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Abstract

The pandemic resulted in vast repositories of unstruc-
tured data, including radiology reports, due to increased
medical examinations. Previous research on automated di-
agnosis of COVID-19 primarily focuses on X-ray images,
despite their lower precision compared to computed tomog-
raphy (CT) scans. In this work, we leverage unstructured
data from a hospital and harness the fine-grained details
offered by CT scans to perform zero-shot multi-label classi-
fication based on contrastive visual language learning. In
collaboration with human experts, we investigate the effec-
tiveness of multiple zero-shot models that aid radiologists
in detecting pulmonary embolisms and identifying intricate
lung details like ground glass opacities and consolidations.
Our empirical analysis provides an overview of the possible
solutions to target such fine-grained tasks, so far overlooked
in the medical multimodal pretraining literature. Our inves-
tigation promises future advancements in the medical image
analysis community by addressing some challenges asso-
ciated with unstructured data and fine-grained multi-label
classification.

1. Introduction

Artificial intelligence (AI) research in the medical do-

main throughout the pandemic prioritized applying super-

vised learning methods to help hospitals diagnose or triage

patients faster. Whilst models were developed at a fast pace,

the majority of these were deemed not fit for clinical use

[24]. Despite these setbacks, the pandemic led to the gen-

eration and collection of substantial medical imaging data,

among others. AI is still considered a high-quality strategy

to assist in diagnosis, severity assessment, and prognosis of

long COVID-19 [22]. The large amounts of unlabelled data

from the pandemic allow the possibility of exploring self-

supervised learning models to be developed. One of the

most popular methods is contrastive visual language per-

taining (CLIP), which enables training on pairs of images

and text with zero-shot capabilities [1]. CLIP eliminates

the need for precisely annotated datasets and learns repre-

sentation from noisy image-text pairs, potentially resulting

in significant time and cost savings.

Applying self-supervised deep learning methods to

open-source data has rapidly gained popularity in medical

and non-medical domains [41, 38, 11, 49]. The current

success of self-supervised learning, particularly contrastive,

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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can be attributed to preventing dimension collapse through

aggressive data augmentation and negative pairs [25] and

utilizing large datasets. For instance, CLIP training from

scratch was enabled by access to 400 million pairs of im-

ages and texts crawled from the web. Contrastive meth-

ods have been highly valuable in downstream tasks like

image classification, enabling the creation of competitive

representations comparable to fully supervised networks

[26, 12].

The medical domain does not have access to such large

datasets since collecting data is costly and requires highly

specialized human expertise [45, 43]. Despite this, there

has recently been a successful application of multimodal

contrastive pretraining techniques [49, 11, 37, 51]. Most

of the aforementioned studies performed pretraining on X-

rays [49, 11], which are easier to gather but less precise

than other modalities, e.g., CT scans. Furthermore, given

the smaller scale of biomedical datasets and the significant

domain shift among different subdomains compared to nat-

ural images (e.g., X-rays to CT scans), it remains an open

research question on how to adapt and fine-tune available

pre-trained models properly [51].

This work focuses on fine-tuning pre-trained encoders

via CLIP on CT images and uncurated radiology reports ob-

tained during the pandemic. We investigate several issues

deriving from fine-tuning on a different domain, such as the

data preprocessing of large volumetric CT scans and long

unstructured reports. Furthermore, in collaboration with

expert radiologists, we establish a fine-grained multi-label

classification task that evaluates disease severity and identi-

fies the presence of five distinct characteristics commonly

associated with COVID-19: pulmonary embolism, pneu-

monia, consolidation, infiltrates and ground glass opacities.

The zero-shot classification task is particularly challenging

due to the uncurated structure of the reports and the fine-

grained nature of the task. To improve the correct matching

across visual predictions and text targets, rather than keep-

ing class-independent templates like standard practice [1],

we design per-class templates.

We specifically focused on patients diagnosed with

COVID-19, as we aim to develop a valuable tool to aid radi-

ologists in identifying individuals at the highest risk. More

broadly, we hope that our empirical analysis could be help-

ful for researchers involved in deploying pre-trained models

on different medical imaging domains by only exploiting

uncurated data such as CT scans and corresponding radiol-

ogy reports.

2. Related Work
Contrastive visual language learning. Contrastive

learning [30, 41] has evolved to be used in multi-modal

data pipelines as popularised in CLIP [1]. When applying

CLIP, we are considering image and text modalities. Recent

work has extended the modalities to six [34]. In essence,

we are mapping multi-modal data to a unified latent space,

where we calculate the similarities between different

elements and learn models to map data across different

modalities effectively. When looking at how to calculate

how similar different modalities are, we first look at the

contrastive loss presented in Radford et al. [1], which Sohn

originally influenced [39] and then was further used in

contrastive representation learning in Oord et al. [31]. An

early attempt in CLIP radiology presented ConVIRT [49],

which maps chest X-rays to reports. CLIP’s mainstream

success has resulted in further applications to the medical

domain [36]. CheXzero builds upon Radford et al. [1] by

finetuning the model to the radiology domain, successfully

achieving human-like results without explicit labels during

training [11]. Similarly, MedCLIP explores CLIP by

applying alternative models to Open AI and CheXzero

[51]. In particular, they employ Swin transformer [50]

and BioClinicalBERT [14] as their respective vision and

text encoders. They also perform ablation studies with a

ResNet-50 [16] as the vision encoder, which provides the

best results in zero-shot classification on COVID-19 and

RSNA pneumonia X-ray datasets. More recently, Zhang

et al. built one of the most extensive medical image-pair

datasets and obtained successful image-text/text-image

retrieval results [37]. One significant key difference is the

increase in context length from 77 to 256. Contrastive

learning has also been successfully applied to lung CT

images [48, 40]. However, there is currently a lack of ex-

tensive literature exploring the application of this technique

specifically to CT images and their corresponding reports.

Multi-modal learning provides opportunities to provide

interesting insights into tasks such as zero-shot learning.

COVID-19. Mohit et al. [29] use convolutional neural

networks (CNNs) as encoders to build a computer-aided di-

agnosis system for COVID-19 to assist radiologists in early

diagnosis. Building upon this, transformers in supervised

diagnosis, as seen in [47], can also be used, as shown in

Dong et al. [9]. Moreso, this work demonstrates strong re-

sults on public datasets by extracting the relevant features

from 3D volumes. We see contrastive learning used to build

a severity system based on electronic health records (EHRs)

[46]. Providing good results, structured data like this is of-

ten difficult to obtain, and we primarily focus more on un-

structured data such as text.

Transformers. Transformers have emerged as dominant

models for natural language processing (NLP) and com-

puter vision, largely due to their effective utilization of at-

tention mechanisms [10, 28]. In NLP settings, self-attention

compares word embeddings to capture the relevance and

importance of each word in the context [6]. A popular

2635



��������	


���������������������	���

������	�����	��������	���

�������������	�����������

��������	���������	�����	����

��	�����	���������������

������	����	���

	���������������	�������	�

������	�������������

����������	��	������

������������� �����	���

����!"#$%#&!$'


(����������	�������	���

����������������������

�	�������)������	��	���	��

*+,*-�.-&�������	���

���������

Figure 1. An example of the CT montage, four random slices taken

from the CT image. The text is a subsection of the radiology re-

port.

choice, BERT [18], was recently fine-tuned on general and

COVID-19-related radiology reports [4, 32]. Influenced

by text transformers, vision transformers have been argued

to be more efficient in training than traditional CNNs [2].

They divide images into fixed-size patches and utilize self-

attention to capture the relationships between them. This

study considers three different vision transformers, ViT-

B/16, ViT-B/32 [2] and Swin-Transformer [50]. The ar-

chitectures in these two transformers differ. ViT operates

on the entire image as a sequence of flattened patches,

whereas Swin Transformer introduces a hierarchical struc-

ture of windows to process images. There have now been

several implementations of vision transformers applied to

medical images [13, 5].

3. Method
3.1. Data pre-processing

CT images are naturally large, given their multi-channel

nature. To decrease the memory overhead and filter out un-

wanted noise [20], we employ a data pre-processing tech-

nique influenced by ILD diagnosis research [42]. In partic-

ular, the pre-processing steps for each CT scan are as fol-

lows:

• We first reduce the size along the axial dimension by

10% on either end. CT scans contain redundant or low

information at the beginning and end of the image.

• We then spatially crop the images to ensure there is

no additional space and we are focusing on the lung

tissue.

• The remaining CT is split into 4 blocks of similar di-

mensions.

• A single slice is randomly selected from each block

and concatenated to form a 4-image slice montage.

• Each 4-slice montage is resized to 224× 224.

To speed up our data loading, we perform the aforemen-

tioned data pre-processing offline. The pre-processing was

performed 10 times for each CT scan. Random slice selec-

tion can be considered a form of data augmentation. In Fig-

ure 1, we can see an example of the image-text pair. For our

text pre-processing, we translate the whole report from Ger-

man to English using the Google Translate API in Python1.

Then we slice the radiology report to focus only on the lung

parenchyma. Additionally, we filter the resulting text with

filters taken from Clinical XLNet [23].

3.2. Encoders selection

Our dataset is considered small compared to previous

radiology datasets like CheXpert [19], and MIMIC-CXR

[3]. We compensate for the lack of data by building upon

previous models specific to our task. We consider es-

tablished medical-based CLIP methods whilst also experi-

menting with extracting their vision encoder and finetuning

with the RadBERT model. The RadBERT model is pre-

trained on 466 million tokens or 4.42M radiology reports

[4]. RadBERT was further fine-tuned in a COVID-19 inves-

tigation on 19,384 radiology reports this year in Chambon et
al. [32], making the model weights publicly available. The

prior representations of the text data learned in this model

suit this study.

The choice of vision encoders is very large, but we are

interested in those exposed to relevant data and tasks. There

is an observation of previous studies opting to use either

vision transformers or standard CNNs such as ResNet-50

[21]. Precisely, we consider the following vision encoders:

• ResNet-50 [21]. Initialization with pre-trained

weights on ImageNet [35] is standard practice in com-

puter vision. We set it up to compare to medical

domain-trained models.

• CheXzero [11]. We initialize the CLIP model [1] with

publically available weights trained on the CheXpert

and MIMIC-CXR datasets. The results in this paper

are very promising in a multi-label task. We are only

changing the image modality input. The text data is

related to lung conditions specific to our radiology re-

ports.

• MedCLIP [51]. It considers both a ViT [2] and

ResNet-50 [21] trained on their image-text dataset.

The datasets picked are relevant to our task. Using

1The reports are originally in German, given that the hospitals are in

the German speaking part of Switzerland.
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[
("CLASSNAME", "no CLASSNAME"),
("CLASSNAME", "no central, paracentral, or

segmental CLASSNAME")
] 

[
("CLASSNAME", "no CLASSNAME"),
("covid CLASSNAME", "no covid CLASSNAME"),
("consistent with covid associated CLASSNAME",
"not consistent with covid associated CLASSNAME")
]

[
("CLASSNAME", "no CLASSNAME"),
("peripheral CLASSNAME", “no CLASSNAME"),

("partly CLASSNAME", "no CLASSNAME"),
("small CLASSNAME", "no CLASSNAME")
]

[
("CLASSNAME", "no CLASSNAME"),
("peripheral CLASSNAME", "no CLASSNAME"),
("accentuated CLASSNAME", "no CLASSNAME"),
("bilateral CLASSNAME", "no CLASSNAME")
]

[
("CLASSNAME", "no CLASSNAME"),
("extensive CLASSNAME", "no CLASSNAME"),
("peripheral CLASSNAME","no CLASSNAME")
]

��
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Figure 2. Zero-shot pipeline. In the left part, we see the five boxes which represent each class’ list of template pairs. For a given class we

iterate through its template pairs to generate the postive-negative zero-shot weights. Multiplying the respective CT montage embedding

with both positive-negative zero-shot weights gives us a similarity. The last stage is calculating the softmax of these two predictions to

result in our final prediction vector.

alternative encoders, we are interested in the results

compared to CheXzero.

• BiomedCLIP [37]. The BioMedCLIP set-up is attrac-

tive to us due to the size of the specific dataset it has

been trained on. They have also increased their context

length when training text encoders.

• COVID-ViT [47]. A custom ViT transformer used

for COVID-19 diagnosis in CT slices. The model has

learned to extract relevant features based on the patho-

logical tissue in each CT slice. If correctly aligned, the

vision encoder should successfully map the extracted

image patterns to the relevant text features.

When considering BiomedCLIP, MedCLIP, and

CheXzero, we explore the transfer without any adaptation,

i.e., frozen encoders, the training of their vision and text

encoders, and the extraction of only their vision encoder

and training with the RadBERT text encoder. We also train

the ResNet-50 and COVID-ViT with the RadBERT text

encoder. When training with the RadBERT, we adapt each

vision encoder to map the text output shape.

3.3. Embeddings alignment

Contrastive visual language training requires image and

text embeddings to be mapped to the same latent space.

Closely following the forward pass in CLIP [1], we align

the output embeddings of the text and vision encoder by

calculating the logits of each modality and passing these

into separate cross-entropy loss functions. During training,

given a batch of B input pairs (xv,xu), we calculate their

respective representation pairs (v,u) by feeding them into

each respective encoder. We use (vi,ui) to denote the i-th
pair. The first loss function is an image-to-text contrastive

loss for the i-th pair:

�
(v→u)
i = − log

exp (〈vi,ui〉 /τ)∑B
k=1 exp (〈vi,uk〉 /τ)

,

while similarly, the text-to-image loss:

�
(u→v)
i = − log

exp (〈ui,vi〉 /τ)∑B
k=1 exp (〈ui,vk〉 /τ)

where 〈vi,ui〉 represents the cosine similarity and τ ∈
R

+ represents a temperature parameter. The temperature

parameter controls the range of the logits in the stated losses

and the strength of penalties on hard negative samples [15].

To calculate the overall loss, we calculate the average of the

losses. Precisely, we add them together and divide them by

the number of modalities, i.e., two.
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Figure 3. Word Clouds. Word cloud generated to assist in class decisions (left). Word cloud with class names removed to assist in template

selection (right).

3.4. Zero-shot multi-label classification

Zero-shot methods have gained traction recently, pop-

ularised by seminal papers such as Socher et al. [33] and

Radford et al. [1]. The difficulty in evaluating our mod-

els lies within the embedding space of our text data. Pre-

vious works have utilized shorter, curated text data. This

allows the design of simple prompts that match the train-

ing distribution, e.g., “A picture of a CAT”. However, our

report data comes directly from radiologists and reflects a

realistic medical setting. To overcome this challenge, we

employ prompt-based engineering, as seen in the latest ap-

proaches [27, 11, 1]. In collaboration with human experts,

we analyze the radiology reports to create sensible classes

for the dataset. We first create a word cloud (Figure 3, left)

on the text data to visualize the most common words. We

settle on the following classes: pulmonary embolism, pneu-

monia, consolidation, infiltrates and ground glass opacities.

Confirming these are sensible and useful classes for radi-

ologists, the human experts label the testing samples for

us. Pulmonary embolism is the least common class, di-

agnosed in approximately one in ten patients. The preva-

lence of the other classes ranges from 65% to 80%. These

classes lay unstructured in the text data we are training on

and remain hidden from the vision encoders as in traditional

zero-shot learning [44]. For a given class, our prompt is

a positive-negative template paired with the word CLASS-

NAME, which is replaced by the class. The choice of tem-

plates required manual analysis of the reports to estimate

what prompts would be a good choice. To justify our tem-

plate choice, we removed the class names from the text data

and generated a word cloud visible in Figure 3 (right). Us-

ing this and with the manual reading of the reports, we iden-

tify prompts which occur with our class names; for exam-

ple, the phrase “bilateral infiltrates” creates our prompt “bi-

lateral CLASSNAME” for the class infiltrates.

Following Tiu et al. [11], to map the models’ prediction

to probabilities, we use a softmax layer for each template

pair. Instead of using the same template pairs for each class,

we propose each class has a list of its template pairs. This

is visualized in Figure 2. More in detail:

• We iterate over each class. In each class, we iterate

over the template pairs. For a given template, we sub-

stitute the class into the template (e.g., no pulmonary

embolism) and pass it into the text encoder. We nor-

malize the embeddings and concatenate the results to

get our zero-shot weights. We are left with a 5D vector

which is our zero-shot weights for each class.

• We pass the respective CT montage into the vision en-

coder and normalize the embeddings.

• We calculate the cosine similarity of the resulting em-

beddings by multiplying the zero-shot weights and the

vision embeddings.

• We estimate the class by calculating the softmax of the

positive-negative predictions.

We do not scale by the temperature parameter τ in the

zero-shot evaluation. We do not include this as we are re-

lying on the representations learned by our encoders. The

parameter is no longer needed to control the range of the

logits. As a CT montage can have more than one label, we

solve a multi-label zero-shot problem by performing binary

classification for each class.

Variable All patients

Age (years ± SD) 61.4 ± 14.2

Male / Female 276 / 84

BMI (Kg
m2 ± SD) 27.9 ± 8.5

Data split (Training / test) 368 / 92

Table 1. Descripive statistics of the patient cohort.

4. Experimental Settings
4.1. Dataset

After the ethics approval, the study collected data from

University Hospital Zurich in Switzerland, resulting in over
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Model Encoders Fine-tuned Context length Macro Avg. F1 (↑) HL (↓) Sub. Acc. (↑)

CheXzero [11] ViT-B/32 | GPT2 � 77 0.43 0.54 0.00

CheXzero [11] ViT-B/32 | GPT2 � 77 0.71 0.29 0.23

MedCLIP [51] Swin-T | BCB � 77 0.62 0.45 0.04

MedCLIP [51] Swin-T | BCB � 77 0.51 0.48 0.12

BioMedCLIP [37] ViT-B/16 | PMB � 256 0.33 0.49 0.06

BioMedCLIP [37] ViT-B/16 | PMB � 256 0.61 0.44 0.09

Table 2. Frozen vs fine-tuned encoders. Comparison between the frozen and fine-tuned models. HL stands for the Hamming loss, and

Sub. Acc. for subset accuracy. PMB, BCB respectively, denote PubMedBERT and BioClinicalBERT.

460 image-text pairs from individual patients taken during

the COVID-19 pandemic. A small summary of the pa-

tient cohort can be seen in Table 1. CT scans were taken

on either Siemens SOMATOM Definition AS, SOMATOM

Definition Flash, or SOMATOM Force machines. We only

consider thorax CT images taken in a single session. Af-

ter resampling the CT images and preparing the montages

(Section 3.1), we are left with 13,240 montages and 460 re-

ports. We split the dataset 80:20 based on patient ID, so

montages from the same CT are not be seen in training and

evaluation. We trained on 11,010 montages along with their

respective reports. When evaluating our test set, we chose

a single montage-report pair for each patient and performed

the zero-shot evaluation.

4.2. Training details

In all training scenarios, we set a maximum of 100

epochs, a batch size of 100, and use the AdamW optimizer

[17] with betas of (0.9, 0.98). When fine-tuning existing

methods (CheXzero, MedCLIP, BioMedCLIP), we adapt

the hyperparameters to achieve the best results. Specifically,

we set the learning rate to [5e-6, 5e-5, 5e-5] and the weight

decay to [1e-4, 1e-4, 1e-3], respectively. For training Rad-

BERT and alternative vision encoders, we fix the learning

rate at 5e-5 and the weight decay at 1e-3.

We implemented offline image data preparations to ac-

celerate data loading. At the bottom of the image process-

ing pipeline described in Section 3.1, we convert montages

to PIL images and tensors. During training, we use a single

NVIDIA RTX A6000 GPU to train the encoders.

4.3. Zero-shot evaluation

To assess the zero-shot capabilities, we consider calcu-

lating the macro average F1 score, Hamming loss, and the

subset accuracy. The F1 score is defined as

F1 =
2 ∗ Precision ∗Recall

Precision+Recall

Where precision and recall are respectively defined as
TP

TP+FP and TP
TP+FN . The macro average F1 gives us the

average of the F1 over all classes.

Hamming loss is often considered in multi-label evalua-

tion. The Hamming loss measures the fraction of instances

where a model’s predictions do not equal the true labels. It

is obtained by dividing the number of incorrect predictions

by the total number of instances and classes.

HL =
1

NL

L∑

l=1

N∑

i=1

Yi,l ⊕Xi,l,

N is the total number of data samples and L is the total

number of classes. ⊕ is Exlusive-OR, Xi,l (Yi,l) stands for

boolean that the i-th index (prediction) is equal to the l-th
label.

Lastly, the subset accuracy measures how accurately ev-

ery sample is predicted. For instance, if our target array is

[0, 1, 1, 0, 0], it is considered correct only if all elements

of the vector are predicted accurately. The prediction [0, 1,

1, 1, 0] is hence considered wrong. This makes the subset

accuracy the most challenging metric to fulfill.

Model Templates Macro Avg. F1 HL Sub. Acc.

CheXzero
CI 0.55 0.47 0.05

CD 0.71 0.29 0.23

RN50
CI 0.46 0.51 0.12

CD 0.50 0.45 0.21

MedCLIP
CI 0.57 0.44 0.13

CD 0.58 0.42 0.15

Table 3. Class-independent (CI) vs. class-dependent (CD) tem-
plates. CheXzero is the ViT-B/32 plus GPT2. The ResNet-50

(RN50) is pre-trained with ImageNet. MedCLIP is the Swin trans-

former. The RN50 and MedCLIP are coupled with the RadBERT

text encoder with a context length of 100 and 200, respectively.

All models are fine-tuned on our dataset.

5. Results
In this section, we empirically investigate the best train-

ing solution for reliably mapping a relatively small set of
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Model Vision Encoder Context length Truncation side Macro Avg. F1 (↑) HL (↓) Sub. Acc. (↑)

CheXzero

[11]
ViT-B/32

100 ← 0.53 0.52 0.08
100 → 0.59 0.45 0.14
200 ← 0.54 0.48 0.09
200 → 0.57 0.46 0.13

MedCLIP

[51]
RN50

100 ← 0.53 0.49 0.12
100 → 0.55 0.48 0.13
200 ← 0.46 0.56 0.08
200 → 0.54 0.51 0.09

MedCLIP

[51]
Swin-T

100 ← 0.5 0.51 0.09
100 → 0.59 0.46 0.09
200 ← 0.58 0.42 0.15
200 → 0.53 0.53 0.09

BioMedCLIP

[37]
ViT-B/16

100 ← 0.48 0.53 0.10
100 → 0.42 0.59 0.10
200 ← 0.50 0.53 0.05
200 → 0.51 0.51 0.10

CovidViT

[47]
ViT

100 ← 0.51 0.49 0.10
100 → 0.55 0.45 0.10
200 ← 0.49 0.52 0.05
200 → 0.54 0.49 0.10

–
RN50

IN-1k

100 ← 0.51 0.54 0.06
100 → 0.50 0.49 0.21
200 ← 0.53 0.51 0.12
200 → 0.45 0.54 0.08

Table 4. Combining encoders. Comparison between models with fixed text encoder (RadBERT) and multiple vision encoders. The left

and right arrows, respectively, mean truncation from the end and beginning of reports. HL stands for the Hamming loss, and Sub. Acc.

for subset accuracy. RN50 IN-1k refers to the ResNet-50 initialized from ImageNet pre-trained weights. PMB, BCB respectively, denote

PubMedBERT and BioClinicalBERT.

CT images to corresponding radiology reports and conse-

quently performing zero-shot predictions. As anticipated,

we consider three approaches: 1) applying frozen baseline

methods, 2) finetuning baseline methods, and 3) training

an alternative text and vision encoder. We also study the

impact of class-dependent and class-independent templates.

We perform additional ablations considering the truncation

side and context length.

5.1. Baselines and finetuning

For a comprehensive comparison, we consider three

baselines that provide publically available weights applying

contrastive visual language models in the medical domain.

CheXzero [11], MedCLIP [51], and BioMedCLIP [37] are

all available and are relevant to our task.

Frozen encoders. As baseline methods, we load the pre-

trained models and apply straight-away the zero-shot eval-

uation on our test set without any modifications. All eval-

uated baseline models feature transformers. The results for

the frozen encoders are shown in Table 2. We see the subset

accuracies are extremely low, from a minimum of 0% to a

maximum of 6%. However, considering none of the models

has been exposed to CT montages before, we see the effect

of large datasets does not compensate for the shift to our

domain, and the models need specific finetuning.

Fine-tuned encoders. Next, we finetune each baseline

on our small dataset and again perform the evaluation. As

expected, we observe an increase in the exact match per-

formance (Table 2). MedCLIP and BioMedCLIP respec-

tively gain 8 and 3 percent points. Notably, CheXzero has

adapted extremely well to our dataset, increasing the subset

accuracy from 0% to 23%. The other metrics are also the

best we observe in this study, i.e., Hamming loss of 0.29

and macro average F1 score of 0.71. This finding suggests

that previous pre-training on large chest X-ray datasets and

their corresponding reports helps achieve better results in

this fine-grained task. Unexpectedly, the macro average F1

and Hamming loss for MedCLIP decreases. We suspect

that the concurrent decrease of these two metrics and the in-

crease in subset accuracy imply a recognition improvement

for a subset of the classes and a deterioration in others. We

finally see a big increase in the macro average F1 score for

BioMedCLIP but not so much in the other metrics.

Class-independent vs. class-dependent templates. In

contrast to previous studies, each zero-shot class has its list

of template pairs. This enables us better target vision fea-

tures to specific prompts for a class. For example, the pos-

itive prompt for pneumonia was often ”consistent with”,

whereas this prompt would not make sense for a different

class like a pulmonary embolism. As shown in Table 3,

CheXzero improves drastically in all three metrics, in par-

ticular with a subset accuracy increase of 18%, when apply-
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ing class-dependent prompts. All previous results, shown in

Table 2, are obtained with class-dependent templates.

5.2. Combining pre-trained models.

Investigating the combination of pre-trained models

trained specifically on COVID radiology reports and chest

image datasets is required to identify the best setups. All

text encoders use the COVID-finetuned RadBERT, which

has prior knowledge of radiological terms such as “pul-

monary embolism” and “ground glass opacities”. We also

select the existing pre-trained CLIP models in the medi-

cal domain and extract their vision encoders. These vision

encoders have all been exposed to chest X-rays, and some

have even been exposed to single CT slices. Furthermore,

we analyze a vision transformer used in COVID diagnosis

and a pre-trained ResNet-50 on ImageNet. The difficulty of

the task is acknowledged in the results achieved, receiving

the best subset accuracy of 21% (Table 4). Interestingly, the

latter is obtained with RN50, which has not been pre-trained

on medical datasets.

We run further ablations considering text and multiple

vision encoders. We experiment with class-dependent vs.

class-independent templates, changing the context length

and truncating from different sides.

Class-independent vs. class-dependent templates. Ta-

ble 3 also shows positive trends for the top-two combina-

tions in Table 4, those trained with RadBERT and an alter-

native vision encoder. With regards to subset accuracy, the

ResNet-50 increases by 9% and MedCLIP marginally im-

proves by 2%. All three metrics improve when applying

class-dependent prompts.

Context length and truncation. Due to our uncurated

radiology reports being longer than standard image-text

pairs, we test varying context lengths equal to 100 or 200.

Previous work in contrastive visual language learning deals

with shorter text, so we explore increasing this to capture

more information. Furthermore, we test whether truncating

the tokens from the left or the right affects the performance.

At the beginning of the reports, we can see the knowledge

describing the lungs. At the end of the report, we see shorter

statements that match our classes. We test whether more

valuable representations can be learned from the beginning

or end.

Our results show the best subset accuracy result with

the shorter context length and truncating from the right.

The best Hamming loss was recorded with a longer con-

text length, truncated from the left, and still records a good

subset accuracy. The average subset accuracy for context

length 100 is 9.3%, and for 200, it is 9.41%. Equally, for

truncation on the left, it is 7.8%, and for the right, it is

9.6%. We conclude that context length did not alter the re-

sults massively, but the truncation side worked better when

truncating from the right.

6. Conclusions
In our paper, we investigated the development of a zero-

shot tool that assists radiologists in detecting pulmonary

embolisms and identifying intricate lung details, including

ground glass opacities and consolidations, automatically.

To meet this goal, we collected uncurated COVID-19

CT scans and corresponding reports from a university hos-

pital to ensure our study faces real-world scenarios. Sec-

ondly, we run tests based on image-text pretraining and

fine-tuning for multi-label zero-shot classification. A clear

challenge represented the variability of the text data and the

consequent framing of the zero-shot targets. We partially

addressed such an issue using a class-dependent zero-shot

template scheme and pre-trained vision-text medical mod-

els. In parallel, we are in the process of curating data from

three additional hospitals. This data will enable us to fur-

ther develop and apply the described methods to longitudi-

nal data, specifically for the prognosis of long COVID-19.

In future work, we would like to see such techniques ap-

plied to 3D volumes to solve tasks such as disease prog-

nostication and progression as discussed recently in review

articles.[8, 7].

We hope our work inspires future research to mean-

ingfully use data collected throughout the pandemic and

improve the automatic identification of fine-grained lung

pathological patterns.
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