than both single-modality feature sets and feature sets
that combine all modalities, justifying both fusion and re-
duction of features derived from multimodal neuroimaging
data. It was also found that the percentage of tissue in gray
matter regions of the brain, spared by the stroke as identi-
fied on structural Magnetic Resonance Imaging, is the sin-
gle feature set that appeared in all highest ranked feature
set combinations of both fusion approaches.

1. Introduction

Aphasia, a language disorder characterized by impair-
ment in language comprehension and speech production, af-
fects approximately one-third of stroke survivors [15]. Pre-
dicting the evolution of aphasia is important for clinicians
to choose treatment and for patients to engage in their re-

covery process. Analyzing multimodal neuroimaging data
of individuals with aphasia, previous work has focused on
the binary problem of predicting whether patients will re-
spond or not respond to treatment, measured by changes
in patients’ Western Aphasia Battery (WAB) test scores
[2, 9, 19]. Other works have proposed methods to predict
WAB scores from multimodal neuroimaging data but with
features selected using the entirety of the dataset [18, 23].
In this work, we develop approaches for predicting WAB
scores by selecting features only using data from the train-
ing folds and not test folds and thus avoiding potentially
biasing the predictors.

The creation of predictive models for neuroimaging data
faces challenges stemming from an imbalance between the
large number of features and the limited number of sub-
jects available for analysis. This imbalance raises concerns
about overfitting, wherein the predictive models may be-
come overly tailored to the specific dataset, potentially re-
ducing their generalization capabilities. To address this,
researchers commonly employ feature reduction strategies,
but commonly this has been done using the entirety of the
dataset. We show how a nested cross-validation proce-
dure can be used to avoid selecting features using the en-
tire dataset but rather choosing them within each training
fold of a supervised learning scheme that also uses the same
training/test data splits as the validation experiments of the
modality fusion methods.

The input features to the proposed prediction methods
have been processed from resting-state functional Mag-
netic Resonance Imaging (fMRI), Diffusion Tensor Imag-
ing (DTI), and structural MRI. These neuroimaging modal-
ities offer the opportunity to capture complementary infor-
mation about brain structure, connectivity, and function. By
leveraging the strengths of each modality, studies that com-
bine multimodal neuroimaging data have the potential to
provide a more comprehensive and nuanced understanding
of the relationship between brain damage intact brain tis-
sue functionality, and language function in individuals with
aphasia [18].
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In multimodal medical data analysis, early and late fu-
sion approaches have been used, which are also called fea-
ture and probability fusion approaches [12, 14]. Our work
proposes two fusion approaches to combine aphasia input
data. In the early fusion approach, the reduced feature sets
derived from each imaging modality are stacked into a sin-
gle vector that is then interpreted by a prediction model, ei-
ther a Support Vector Regression (SVR) or a Random For-
est (RF) regression model (two widely used classical ma-
chine learning models), which predicts the patient’s WAB
test score. The late fusion approach has two phases. In the
first phase, each reduced feature set is interpreted by its own
prediction model, again, either an SVR or RF. In the second
phase, the prediction values obtained by these models are
then stacked and passed into another SVR or RF that serves
as an interpreter of these predictions and yields the patient’s
predicted WAB test score.

Our experiments show that there is no clear winner
among the two fusion approaches. However, more impor-
tantly, when applied to an exhaustive number of multimodal
feature combinations, these approaches produce prediction
models that can be used to evaluate which feature combina-
tions are most useful as predictors of aphasia severity. They
also show the importance of feature reduction.

In summary, this paper contributes to the existing litera-
ture by

• Developing two fusion strategies to predict aphasia
severity of patients from features derived multimodal
neuroimaging data,

• Proposing a principled supervised feature selection
method,

• Determining predictive importance of different multi-
modal combinations of feature sets.

2. Background
Aphasia and WAB test scores. Among the various con-
sequences of stroke, Aphasia stands out as one of the most
devastating conditions. Clinicians face considerable chal-
lenges in accurately assessing the severity of Aphasia and
tailoring appropriate interventions to meet the unique needs
of each patient. Our study focuses on predicting the severity
of Aphasia in individuals with left-hemisphere lesions, who
are known to be at higher risk for language impairments.

To address the challenges in aphasia assessment, the
Western Aphasia Battery (WAB) test has emerged as a
widely used clinical tool to measure the severity of apha-
sia by evaluating various linguistic skills, such as speech,
fluency, auditory comprehension, reading and writing, and
well as some non-linguistic skills, such as drawing. High
scores correlate with good functional communication skills
in stroke patients with aphasia [1]. In this study, we use

patient scores from the revised WAB test [16], which we
simply call WAB scores.

Previous Neuroimaging Work. The investigation of brain
damage manifestation in aphasia through the analysis of
multimodal neuroimaging data within the same study has
been the focus of prior research efforts, incorporating var-
ious structural and functional measures for diverse objec-
tives, including the identification of neurological biases
of language and the examination of language recovery
[2, 8, 20, 25, 27]. However, our current understanding of
the factors distinguishing treatment responders from non-
responders in aphasia is limited [6]. Therefore, further ex-
ploration of this topic is crucial to advance our comprehen-
sion of the intricate relationships between brain damage,
neural functionality, and language impairments in individ-
uals with aphasia. Additionally, investigating the influence
and interaction of lesion size and location with functionally
intact brain regions holds promise for the development of
personalized rehabilitation strategies in aphasia, addressing
the individual variability in treatment response [5, 17].

The combination of multiple neuroimaging modalities
within the context of post-stroke aphasia and its association
with aphasia severity remains an ongoing area of investi-
gation. Efforts have been made to examine the patterns of
brain damage and structurally and functionally intact corti-
cal and subcortical regions that correspond to aphasia sever-
ity [10, 13, 23, 30]. All these works are based on the ratio-
nale that using multi-modal complex higher-order functions
like language are represented in widely distributed cortical
networks [21, 26, 28].
Previous Machine Learning Work. As mentioned above,
previous work proposed machine learning models that ad-
dress the binary problem of distinguishing patients that will
respond or not respond to treatment [2, 9, 19]. Gu et al. [9]
suggested the use of a Random Forest model as the binary
prediction model due to the interpretability of the results.
The feature set included only structural MRI data and pa-
tient demographics. Their work pointed to the importance
of the features that measured the fraction of spared brain is-
sue in gray matter regions. Lai et al. [19] proposed the use
of Support Vector Machine and Random Forest models for
the binary prediction problem, additionally using functional
MRI data. Billot et al. [2] developed the most comprehen-
sive study on binary prediction of aphasia response, includ-
ing multimodal data from structural and functional MRI, as
well as diffusion Tensor imaging (DTI). Their results show
the importance of aphasia severity, demographics, measures
of anatomic integrity and resting-state functional connectiv-
ity as predictive feature combinations.

Two previous studies addressed the regression problem
of predicting the WAB test score of aphasia patients [18,
23]. The study by Pustina et al. [23] proposed a method,
called STAMP for “stacked multimodal predictions” that
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Figure 1. Histogram of the WAB scores of the 55 patients in our
study (mean = 68.5, median = 74.3, std. dev. = 22.7).

uses features derived from structural and functional MRIs
and DTI, including graph theoretic features. The method
involved a two-phase approach, where features were elim-
inated recursively in the first phase by modality-specific
Random Forests. The resulting modality-specific predic-
tions were interpreted by another Random Forest in the sec-
ond phase. Kristinsson et al. [18] proposed the use of SVR
prediction models directly on the stacked features derived
from structural and functional MRI and cerebral blood flow.
They showed that a feature-reduced multimodal prediction
model yielded the most accurate prediction (up to r=0.67)
compared to models that used the neuroimaging modali-
ties separately or all features combined. The results of our
study, showing the benefits of multimodal prediction, align
with the literature. In addition, our work avoids selecting
feature combinations using the entire dataset, which we will
henceforth call Oracle Selection, an issue that both Pustina
et al. [23] and Kristinsson et al. [18] mention, and proposes
a more principled supervised selection method instead.

3. Imaging Data and Feature Extraction

This study utilizes a dataset collected from 55 patients
recruited at Boston University, Johns Hopkins University,
and Northwestern University. These patients demonstrate
varying levels of aphasia severity, as depicted in Figure 1.
We processed the patient structural MRI scans to compute
lesion size, white matter and grey matter remaining percent-
ages in each brain region of the left hemisphere, given their
strong association with language-related functions. From
fMRI scans, we obtained resting-state measurements in the
form of 50 × 50 connectivity matrices from which we ex-
tracted a subset of 625 values as in [2] and also computed
graph theoretic measures (betweenness, degree, efficiency,
transitivity) . We used the Brain Connectivity Toolbox
[24], see also Bullmore and Sporns (2009) [4]. DTI data
produced diffusion-based fractional anisotropy (FA) values.

Table 1. Neuroimaging dataset collected from 55 patients

Data Feature Set Symbol #
Dem. Age, education, time poststroke DM 3
DTI Fractional anisotropy FA 12
fMRI Bidirectional correlations RS 625

Betweenness Bet 50
Degree Deg 50
Efficiency Eff 50
Transitivity Trans 50

MRI Percent of spared gray matter PSG 69
MRI Percent of spared white matter PSW 36

We also used demographic information of the patients (age,
post-stroke onset of aphasia, education) as a feature set.
For convenience, we assigned shorthand notations to each
modality, with their dimensions presented in Table 1. The
nine feature sets have a total number of 945 dimensions.

4. Supervised Feature Selection
We propose a Supervised Feature Selection algorithm

(see pseudocode of Algorithms 1 and 2 below) that deter-
mines how many and which features will be used by a par-
ticular fusion method to predict WAB scores. The algorithm
computes this per modality, typically reducing the size of a
feature set significantly. Feature reduction is particularly
important for the resting state data (as noted previously by
others [19, 23]), which here contain 625 features per patient.
Per modality, the algorithm is called four times, computing
separately, for each fusion approach (early or late fusion)
and each prediction model (SVR or RF), the optimal feature
set to be used in predicting WAB scores. The optimality cri-
terion will be described below.

Our design of the Supervised Feature Selection al-
gorithm was inspired by nested cross-validation pro-
cedures that split a dataset into three disjoint sets,
[[train:validate]:test], train a machine learning model on
the train data, validate its hyperparameters on the validate
data, and then test its performance on the test data. Re-
serving the data in a particular test set Dtest for later (lines
7, 8 of Algorithm 2 for early/late fusion, different splits
of [train:validate] data are evaluated for feature selection
within Algorithm 1 (lines 7, 8, 9) The Supervised Feature
Selection algorithm trains and tunes the hyperparameters of
an SVR or an RF in this manner. These hyperparameters in-
clude the number k of features to be kept for a given modal-
ity.

Specifically, for each train data set Dtrain, Algorithm 1
searches through possible numbers k of features (line 4).
Within each training sub-fold D′

train (among 10 sub-folds),
Algorithm 1 then computes the empirical cross-correlation
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Figure 2. Overview of method. Imaging data are processed into feature sets that are reduced using the Supervised Feature Selection
Algorithm. Selected feature sets are used by Late and Early Fusion approaches to predict aphasia recovery outcome using RF or SVM
prediction models.

coefficient between the feature value (for each feature s in
the feature-set S) and the ground-truth WAB score across
all patients in D′

train. It then sorts features in decreasing or-
der of the the absolute value of their cross-correlation co-
efficient (line 10). Then for the k under consideration,
features Sk which occur among the top k features most of-
ten across all 10 training sub-folds (see line 18) are chosen
to train M (SVR or RF) to predict WAB scores using the
entire training fold Dtrain (see line 19) and tune its hyper-
parameters using the same 10 sub-folds created previously
in line 3. This yields a model Mk together with its average
10-fold cross-validated predictive performance (RMSE) Vk

(lines 20, 21). The value of k with the best Vk (smallest
RMSE) is the optimum number of features k∗ for Dtrain and
Sk∗ is the optimum set of features for Dtrain returned by Al-
gorithm 1. Note that this optimality is specific to Dtrain, and
so these optimal features can be different for each test set
and modality. The tests sets and features selected in this
manner are used to evaluate the fusion methods we propose
next.

5. Multimodal Fusion Approaches for WAB
Score Prediction

In this study, we explored two distinct stacking-based
multimodal approaches, Early and Late Fusion, to predict
WAB test scores using different combinations of modalities

(see Fig. 2).

The Early Fusion (EF) approach takes the reduced fea-
ture sets, computed by the Supervised Feature Selection al-
gorithm for each neuroimaging modality, and stacks them
into a single vector that serves as the input to a WAB score
prediction model, i.e., a SVR or a RF.

The Late Fusion (LF) approach uses “prediction stack-
ing,” a strategy used in machine learning where prelimi-
nary predictions (see line 22 in Algorithm 1) from different
data sources are combined to make final predictions [3, 29].
Specifically, a separate prediction model (also either a SVR
or a RF) for each imaging modality is used to predict a WAB
score based on the reduced feature set for that modality. The
resulting set of WAB scores are then stacked into a score
vector that serves as the input to a single prediction model
that then predicts a WAB score for the combined input.

The visualization of the fusion approaches in Fig. 2
shows the combined use of every feature modality. Details
of training and evaluating both fusion approaches are ex-
plained via pseudocode in Algorithm 2. We also evaluate
the fusion approaches for combinations of feature sets that
only include a subset of modalities. Given that there are 9
modalities, there are 29−1 = 511 feature set combinations,
which we all tested for each of the two fusion approaches
and two types of prediction models.
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Algorithm 1 Supervised Feature Selection (S,Dtrain,M)

1: Input: Feature set S, training data fold Dtrain, regres-
sion model M

2: Output: Optimum set of features and prediction set
3: Split:Dtrain into 10 disjoint equal-size subsets randomly
4: for k ← 1 to |S| do
5: Initialize: for each s in S, set Cs ← 0
6: for j ← 1 to 10 do
7: Denote: the jth subset of Dtrain as D(j)

train

8: Designate: Dval ← D
(j)
train

9: Designate: D′
train ← Dtrain \D(j)

train
10: Rank: features by the magnitude of their corre-
11: -lation with WAB scores within D′

train
12: for each s ∈ S do
13: if s appears among top-k features then
14: increase Cs by 1
15: end if
16: end for
17: end for
18: Designate: Sk ← {s|Cs ∈ top k of C1, . . . , C|S|}
19: Train & Tune:M with Sk using Dtrain and the same

10-fold cross-validation as in line 3
20: Denote: the trained and tuned model as Mk

21: Denote: the performance of Mk on Dtrain as Vk

22: Denote: the predictions of Mk on Dtrain as Pk

23: end for
24: Denote: k∗ ← argmin

k
Vk

25: Return: Sk∗ , Pk∗

6. Cross Validation Experiments

We utilized the Support Vector Regressor [7] and the
Random Forest Regressor [11] as our prediction models.
For the SVR, we tuned 5 hyperparameters, their testing pa-
rameter choices are listed in Table 2. The RF underwent
tuning for three hyperparameters: the maximum depth of
trees, the maximum number of features considered during
the splitting process, and the maximum number of trees
used for predictions. Details of the hyperparameter choices
for the Random Forest can be found in Table 3. All experi-
ments were conducted using the sci-kit-learn library [22].

To evaluate the predictive performance, we measured
the Root Mean Square Error (RMSE) of the trained pre-
diction models in predicting WAB scores. The RMSE of-
fers an indication of the proximity between the predictions
and the actual values. We also employed the normalized
cross-correlation between the predicted WAB scores and
the ground truth scores as a performance metric. This met-
ric provides insights into the linear association between the
predicted and actual scores.

We used the same data splits into nested

Algorithm 2 Early/Late Fusion (D,M)

1: Input: Dataset D, model M
2: Output: Predictions list P
3: Split: D into 11 equal-size subsets randomly
4: Initialize: P as an empty list of predictions
5: for i← 1 to 11 do
6: Denote: the ith subset of D as D(i)

7: Designate: Dtest ← D(i)

8: Designate: Dtrain ← D \D(i)

9: for each feature set S do
10: (Sk∗ , Pk∗) = Algorithm 1(S,Dtrain,M)
11: end for
12: Denote:T←{Sk∗} family of all reduced feature sets
13: Denote: PT ← {Pk∗} family of all prediction-sets

of reduced feature sets.
14: if Early Fusion then
15: for all feature-set combinations t ⊆ T do
16: Train & Tune: M with t on Dtrain and the

same 10-fold cross-validation as in line 3 of Algo. 1
17: Append: predictions on Dtest to P
18: end for
19: end if
20: if Late Fusion then
21: for all prediction-set combinations p ⊆ PT do
22: Train & Tune: M with p on Dtrain and the

same 10-fold cross-validation as in line 3 of Algo. 1
23: Append: predictions on Dtest to P
24: end for
25: end if
26: end for

Table 2. Hyperparameters explored for Support Vector Regressor

Hyperparameter Values
kernel Linear, RBF
C 1, 10, 50
gamma 10−3,10−2,10−1,1
tolerance 10−6,10−5,10−4,10−3,10−2,10−1,1
epsilon 10−6,10−5,10−4,10−3,10−2,10−1,1

Table 3. Hyperparameters explored for Random Forest Regressor

Hyperparameter Values
Max. Depth 2, 5, 7, 10, 15, 20, 25, 30
Max. Features sqrt, log2, 0.1, 0.2, 0.3
No. of Estimators 100, 150, 250, 300

[[train:validate]:test] sets as we used for the Super-
vised Feature Selection algorithm, described in Section 4.
With these data splits, we conducted a nested cross-
validation procedure to train and tune the SVR and RF
models used in the fusion approaches. Given the data of 55
patients, we used a data split of [45:5:5]. This means that
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the “outer loop” involved 11 tests of 5 patients (11-fold
cross-validation), and the “inner loop” 10 validations of
trained models (10-fold cross-validation).

In addition to conducting four cross-validation experi-
ments for each of the four fusion/prediction model pairs,
where the features are selected by the Supervised Selection
Algorithm, we also conducted the experiments with Ora-
cle Selection of features. With Oracle Selection, the val-
ues of a particular feature for all patients are stacked into
a 55-dimensional vector and correlated with the ground-
truth WAB scores of the patients. The correlation values
are sorted to yield the ranking of the features. The opti-
mal number k per modality is chosen as in the Supervised
Selection Algorithm.

7. Results and Discussion
The average performance results of our cross-validation

experiments are given in Table 4. We list the average RMSE
and r for the the four fusion/prediction model pairs across
the 11 test folds. We show the results when the features
were selected by the Supervised Selection Algorithm and
the Oracle Selection method. Both fusion approaches and
prediction model types yield similar performance values.
With the Supervised Selection Algorithm, for both RF and
SVR, the Early Fusion Approach has lower RMSEs than
the Late Fusion Approach but has higher correlation values
for RF. This ordering is reversed for the Oracle Selection
Method.

The performance with Oracle Selection is significantly
higher than with the Supervised Selection Algorithm. This
is noteworthy. It shows that having access to all data for fea-
ture selection gives the machine learning model an advan-
tage. We warn that these higher levels might be misleading.
The models are not likely to uphold such high levels for un-
seen data, as our experiments with the Supervised Selection
Algorithm shows.

The Supervised Selection Algorithm when used with an
SVR model reduced the number of features from those in
Table 1) to the following mean values per modality: DM
2, FA 6, PSG 18, PSW 12, RS 75, Bet 42, Deg 13, Eff 7,
Tran 12. When used with a RF, the features were on average
reduced to: DM 2, FA 5, PSG 7, PSW 31, RS 116, Bet 33,
Deg 37, Eff 20, Tran 14.

We further study the performance of our methods with
respect to feature combinations. We list the fold-mean
and standard deviation values (across folds) of RMSE and
r for the top ranked feature combinations (ranked by mean-
fold-RMSE), all features, and single features in Table 5 for
Early fusion with RF. The table shows that top ranked fea-
ture combinations have similar RMSE and r values. Using
all modalities is not advantageous (only rank 50), and pre-
diction based on single feature sets performs poorly. For the
other three approaches, we show the top three ranked fea-

Table 4. Average prediction performance on test sets in nested
cross-validation experiment.

Early Fusion Late Fusion
RF SVR RF SVR
Supervised Feature Selection

Mean RMSE 17.41 16.72 17.45 16.72
Mean r 0.48 0.64 0.58 0.58

Oracle Selection
Mean RMSE 15.19 14.4 13.78 13.36
Mean r 0.80 0.77 0.80 0.81

ture combinations (ranked by mean-fold RMSE), as well as
the best combination based on r, and the results for com-
bining all features in Tables 6, 7, and 8.
Feature importance plots: To gauge the importance of
each feature set, we measure the number of times each fea-
ture set appears within top-ranked combinations based on
mean-fold RMSE metric for rank values ranging from 1
through 511, as shown in Figure 3. The left subplots il-
lustrate the cumulative frequency across all modality com-
binations, while the right graphs specifically focus on the
top-20 modality combinations to give a better idea of the
best-performing feature set combinations. The discussion
below is based on Figure 3.
PSG is an important predictor: In the plots for Late Fu-
sion with SVR and RF, PSG visibly stands out as the most
included feature set among all the feature set combinations.
This is also observed in the Early Fusion approach with RF.
In the case of Early Fusion with SVR, Percent Spared White
Matter (PSW), Demographics information (DM) and Per-
cent Spared Gray Matter(PSG) frequently occur among the
most included feature sets based on different numbers of top
feature set combinations.
Next most important predictor: For the Late Fusion ap-
proach, RF and SVR have different best predictors beyond
PSG. RF gives more importance to Bet as can be seen from
the LF/RF plot, while SVR gives more importance to FA
and Eff. When we focus only on the top-20 feature set
combinations for Late Fusion, RF gives almost the same
importance to PSG and Bet in the first 3 or 4 combinations,
but Bet becomes prominent thereafter and other feature sets
have varying levels of importance. In the case of SVR, FA
occurs almost as frequently as PSG until the top 18 com-
binations beyond which Eff takes over as the next most in-
cluded feature set.

For the Early Fusion approach, RF includes Bet as the
next most included feature set as can be seen from the plot
for top-20 feature set combinations. SVR in Early Fusion
stands apart from LF-RF, LF-SVR, and EF-SVR as it gives
almost equal importance to PSW, DM, PSG, and FA as can
be seen from the top-20 feature set combinations. Based
on the above observations, beyond PSG, the next most in-
cluded predictor varies based on the fusion approach and
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Table 5. Early Fusion with RF as the prediction model. Lowest mean RMSE and highest r in bold. Results for all features in italics.
Rank Feature Set Combination Mean-fold Std. Dev. Mean-fold Std. Dev. Remarks

RMSE RMSE r r
1 DM PSG 17.41 5.95 0.48 0.46

Top 5 RMSE
2 PSG PSW bet 17.50 5.50 0.53 0.35
3 DM PSG PSW bet 17.50 5.74 0.51 0.38
4 DM PSG bet 17.56 5.89 0.53 0.35
5 FA PSG bet 17.57 5.52 0.54 0.32

23 DM FA PSG PSW RS deg 18.35 5.12 0.58 0.24 Top r
50 DM FA PSG PSW RS bet deg eff trans 18.63 6.13 0.53 0.27 All modalities
24 PSG 18.36 6.04 0.49 0.47

Individual

322 FA 20.85 8.37 0.50 0.35
334 PSW 20.97 5.95 0.52 0.33
339 bet 21.07 6.84 0.39 0.40
426 RS 22.19 8.61 0.11 0.56
502 trans 23.14 7.01 0.28 0.49
506 DM 23.45 6.99 -0.12 0.31
508 eff 23.50 6.70 0.29 0.20
510 deg 23.68 6.32 0.21 0.49

Table 6. Early Fusion with SVR as the prediction model. Lowest mean RMSE and highest r in bold. Results for all features in italics.
Rank Feature Set Combination Mean-fold Std. Dev. Mean-fold Std. Dev. Remarks

RMSE RMSE r r
1 DM FA PSG PSW eff 16.72 5.14 0.59 0.34

Top 3 RMSE2 DM PSG PSW trans 16.96 6.31 0.59 0.37
3 DM FA PSG PSW eff trans 16.97 5.10 0.51 0.43
8 DM PSG PSW 17.20 6.30 0.60 0.37 Top r

224 DM FA PSG PSW RS bet deg eff trans 22.33 10.22 0.00 0.00 All modalities

Table 7. Late Fusion with RF as the prediction model. Lowest mean RMSE and highest r in bold. Results for all features in italics.
Rank Feature Set Combination Mean-fold Std Mean-fold Std. Dev. Remarks

RMSE RMSE r r
1 PSG RS bet deg 17.45 7.39 0.50 0.43

Top 3 RMSE2 PSG bet trans 17.47 7.28 0.52 0.38
3 PSG bet deg 17.53 8.09 0.50 0.43

72 PSW bet deg trans 20.00 8.20 0.63 0.28 Top r
285 DM FA PSG PSW RS bet deg eff trans 21.16 7.20 0.40 0.42 All modalities

Table 8. Late Fusion with SVR as the prediction model. Lowest mean RMSE and highest r in bold. Results for all features in italics.
Rank Feature Set Combination Mean-fold Std Mean-fold Std. Dev. Remarks

RMSE RMSE r r
1 FA PSG eff trans 16.85 7.85 0.20 0.48

Top 3 RMSE2 FA PSG eff 16.98 8.36 0.22 0.47
3 DM FA PSG trans 17.15 7.37 0.21 0.37

116 PSW 20.29 8.14 0.55 0.35 Top r
132 DM FA PSG PSW RS bet deg eff trans 20.51 11.53 0.14 0.36 All modalities

choice of the prediction model. But there are some con-
sistencies among certain predictors like Bet, DM and FA

which are given more importance by both RF and SVR and
they are almost similarly included as PSG among the top-20
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EF/RF

EF/SVR

LF/RF

LF/SVR

Figure 3. Feature set cumulative occurrence plots Early (EF) and Late (LF) Fusion and RF/SVR models. The performance rank is computed
based on Mean-fold RMSE
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combinations in both LF and EF approaches.
Early Fusion versus Late Fusion: To compare both
these approaches, we look at their mean-fold-RMSE per-
formances. The Late Fusion approach has 17.45 and 16.85
as the best mean-fold RMSE values for RF and SVR cor-
respondingly (see tables 7 and 8), while Early Fusion ap-
proach has 17.41 and 16.72 as best mean-fold RMSE val-
ues for RF and SVR (see tables 5 and 6). This pattern
of the Early Fusion approach having visibly better results
than the Late Fusion approach holds true among the top-20
feature set combinations. But the std dev of RMSE val-
ues among folds being high, we cannot claim any of these
approaches is significantly better than the other. A further
analysis by checking for statistical significance among the
top-feature set combinations via Wilcoxon-signed ranked
t-test on MSE values (omitted here due to limited space)
indicated that there are no significant differences among
the top-performing feature set combinations. This suggests
that there is no clear winner among both these approaches.
Results of the t-test also indicated that the top-performing
feature set combinations are significant over the individual
feature sets and all the feature sets combined.

8. Conclusions

We proposed a supervised feature selection algorithm
and two fusion approaches for predicting post-stroke apha-
sia recovery outcomes. Despite relatively low performance
values, our results show that feature reduction and the
use of multimodal features combinations are advantageous
strategies and increase the overall interpretability of the re-
sults. Through our experiments with an exhaustive number
of multimodal feature combinations, we identified feature
combinations that are useful as predictors of recovery out-
comes. Combinations that include the Percent Spared Gray
Matter feature set are particularly effective.
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