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Abstract

Retinal vessels identification plays a critical role in
computer-aided diagnosis and analysis of fundus images.
While Deep-Learning-based segmentation methods have
shown remarkable performances in handling detailed and
pathological fundus, they produce disconnected compo-
nents whereas retinal vessels are a connected structure. In
this work, we developed a post-processing pipeline to en-
sure a connected structure for the retinal vessels networks.
The proposed pipeline named VNR for Vessels Network Re-
trieval, generates segmentations with a single connected
component (CC). This is performed by removing artifacts
that are pixels-miss-classified as retinal vessels, and by
reconnecting branches that are well-classified but discon-
nected. By retrieving the structural coherence in the retinal
vessels networks, we enable measurements such as vessels
length, tortuosity and depth of the vessels tree structure in a
more reliable manner. We evaluate our results using pixel-
wise and structural metrics, comparing against manually
labelled groundtruth. Before applying VNR the predicted
segmentations had an average Dice score of 0.839 with 174
CCs. As a result, 173 CCs need to be deleted or recon-
nected. After applying VNR, the segmentations have an av-
erage Dice score of 0.840 with only 1 CC. VNR is thus able
to retrieve the connected structure of the retinal vessels net-
works while also keeping or increasing pixel information.

1. Introduction
Retinal vessels segmentation is an essential task in

computer-aided diagnosis and in the analysis of fundus im-

ages. It involves separating the blood vessels from the back-

ground to enable further examination and measurements.

In the last decade, Deep-Learning segmentation out-

performed other methods and produces very good results

for this task [9, 3]. Especially, it handles detailed, con-

trasted and pathological fundus images. However, the

Deep-Learning segmentation process results in many dis-

connected components, including branches of the retinal

vessels tree and artifacts [6]. These artifacts are miss-

classified components that should be considered as back-

ground rather than retinal vessels. The branches should

be reconnected to form a connected tree-like structure. In

this work, we developed a method to address the post-

processing of those Deep-Learning segmentations by ensur-

ing a connected structure for the retinal vessels networks.

Our approach aims to improve the consistency and the co-

herence of the retinal vessels structure, enabling reliable

measurements such as vessels length, tortuosity and depth

of the vessels tree structure. In Section 2, we surveyed state-

of-the-art post-processing techniques for artifacts removal

and for retinal vessels reconnection . Additionally, we

presented Deep-Learning approaches for preserving struc-

tural integrity , including network designs, loss functions,

and evaluation metrics. The purpose of this analysis is to

establish various baselines for the application of our pro-

posed pipeline named VNR for Vessels Network Retrieval.

In section 3, we gave technical explanations and illustra-

tions about the steps that compose VNR, which takes Deep-

Learning predicted segmentations as input and generates

segmentations with a single connected component (CC). In

Section 4, we performed experiments to evaluate the pro-

posed VNR. To ensure reproducibility, we utilized publicly

available datasets to compare our results against manually

labeled groundtruth and state-of-the-art techniques. Addi-

tionally, we detailed our data preparation process and the

evaluation metrics we used, including pixel-wise and struc-

tural metrics. In Section 5, we provided a thorough analysis

of our obtained results to evaluate the strengths and limita-

tions of VNR. We justified our algorithmic decisions based
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on the characteristics of the retinal vascular structure and

its inherent constraints. In Section 6, we drew upon our

findings to provide a meaningful conclusion and outline po-

tential directions for future research in the field.

2. Related Work
2.1. Segmentation post-processing

Artifacts removal There is a scarcity of research papers

dedicated to artifact removal in the field. Typically, this as-

pect is included towards the conclusion of network architec-

ture papers. As depicted in [6], the existing post-processing

techniques applied to retinal vessels segmentations can

be classified into three categories: Morphological oper-

ations, Threshold and Deep-Learning Network-Followed-

Network. The techniques that rely on morphological op-

erations use erosion & opening [20], or skeleton [21] [22].

Threshold techniques are more diverse whether on the fea-

ture maps [7], on the connected components’ elongated-

ness [14], or on the connected components’ areas, either by

an absolute threshold [25] [8] or a relative threshold [6]. Fi-

nally, we will disregard the Deep-Learning post-processing

techniques such as [24] due to their probabilistic nature and

thus incapability to ensure an exact behaviour.

Vessels reconnection Retinal vessels reconnection tech-

niques could be classified in two categories, the ones that

ensure a connected structure and the others. Moreover,

some techniques presents how to extend the thickness dur-

ing the reconstruction process, while other concentrates

solely on the skeleton. For those that ensure a connected

structure: in [12], the segmentation is skeletonized then

each endpoint is connected to another endpoint using the

shortest path if satisfying a specific angle condition. It stops

when there is no possibility to create any more path and

keeps the biggest CC. In [11], there is a distinction between

the biggest CC and the smaller CCs. Each smaller CC is re-

connected to the biggest CC by fitting a polynomial curve to

the nearest points of the biggest CC in the smaller CC. Re-

connection is not necessarily performed from the endpoint

of the smaller CC. Nothing is removed during the process,

which means nothing is regarded as an artifact. Now, for

the post-processing techniques that does not ensure a con-

nected structure: in [8], the segmentation is skeletonized

and there is a separation between the biggest CC and the

smaller CCs. Each smaller CC endpoint is connected to

the biggest CC using the shortest path if satisfying a spe-

cific tortuosity and path intensity condition. The technique

has been developed before the rise of Deep-Learning but

the path intensity could correspond to the probability map

generated by a Deep-Learning segmentation. Also, no ar-

tifacts are deleted. In [1], the segmentation is skeletonized

then a maximal reconnection distance is chosen and circles

are generated centered on endpoints with diameter being the

maximal reconnection distance. The image is again skele-

tonized to produce a reconnection between endpoints for

overlapping circles. Still no removal during the process.

Finally, in [5], the biggest CC and the smaller CCs are dis-

tinguished in the skeletonized segmentations. Each biggest

CC crosspoint is reconnected to each smaller CC endpoint

by fitting a polynomial curve using the shortest distance if

satisfying a specific tortuosity and path length condition.

2.2. Deep-Learning for structural preservation

Additionally, we explored Deep-Learning approaches

for preserving structural integrity, including network de-

signs, loss functions, and evaluation metrics. The pur-

pose of this analysis is to establish various baselines for

the application of our methods. The main state-of-the-art

Deep-Learning methods for topology-preservation of curvi-

linear structures including retinal vessels are DVAE [2],

clDICE [17] and JFTN [4]. Those three methods are will-

ing to improve the connectivity/topology/structure coher-

ence and evaluate it in their results. DVAE [2] is a Network-

Followed-Network that uses a U-Net [16] to generate in-

termediate segmentations and their Denoising Variational

Auto-Encoder with a class-weighted Binary Cross Entropy

loss function to produce the final segmentations. To eval-

uate the topological coherence of the outputs 1000 con-

nected path per test image are randomly chosen from the

groundtruth and are compared to the corresponding path

in the segmentation. The prediction is considered correct

if the length difference is within 10%. Otherwise, it is la-

beled as incorrect. If the path does not exist, the prediction

is classified as infeasible. clDICE [17] proposes a Deep-

Learning architecture with a new pixel-wise loss function

that weights the Dice loss [10] with a new centerline Dice

loss based on the skeletonized version of the segmentation.

The Mean Absolute Error on the Betti numbers (Number of

foreground CC and number of background CC) is used to

asses the structural coherence. The method has been experi-

mented using U-Net and shown better scores for topological

and pixel-wise evaluations. JFTN [4] is a new architecture

that mixes U-Net and VGG-16 [18], adds a custom Gated

Attention Unit module (GAU) and a custom Feature Inter-

active Module (FIM). The network combines pixel informa-

tion and boundary information in the FIM and uses Binary

Cross Entropy as a loss function. The evaluation is done

using Completeness, Correctness and Quality that are de-

scribed in [23] as equivalent to recall, precision and Jaccard

and thus are not giving structural coherence information.

3. Methodology
The primary objective of the proposed pipeline named

VNR is to enable measurements of the predicted segmen-

tations. To do so, a connected structure segmentation is
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required, as it is the anatomical arrangement of the ves-

sels. Without a connected structure, several measurements

(e.g. vessels length, tree depth, vessels tortuosity) can-
not be accurately determined. As denoted in [6], without

post-processing, the only part that can be measured is the

biggest connected component in the segmentation (denoted

as CC = 1). However, such segmentation yields a reduced
amount of information compared to the originally predicted

segmentation (denoted as Pred). To face out the current
limits of Pred, we proposed a pipeline composed of two
methods, and that ensures a connected vessels structure.

3.1. Gap Filling procedure

The first method we proposed to overcome the limita-

tions of Pred is the gap filling method. It is motivated by an
analysis of the CC in Pred for the images in each dataset.
As also expressed in [6], in the CC’s area distribution sorted

by decreasing order, it exists a threshold: Best THLD (see

Fig. 1), where everything above is vessels that should be re-

connected. What is under are artifacts and smaller vessels.

Figure 1. CCs area distribution

The method efficiently retains big vessels that require re-

connection, but it also eliminates smaller vessels in the pro-

cess. In order to also keep vessels under the threshold, we

proposed another gap filling procedure. The idea is to ag-

gregate CCs together, according to several criteria, in order

to produce bigger vessels that can be distinguished from ar-

tifacts. The algorithm can be expressed as follows:

Finding candidates This initial stage involves skeletoniz-

ing the vessels, extracting the endpoints (i.e. white pixels
that have only one white neighbor), extracting the cross-

points (i.e. white pixels that have three or more white neigh-
bors) and determining the mutual closest pairs of endpoints-

endpoints and endpoints-crosspoints. The distance is calcu-

lated using the Euclidean metric. Candidates are thus the

pairs of mutual closest points as illustrated in Fig. 2 Ad-

ditionally, to enhance computational efficiency, we remove

the CCs whose areas are under 5 pixels before extracting

the endpoints. Whatever, these CCs are unlikely to be re-

connected based on the subsequent candidate filtering step.

Filtering candidates Once the initial candidate pairs have

been obtained, the next step involves filtering these can-

didates based on various conditions. Firstly, we verify

whether the elements of the pair belong to the same CC.

If they do, we discard the pair as the elements are already

connected. Next, we determine the smallest CC between

Figure 2. Illustration of a predicted segmentation at pixel-level,

where 1-2 is the closest pair (left) and 2-3 is the closest pair (right).

the CCs of the two candidates. Within this smallest CC, we

extract the nearest endpoint or crosspoint to the candidate.

Subsequently, we calculate the angle formed by these three

points at the candidate within the smallest CC. We keep the

pair if the angle deviates at maximum 45 degrees from a

straight line. Furthermore, we employ the Bresenham’s line

algorithm to extract pixel values along a line between the

candidate pair. This enables us to detect the presence of an

existing vessel in the path. In such case, we don’t reconnect.

Reconnecting vessels At this stage of the process, the

candidate pairs that fulfill all the aforementioned conditions

are selected for reconnection. Unlike alternative approaches

that utilize splines of second or third order, our reconnection

path is established as a straight line. The rationale behind

this choice will be thoroughly explored and discussed in the

subsequent section dedicated to the discussion (Section 5).

Propagating thickness In order to effectively propagate

the thickness along the previously drawn line path, several

key steps are undertaken. Firstly, a neighboring kernel (5x5)

is extracted around the endpoint of the smallest CC within

the candidate pair. This kernel serves as a reference for the

desired thickness. Next, the extracted kernel is replicated

over the black pixels at each element of the drawn line.

This process ensures that the thickness is maintained con-

sistently along the vessel path. The rationale behind this

approach is rooted in several observations. Firstly, vessels

typically exhibit a uniform thickness over short distances.

Additionally, there tends to be a change in the vessels thick-

ness around crosspoints. By selecting the thickness of the

smallest CC, we ensure that the reconnection of two vessels

is performed with the appropriate and coherent thickness.

Upon completing the four aforementioned steps of the Gap

filling procedure, results can be illustrated as in Fig. 3. At

the left, the predicted segmentation with gaps to fill. In the

middle, the post-processed segmentation where the recon-

nection paths between gaps that could be filled are drawn in

green. At the right, the manually labeled groundtruth.
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Figure 3. Zoomed images of the Gap Filling procedure: predicted

segmentation (left), post-processed segmentation (mid) where

filled gaps are drawn green, manually labeled groundtruth (right).

3.2. Rebranch or Remove procedure

In the preceding Gap Filling procedure (Section 3.1),

the emphasis was solely on reconnection rather than dele-

tion, with only minimal removal of small artifacts. In cases

where the conditions for reconnection were not met, paths

were not established, but the vessels themselves remained

intact without any deletion. However, in this subsequent

procedure, the approach shifts to not only attempting ves-

sels reconnection but actively removing elements that fail

to meet the specified conditions. This approach enhances

the overall quality and reliability of the vessels segmenta-

tions by ensuring a connected vessels structure.

Finding candidates To identify candidates for reconnec-

tion, we first distinguishes between the biggest CC and all

the smaller CCs. For each smaller CC, we extract all of its

endpoints. Then, for each endpoint, we locate its nearest

endpoint or crosspoint within the same CC. Subsequently,

we obtain the pixels along a line connecting the nearest end-

point or crosspoint to the original endpoint. Finally, if there

exists a main point (point within the biggest CC) along this

line, we consider the endpoint and its nearest main point as

a candidate pair. Otherwise, the smaller CC is removed.

Filtering candidates After the pairs extraction, the only

filtering requirement is that the length of the reconnection

path has to be smaller than the length of the smaller CC. If

multiple endpoints from the same CC are candidates for re-

connection, only the first endpoint matching the conditions

is reconnected, removing others candidates from the queue.

Figure 4. Zoomed images of the Rebranch or Remove procedure:

predicted segmentation (left), post-processed segmentation (mid)

with the added reconnection paths (green) and the removed ele-

ments (violet), manually labeled groundtruth (right).

Next steps of reconnecting vessels and propagating

thickness are the same as for the Gap Filling procedure

(Section 3.1). Results can be illustrated as in Fig. 4. At

the left, the predicted segmentation. In the middle, the

post-processed segmentation where the reconnecting paths

are drawn in green and the removed elements in violet. At

the right, the manually labeled groundtruth.

Some may have noticed in the figure that the violet ele-

ments should not be removed according to the groundtruth.

These limitations will be discussed afterwards (Section 5).

4. Results
4.1. Retinal Vessels Datasets

To assess VNR’s generalizability, and for en-

abling future enhancements of this work, we evalu-

ated performances on four public datasets: DRIVE [19],

DUALMODAL2019 [26], HRF [13] and LESAV [15]. Col-
lectively, the four datasets comprise 137 fundus images with

associated binary manual annotations of retinal vessels. Im-

ages of the four datasets, illustrated in Fig. 5, show the

diversity of the fundus images and their vessels networks.

These images have been captured using different materi-

als (e.g. Canon CR5 non-mydriatic with 3CCD sensor, OT-
110M, Hefei Orbis Biotech LTD, ...), from different angles

(e.g. optic disk centered, macula centered, ...), with differ-
ent resolutions (e.g. 565*584, 3504*2336, ...) and comprise
various pathological signs (e.g. exudates, glaucoma, ...).

Figure 5. DRIVE, DUALMODAL2019, HRF, LESAV

4.2. Predicted Segmentations

In order to obtain the predicted segmentations required

for VNR input, we performed an independent Supervised-

Learning training for each of the four datasets using the

aforementioned segmentation techniques that we referred as

UNetBN [6] and clDICE [17] (Section 2.2). The clDICE

method should maximize the structural coherence of the

predicted segmentations whereas the other method maxi-

mizes the pixel-wise quality. The DVAE [2] and JFTN [4]

methods are not used as discussed afterwards (Section 5).
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4.3. Evaluation Metric

The goal of VNR is to provide a fully connected vessels

structure, thus we evaluate the number of CC in the post-

processed segmentations as suggested in [6]. It is crucial to

note that accurate measurements of the retinal vessels can

only be fully extracted when there is a single CC within

the segmentations. To prevent a good ranking of connected

segmentations with low Precision or low Recall, we incor-

porated a pixel-wise information with the Dice metric.

• Precision =
TP

TP + FP

• Recall =
TP

TP + FN

• Dice =
2 ∗ TP

2 ∗ TP + FP + FN

4.4. Experiments

Results of our experiments are shown in Tables 1 & 2.

The VNR method is applied using the predicted segmenta-

tions (Pred) of clDICE (Table. 1) and UNetBN (Table. 2)
over the four aforementioned datasets. The tables show, for

each dataset and on average, the Dice score and number of

CCs for the Pred, for their measurable parts CC = 1 (i.e.
bigger connected part) and for the VNR application over

Pred. The tables also give information about the gain of
using VNR instead of using CC = 1 and instead of using
Pred. For both Pred from clDICE and UNetBN, the VNR
method fulfills its goals by ensuring a fully connected struc-

ture with in average no loss in the Dice score or a slight

gain. An average similar Dice score between Pred and
VNR is justified by the unwanted removal of some discon-

nected vessels that is balanced by other added reconnection

paths with appropriate thickness. Results show in average a

removal of 173 CC for the Pred of clDICE (Table. 1) and
113 CC for those of UNetBN (Table. 2) . This thus demon-

strated that VNR is robust to the differences in the structural

coherence of Pred. Results of VNR are illustrated in Fig. 6
showcasing differences between the predicted segmentation

(CC=77) and the segmentation after applying VNR (CC=1).

Datasets Metrics Pred CC = 1 VNR
Gain over Gain over

CC = 1 Pred

DRIVE
Dice 0.823 0.821 0.825 +0.004 +0.002

CC 212 1 1 - -211

DUALMODAL2019
Dice 0.841 0.829 0.840 +0.011 -0.001

CC 225 1 1 - -224

HRF
Dice 0.830 0.821 0.828 +0.007 -0.002

CC 151 1 1 - -150

LESAV
Dice 0.863 0.855 0.866 +0.011 +0.003

CC 109 1 1 - -108

Average
Dice 0.839 0.831 0.840 ≈ 0.009 ≈ 0
CC 174 1 1 - -173

Table 1. Evaluations and comparisons of the VNR pipeline applied over segmentations predicted by the clDICE method (Pred).
Results are compared in term of Dice and number of CCs. CC = 1 is the measurable part of Pred, i.e. it’s bigger connected part.

Datasets Metrics Pred CC = 1 VNR
Gain over Gain over

CC = 1 Pred

DRIVE
Dice 0.832 0.833 0.834 +0.001 +0.002

CC 122 1 1 - -121

DUALMODAL2019
Dice 0.848 0.822 0.847 +0.025 -0.001

CC 121 1 1 - -120

HRF
Dice 0.833 0.826 0.831 +0.005 -0.002

CC 150 1 1 - -149

LESAV
Dice 0.864 0.861 0.867 +0.006 +0.003

CC 65 1 1 - -64

Average
Dice 0.844 0.835 0.845 ≈ 0.010 ≈ 0
CC 114 1 1 - -113

Table 2. Evaluations and comparisons of the VNR pipeline applied over segmentations predicted by the UNetBN method (Pred).
Results are compared in term of Dice and number of CCs. CC = 1 is the measurable part of Pred, i.e. it’s bigger connected part.
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Figure 6. Predicted segmentation Dice=0.847 CC=77 (left), segmentation after applying VNR Dice=0.848 CC=1 (mid), groundtruth (right)

5. Discussion

Vessels Network Retrieval Results of the VNR method

are shown in term of Dice and number of CCs in Ta-

bles 1 & 2. The experiments show that VNR is able to

retrieve the connected structure of the retinal vessels net-

works while also keeping or increasing pixel information.

The superiority of VNR compared to Pred is readily ap-
parent when considering the number of CCs, but it may not

be as apparent when comparing it to CC = 1 since both
methods produce a connected structure. Besides the dice

gain, the advantages of VNR over CC = 1 are in term of
retrieved branches and reconnection paths. This behaviour

thus enables measurements such as vessels length, tortuos-

ity and depth of the vessels tree structure in a more reli-

able manner. One potential counterargument to the neces-

sity of post-processing techniques like VNR is the idea that

if predicted segmentations were fully connected, such post-

processing steps would be rendered unnecessary. The argu-

ment posits that by optimizing Deep-Learning algorithms

to produce segmentations with complete connectivity, the

need for additional processing would be eliminated. How-

ever, it is important to consider the probabilistic nature of

Deep-Learning segmentations. Due to this inherent uncer-

tainty, it is impossible to ensure a complete connectivity in

every prediction. While deterministic algorithms could gen-

erate connected segmentations, they cannot handle the com-

plex and nuanced features present in detailed, contrasted,

and pathological fundus images. Moreover, methods that

aim to preserve structural coherence, such as clDICE still

do not guarantee fully connected segmentations. In com-

parison, segmentations generated by UNetBN, which pri-

marily focuses on pixel-wise quality, exhibit a lower aver-

age number of CC with 114 CC, compared to clDICE-based

segmentations with 174 CC. Moreover, relying on the goal

of achieving fully connected segmentations in one process

overlooks the other challenges posed by intricate fundus im-

age characteristics. It is already very difficult to guaranty

for any fundus, a high-quality segmentation taking only into

account the pixel-wise quality. Therefore, VNR is neces-

sary to provide further removal and reconnection steps for

the purpose of enabling reliable measurements of the reti-

nal vessels segmentations. Furthermore, we previously dis-

cussed the DVAE method, although it was not utilized in

our experiments. This decision was made because while

DVAE effectively reduced the number of CCs with an aver-

age of 39 CC, it also resulted in significantly wider vessels

thickness. The widening of vessels is a consequence of the

second network in the architecture which expands all the

vessels, ultimately leading to a higher degree of connectiv-

ity among the elements. It is important to note that this

behavior is fundamentally incompatible with accurate mea-

surements, thus we opted not to employ the DVAE method.

State-of-the-art techniques Before determining the final

combination of steps for VNR (Section 3), we thoroughly

explored various alternative approaches. Among these al-

ternatives, we considered two state-of-the-art techniques,

which are designed to ensure a connected structure within

the vessels networks. Initially, we examined the method

proposed by Mou et al. [11]. This method involves re-
connecting the closest branch points to their closest main

point (point within the biggest CC, as a reminder). How-

ever, we observed that this approach can lead to the recon-

nection of branches from non-endpoints or non-crosspoints,

which compromises anatomical coherence. We also inves-

tigated the work of Niemeijer et al. [12] which involves
the reconnection of endpoints to endpoints. However, the

groundtruth indicates that the correct reconnection points

are mostly located on plain structures of the main vessels in

the network, rather than at endpoints or crosspoints. Con-

sequently, the method resulted in either very few reconnec-

tions or lengthy and incorrect reconnection paths. Conse-

quently, we did not incorporate these methods in VNR.
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Gap Filling procedure Before implementing the current

Gap Filling procedure in VNR, we explored an alternative

approach based on the method proposed in [6]. This method

aimed to remove all artifacts while keeping the most pos-

sible amount of branches. However, the amount of kept

branches can be very low if the method’s threshold is not

well selected. While it was possible to reconnect the re-

maining branches using the Rebranch or Remove procedure

of VNR, this approach resulted in a significant loss of in-

formation. To mitigate the information loss and preserve

a more comprehensive representation of the retinal vessels

networks, we introduced the current Gap Filling procedure

in VNR. This new procedure effectively fills the gaps in the

vessels networks while minimizing the loss of important

vessels information. As mentioned in 3.1 by aggregating

small CC (under conditions) with the Gap filling procedure,

we make them big enough to be considered branches and

not artifacts anymore. Also instead of in [1] where recon-

nection distance is manually chosen, we found very relevant

to use the skeletonized branch length as a condition to avoid

very long or very short reconnection distances that could not

fit all specific branch size. In determining the conditions for

the procedure, we opted to select candidates based on the

mutual shortest pair and subsequently discard those belong-

ing to the same CC. While an alternative approach could in-

volve checking pairs that do not belong to the same CC, this

would result in significantly longer reconnection paths. Our

objective was to ensure that the reconnection path remained

smaller than the length of the CC. Therefore, by employing

our chosen approach, we avoided the need to verify the path

length while achieving the desired outcomes. In predicted

segmentations, some part of vessels can be very small and

very far from the others as in Fig. 4. The violet elements,

according to the groundtruth, should not be removed. How-

ever, it is impossible to determine whether these elements

are small parts of vessels. Even if we assumed the hypoth-

esis that the violet elements represented vessels requiring

reconnection, it remains challenging to determine whether

they should be reconnected to the topmost branch or the bot-

tommost branch. Furthermore, even with this knowledge,

we encounter a significant obstacle due to the small size of

the violet CC and the disproportionately long reconnection

path in relation to the CC itself. Such limitations prevent

us from accurately determining how to reconnect the vio-

let CC, potentially resulting in an incorrect continuation of

the branch. Consequently, these factors can lead to false

measurements and compromise the coherence of the results.

In those situations, the gap filling procedure may not cap-

ture all the small vessels; however, it still outperforms the

method proposed in [6] in this regard. Additionally, in rare

instances, the procedure may result in incorrect connections

of the endpoints of the outermost vessels when they are at

the same time disconnected and identified as mutual closest

pairs. Nonetheless, this issue could be mitigated in future

research by incorporating artery and vein information.

Remove or Rebranch procedure After applying the Gap

Filling procedure of VNR, the remaining artifacts have to be

removed, and the branches have to be reconnected. In ad-

dition to the existing conditions in the Remove or Rebranch

procedure, we investigated on various angles conditions and

analyse if we could extract some generic patterns. Finally,

the angle of reconnection is disregarded since vessels can

be reconnected in any angles. Also, based on the findings

we mentioned discussing the state-of-the-art techniques, we

found out that the correct reconnection points are primarily

located on plain structure (i.e. points with only two neigh-
bors when the structure is skeletonized) of the main vessels

of the networks, and not at main endpoints or crosspoints.

Thus for this Remove or Rebranch procedure we chose to

reconnect the closest branch endpoints to the closest main

point. There are further inquiries that can be made regard-

ing the methods used to establish the reconnection paths,

specifically through splines or straight lines. The splines

technique relies on the selection of the control points and

the endpoint. If the endpoint is not provided and spline

interpolation is employed to determine it, the behavior of

the reconnection path can significantly differ even with a

slight variation of a single pixel in the control points, lead-

ing to highly distorted and false reconnection paths. When

the endpoint is given, two scenarios arise. In the case of

a lengthy path, the splines approach remains highly influ-

enced by the control points, resulting in abrupt angles at

certain points and potential distortions. On the other hand,

for shorter paths, the behavior tends to be less anatomically

inaccurate, resembling a nearly straight line, yet still prone

to distortions. In contrast, straight lines do not require close

monitoring. To summarize, for small reconnection paths,

straight lines prove to be more effective. However, when a

long reconnection path is necessary, it suggests a possible

deficiency in the quality of the predicted segmentations.

Choroidal vessels & Line shaped pathologies Choroidal

vessels refer to the blood vessels that are part of the

choroid, which is a layer of tissue located between the out-

ermost layer of the eye (sclera) and the innermost layer

(retina). The choroid contains a dense network of blood ves-

sels, while line-shaped pathologies can resemble to vessels.

These similarities pose a challenge for Deep-Learning algo-

rithms, as they may mistakenly classify them as retinal ves-

sels. We investigated on methods to differentiate them from

the retinal vessels. Initially, we considered a criterion that

their nearest endpoint to the main structure might not nec-

essarily be the closest to the optic disk. However, we dis-

covered instances where this criterion also applied to retinal

vessels. Similarly, we thought that if the distances between
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their endpoints and the optic disk were too close, indicat-

ing nearly perpendicular alignment with the main structure,

they would not be classified as retinal vessels. However, we

encountered cases where retinal vessels exhibited this char-

acteristic as well. Ultimately, when segmented, these struc-

tures can possess identical descriptions to retinal vessels, in-

cluding similar shapes, positions, tortuosity, and neighbor-

ing distances. Consequently, the most effective approach

to mitigating their inclusion is through enhancing the pre-

dicted segmentations, as there is currently no discernible

evidence to differentiate them at post-processing stage.

Inner branches reconnections Lastly, we delve into the

details of another of our investigated methods called Inner

branches reconnections. The goal of the method is to locally

reconnect vessels that are already globally connected. As an

example, in Fig. 7, the white pixels are globally connected

(CC=1 in the full vessels networks) but in this zoomed part,

the green pair 1-2 can be locally connected. First, we find

the mutual closest pairs of endpoints. Then for each pair we

define a rectangle whose diagonal is the euclidean path be-

tween the endpoints pair. We keep the pairs that belong to a

different CC in their rectangle, meaning that there is no path

between them in the rectangle. Then for each endpoint of

the pair, we find its nearest crosspoint. We then use the two

crosspoint-endpoint informations to determine the direction

from crosspoint to endpoint. From there we want to recon-

nect endpoints pair solely under three criteria. First, the

crosspoint to endpoint directions have to be opposite. Sec-

ond, the leftmost endpoint should reconnect rightwards, the

rightmost endpoint should reconnect leftwards, the topmost

endpoint should reconnect downwards, and the bottommost

endpoint should reconnect upwards. Third, the reconnec-

tion path to be created have to be free of any existing ves-

sels. This algorithm is depicted in Fig. 7. As illustrated,

both yellow and cyan path are anatomically coherent. This

shows a limit to this algorithm but also to general retinal

vessels segmentation post-processing techniques: it is im-

possible to predict the reconnection path taken by a vessel.

Thus, we did not add this further step to the pipeline as we

already ensured a connected structure with current VNR.

6. CONCLUSION
In this study we proposed a post-processing technique

named VNR for Vessels Network Retrieval. VNR ensures a

connected structure for retinal vessels Deep-Learning seg-

mentation. VNR enables measurements such as vessels

length, vessels tortuosity and depth of the vessels tree struc-

ture in a reliable manner. VNR has been tested over seg-

mentations that maximizes pixel-wise quality and other that

preserve structural coherence. The experiments has been

performed over four public datasets and performances were

evaluated with a pixel-wise metric, the dice score and a

Figure 7. Illustration of the inner branches reconnection at pixel

level. 1-2 is a closest pair of endpoints (green). 1-1 and 2-2 are

endpoint-crosspoint (red) pairs. The pair of 1 goes top/right and

the pair of 2 goes bot/left. The endpoint 1 is positioned at bot/left

of the endpoint 2. There are no vessels between endpoints pair 1-2.

Yellow and cyan paths are anatomically coherent vessels patterns.

structural metric, the number of CC. Before applying VNR

the predicted segmentations had an average Dice score of

0.839 with 174 CC. After applying VNR, the segmenta-

tions have an average Dice score of 0.840 with only 1 CC.

The huge CCs reduction is not correlated to a huge dice in-

crease because reconnection paths are mostly made of few

pixels. However, such small paths enable to measure previ-

ously disconnected branches. VNR is thus able to retrieve

the connected structure of the retinal vessels networks while

also keeping or increasing pixel information. VNR outper-

forms all the state-of-the-art methods for the purpose of en-

suring a connected structure. However, even with our anal-

ysis of the general patterns, there is nothing for us and for

others that could assert that every reconnection path is well

placed. And it is also the case for the vessels in the predicted

segmentations. This is inherent to the individuality of the

vessels structures. We know that vessels are connected in a

tree-like manner, but besides that, the path taken by the ves-

sels, their length, their thickness and everything that is mea-

surable is unpredictable for a specific case. This is the rea-

son under the need for measurements, specific patterns can

inform about patients status, but this is also what justifies

the impossibility to assert the correctness of the generated

reconnection paths. In light of these considerations, there

are two potential avenues to explore. Either relying on mean

measurements can be deemed sufficient for diagnosis, ac-

knowledging the limitations and challenges associated with

the structural, generalizability and classification problems

inherent in segmentation-based approaches. Alternatively,

it becomes imperative to explore others diagnostic strategies

that directly analyze the fundus images, aiming to bypass

the need for segmentation steps and overcome the afore-

mentioned drawbacks. By pursuing the latter approach, a

direct diagnosis can be derived from the fundus images, po-

tentially offering a solution that mitigates the inherent limi-

tations in segmentation-based methodologies and enhances

the overall exactness of the diagnostic process.
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