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Abstract

This work presents a novel framework CISFA

(Contrastive Image synthesis and Self-supervised Feature
Adaptation) that builds on image domain translation
and unsupervised feature adaptation for cross-modality
biomedical image segmentation. Different from existing
approaches, our method employs a one-sided generative
model and incorporates a weighted patch-wise contrastive
loss between sampled patches of the input image and the
corresponding synthetic image, which serves as shape con-
straints. Furthermore, we notice that the generated images
and input images share similar structural information but
are in different modalities. To address this, we enforce
contrastive losses on the generated images and the input
images to train the encoder of a segmentation model to
minimize the discrepancy between paired images in the
learned embedding space. Compared with existing works
that rely on adversarial learning for feature adaptation,
such a method enables the encoder to learn domain-
independent features in a more explicit way. We extensively
evaluate our methods on segmentation tasks containing CT
and MRI images for abdominal cavities and whole hearts.
Experimental results show that the proposed framework
not only outputs synthetic images with less distortion of
organ shapes, but also outperforms state-of-the-art domain
adaptation methods.

1. Introduction

Due to the nature of supervised learning, the perfor-

mance of deep neural networks (DNN) suffers from severe

degradation when the domain distribution shifts [27, 8, 28].

One common scenario where such shifts occur is among

biomedical images. In clinical practice, computed tomog-

raphy (CT) and magnetic resonance imaging (MRI) are two

common medical radiological imaging techniques. The dis-

tinct imaging mechanisms result in dissimilarity of CT and

MRI with respect to brightness, contrast, and texture. A

deep learning model trained on CT images to segment brain

tumours may fail to achieve comparable accuracy on a brain

MRI scan. Besides modality, the difference between CT

scanners made by different manufacturers can also cause the

accuracy to decrease. However, it is infeasible to collect la-

beled datasets for all possible biomedical image domains, as

pixel-wise labelling is laborious and requires expert knowl-

edge, not to mention the privacy issues.

All the above obstacles give rise to unsupervised domain

adaptation (UDA) study. There have been numerous works

aiming at improving semantic segmentation performance

on target domain with only the source domain annotated.

One branch of these approaches is to train a single model

that is capable of segmenting different styled images, and

the key is to extract common features shared by different

domains through the encoding path [26]. However, this

kind of feature adaptation is coarse-grained. Images with

different structural information are forced to be similar in

the embedding space, and there could still be a distribution

margin between two domains that the discriminator fails to

detect. In contrast, [31] applied the L2 norm of the differ-

ence between features and the category anchors to drive the

intra-category features closer regardless of domains. How-

ever, they assumed that a model pretrained on the source

domain can generate reliable pseudo-label for target domain

images, which is not necessarily true especially when the

domain shift is dramatic.

Since the unpaired image translation problem was well

tackled by CycleGAN[33], taking advantage of generative

models has become another stream in the field of UDA seg-

mentation. The widely used strategy is integrating a seg-

mentation model with the CycleGAN framework. After the

source domain images are transferred to the target domain,

the corresponding labels would supervise the segmentation

training in the target domain [13, 14, 3, 25]. One drawback

of CycleGAN based approaches is too many models in the

overall framework, especially as some works add additional

discriminators and encoding models for feature adaptation.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

2337



The large number of models makes it difficult to optimize

the parameters and lengthens training iterations. Moreover,

although there is an identity loss function in CycleGAN that

drives the reconstructed image to be exactly the same as the

input image, there is no direct constraint on the input im-

age and the translated image to avoid spatial distortion or

structure variation.

Being aware of previous works’ limitations, this paper

proposes a novel framework CISFA featuring lighter gener-

ative models and self-supervised feature adaptation, com-

prising of a generator for image synthesis and a segmenter

for target domain. For image synthesis, inspired by a new

image translation model named CUT[22], we remove the

path that translates target domain to source domain in the

CycleGAN flow to facilitate training. To exert the shape-

consistency constraint, we maximize the mutual informa-

tion for image patches at the same position between input

images and translated images in latent space. We further

extend the pixel-wise InfoNCE loss in CUT by introduc-

ing an attention mechanism generated from segmentation

labels. This is done by adding weights to the contrastive

loss for non-background pixels so that the area of interest

is emphasized more during translation. On the other hand,

ideally the segmenter only sees target domain images, but

there inevitably exists gap between the distribution of gen-

erated dataset and real objective dataset. Consequently, fea-

ture adaptation is still beneficial for the segmenter. Observ-

ing that a successful generator outputs an image that has

exactly the same contents and details as the input image

except for modality, we realize these paired images serve

as good examples of a positive pair in [4]. Thus, we de-

cide to make use of self-supervised learning to conduct fea-

ture level adaptation for the segmentation model, different

from all previous works. In detail, we add a multi-layer per-

ceptron to the encoder of the segmenter, and project input

images as well as synthetic images to one-dimensional fea-

tures. Then the encoder learns domain invariant features by

reducing the cosine distance of paired features.

We conduct experiments with our method and the state-

of-the-arts on two medical image UDA tasks. For the first

task, we collect 20 CT and 30 MRI abdomen scans from two

public datasets, and for the second, we use the MWWHS

dataset that contains 20 CT and 20 MRI whole heart 3D im-

ages. According to the experiment results, CISFA demon-

strates superior performance in terms of segmentation accu-

racy on the target domain than existing works.

2. Related Works
Domain Adaption for Semantic Segmentation One

straightforward solution to this problem is training the

model to learn domain-independent features. [20] added

two classifiers to the encoder in order to get diverse view for

a feature, and they extended traditional adversarial loss with

an adaptive loss, which was calculated by the cosine dis-

tance between the output of those two classifiers. Therefore,

the follow-up discriminator would focus more on poorly

aligned categories. Instead of using adversarial learning,

[31] tried to aggregate features belonging to the same cat-

egories for different domain images. Since they did not

have annotation for the target domain images, they used a

model pretrained on the source domain to generate pseudo-

labels. [21] fused prior matching to a VAE model to learn

a shared feature space between two domains. More specif-

ically, two domains had a shared VAE module and distinct

encoder and decoder modules, and they applied adversarial

learning to align features extracted from different encoders.

The work[29] was also based on VAE, and they drove the

distribution of feature maps to the same parameterized vari-

ational form.

Image translation is an alternative way to tackle UDA.

Compared to feature alignment in latent space, we can just

generate images out of an existing dataset that shares a

similar distribution as another dataset. After that, we can

take advantage of the annotated domain to do supervised

training. The feasibility is ascribed to the rapid develop-

ment of generative adversarial model (GAN), especially the

emergence of CycleGAN[33] in unpaired image translation.

[13] firstly integrated a segmentation model with the Cycle-

GAN module for road scene images from different sources.

At the same time, [14] used the integrated framework to

achieve domain adaption on CT-MR abdomen segmenta-

tion. SIFA[3] further extended the workflow by making

the segmenter and the source domain generators share the

encoder, adding a discriminator to the segmentation results

as well as the latent embedding in generated image space.

Most recently, [25] added an attention mechanism in the

form of normalization to features in the generator to im-

prove the quality of synthesized images for SIFA.

Contrastive Learning Recently, contrastive learning, as

a self-supervised learning method, gained popularity after

the work SimCLR[4], in which, original image and its aug-

mented views are clustered in feature space. This pretext

task can learn useful representations that can boost down-

stream tasks, like image classification and object detec-

tion. Follow-up works provided different perspectives of

influential factors, such as transformation combinations[5],

batch size and momentum encoders[10, 6], as well as su-

pervised class clustering[17]. Due to the powerful abil-

ity of representation learning, this emergent technique has

been widely applied to medical image domain, including

classification[9, 7, 19, 12] and segmentation task[2, 30, 24,

32]. For example, [2, 30] observed the similarity of adja-

cent slices in 3D medical volumes and explored how this

kind of knowledge could improve the segmentation perfor-

mance with less labeled data. However, there are few works

that utilize contrastive loss for unsupervised domain adap-
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Figure 1. Overview of CISFA framework. The main components include a generator G, a segmenter Seg, and two discriminators, Dg &

Ds. There are two contrastive losses: a global contrastive loss for self-supervised feature adaptation, and a patch-wise contrastive loss for

keeping the shape consistency in synthetic images. Blue/red arrows represent the data flow for source/target domain images respectively.

tation.

3. Methods

3.1. Overview

Firstly, we will formulate the UDA segmentation prob-

lem for medical imaging. Given two datasets, A =
{(xa, ya)|xa ∈ A} with labels and B = {xb ∈ B} with-

out labels, we aim to generate segmentation masks ŷb for

images in B. A and B represent the source domain and

the target domain respectively, and can be different modal-

ities or be collected from different scanners. Since labels

are missing in the target domain, supervised learning is not

applicable in this situation. Moreover, as there exists a dis-

tribution shift from A to B, models trained on source dataset

fails to give satisfying segmentation accuracy for images in

B.

Fig.1 shows the sketch of the overall framework CISFA

to tackle the above UDA problem. We use G(·) to translate

xa → x̂b = G(xa) ∈ B̂ while maintaining the structural

contents in xa. Then we get labeled data (x̂b, ya) to super-

vise the training of a segmentation model Seg(·). CISFA

is different from existing frameworks in four aspects: 1)

We use one fewer generative model than CycleGAN based

models. This makes the model easier to train. 2) We use two

different contrastive losses to deal with structure distortion

and domain shift. 3) Our patch-wise contrastive loss, unlike

the losses used in the literature for the same purpose, as-

signs different weights for different patches, enforcing more

attention to non-background patches. 4) Unlike existing

works that use adversarial learning for feature adaptation,

we introduce a global contrastive loss for model to learn do-

main invariant features. In the rest of this section, we will

firstly introduce the detail of the image translation process

and then the patch-wise contrastive loss. Subsequently, we

will describe the self-supervised feature adaptation for the

downsampling path of Seg as well as other losses regarding

the segmenter Seg. Lastly, we will present some training

details of all models in the framework.

3.2. Weighted Patch-wise Contrastive Loss for Im-
age Synthesis

Similar to all generative adversarial networks, we add a

discriminator Dg(·) to distinguish between the target do-

main image xa and fake target domain image x̂b. This is

done by minimizing the following loss,

LD G =Exb∼B [logDg(xb)]+

Exa∼A[log(1−Dg(G(xa))]
(1)

Simultaneously, the task of G is to deceive the discriminator

into classifying synthetic images as in real B. Gradually, G
learns to generate images sharing the similar texture as xb.

The consistency of structural information between xa

and x̂b assures that the annotation is still correct for the

after-translation image, which is the key to the success of

the following supervised training. However, lacking the

path that transforms x̂b back to domain A, CISFA has no

cycle loss that penalizes the distortion after image transla-

tion. Therefore, we devise a patch-wise contrastive loss as

an alternative shape consistency constraint. Specifically, we

extract feature maps of input images and output images in

different levels from the encoder of the generative model
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Figure 2. Illustration of the calculation of (a) the patch-wise contrastive loss and (b) global contrastive loss. (a): We select four layers inside

the Genc as well as the original images. The small frame in the feature map represents randomly sampled patches. ”+” stands for positive

pairs and ”-” stands for negative pairs. We also downsample the label to the same resolution as each layer of feature maps and increase the

weights for non-background patches. (b): Patterns with the same shape and the same color denote positive pairs and should be closer in

the latent space.

Genc,
{
f l
a|l = 1, 2, ..,

}
= Genc(xa),

{
f l
b̂
|l = 1, 2, ..,

}
=

Genc(x̂b). For feature map f l
a ∈ R

c∗h∗w, where c is the

channel number, h ∗ w is the feature map size, l denotes

the lth layer. Taking all features into account is compu-

tationally expensive. Hence we randomly sample features

in dimension h ∗ w for f l
a and do sampling from the same

position for f l
â. Afterwards, we add a multi-layer percep-

tron (MLP) as projection head to the sampled features and

apply L2 normalization. Then we get a feature vector set

F l =
{
u|u ∈ R

c′
}

, where c′ is the feature dimension and

is set as 128. Let u+ ∈ F l denote the feature vector derived

from the same position as u in the other feature map. The

patch-wise contrastive loss for layer l is defined as

Lpcl(l, u) = −log
exp(u · u+/τ)∑

v∈F l−u exp(u · v/τ) (2)

in which, τ is the temperature parameter for the cosine dif-

ference and we choose 0.2 for τ in this work. This loss

reduces the discrepancy between the same patch before and

after transformation in the latent space.

Being aware of the fact that the label ya is also provided,

in this work, we extend the definition of patch-wise con-

trastive loss by adding weights to features corresponding

to different categories. Since the translation correctness of

non-background areas is more important to the consequen-

tial segmentation training compared to distortion of back-

ground pixels, we set the weights of non-background fea-

tures to be larger than background ones. In practice, for

each layer l, we downsample the label to the same resolu-

tion as the feature map f l and decide the weight for each

sampled feature vector. The newly added weight wp(u) is

wp(u) =

{
1, if u is background

w, else
(3)

where w can be any number larger than 1 and we set it as 2

in this work. Then the total loss for generator G is,

LG =Exa∼A[logDg(G(xa)]+

Exa∼A,l∼L,u ∼Fl
[wp(u) ∗ Lpcl(l, u)]

(4)

in which L is the set of selected layers to calculate patch-

wise contrastive loss.

3.3. Self-supervised Feature Adaptation

After obtaining the translated image x̂b, we pass it into

the segmentation model Seg to get a prediction mask ŝb.

By optimizing the dice loss of (ŝb, ya), we expect the seg-

menter to learn how to tackle images in the target domain.

As shown in previous works [2, 30], pretraining the en-

coder path of segmentation model to learn mutual informa-

tion among similar slices benefits the follow-up segmen-

tation task, where similar slices refer to images at very

adjacent positions in the volume. For our case, we ob-

serve that xa and x̂b share the same content but differ in

modality, which are good examples of positive pairs in con-

trastive learning. Let Senc(·) denote the downsampling

path of the segmenter. We project t pairs of input im-

ages and their corresponding synthetic images into latent

space, and add a MLP head for stronger representation abil-

ity in the feature space. After normalization, we get features{
zi =

∥∥MLP(Senc(x
i))

∥∥ |i = 1, 2, ..., 2t
}

, and assume that

j(i) is the index of positive pair feature regarding zi. We

then calculate the contrastive loss similar to SimCLR[4].

Lgcl(t) = − 1

2t

∑
i

log
exp(zi · zj(i)/τ)∑2t
k �=i exp(zi · zk/τ)

, (5)

which is defined as global contrastive loss in this paper. In

contrast to Lncl, the feature vector zi contains the global
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information of the input image instead of only one patch.

Moreover, we also generate the prediction mask sb =
Seg(xb) in the real target domain, and add a discrimina-

tor Ds to identify the output of images in B. In that case,

the segmenter is trained to give segmentation result of the

same quality for x̂b and xb, even though there is still a minor

difference in the distribution of B̂ and B. Then the overall

loss for the Seg is

Lseg =Exa∼A[1−Dice(Seg(G(xa), ya)]+

Et∼T [Lgcl(t)] + Exa∼A[logDs(ŝb)]
(6)

where T is the set of batches of paired input and synthetic

images. The loss that Ds tries to minimize is formulated as

LD S =Exb∼B [logDs(sb)]+

Exa∼A[log(1−Ds(ŝb))]
(7)

3.4. Training Strategies

Although we already cut one generative path in our

framework compared to CycleGAN, there are still four

models for training including G, Seg, Dg and Ds. We in-

tegrate all of them into one framework seamlessly and can

train all the parameters end-to-end. However, this does not

mean we simply calculate all the loss functions and do the

backpropagation at the same time. At each training itera-

tion, the order of updating weights is actually G → Seg →
Dg&Ds. Notice that, after changing weights of G, we do

an inference on G with the latest weights to update x̂b and

then optimize parameters for Seg. Similarly, we get the

prediction masks sb and ŝb with the fresh Seg before chang-

ing parameters for the two discriminators. Therefore, in the

next iteration, when calculating the generative loss for G or

Seg, the corresponding classifier has seen the new images

or segmentation masks, which is then a fair game for the

two min-max game players. After training, we then obtain

a segmenter that is capable of making pixel-wise prediction

on the target domain without a single label.

4. Experiment
4.1. Dataset

Abdominal Dataset This dataset contains 30 volumes of

CT scans from the Multi-Atlas Labeling Beyond the Cranial
Vault Challenge [1] and 20 volumes of T2-SPIR MRI from

the ISBI 2019 CHAOS CHALLENGE [16]. We choose four

organs that are manually annotated on both datasets as the

segmentation task, which are liver, right kidney, left kidney,

and spleen. After trimming the whole volume to only con-

tain the region of interest (ROI), we reshape all slices in the

transverse plane to be unified 196*196 by interpolation.

MMWHS Dataset [34] provides 20 CT and 20 MRI 3D

cardiac images from different patients with annotations by

expert radiologists for both modalities, and we focus on 4

anatomical structures as the segmentation objects, includ-

ing ascending aorta, left atrium blood cavity, left ventricle

blood cavity, and myocardium. We also do the crop on the

3D volumes and reshape each images in the coronal view

into the size of 160*160.

For preprocessing, we do normalization on cropped im-

ages for both datasets so that all pixels in a volume are zero

mean and unit variance. We split the two datasets into four

folds on volume basis for cross-validation, and then decom-

pose 3D volumes to 2D slices in every fold. This ensures

that slices from the same scan can only exist in the same

folder. In the training only labels in the source domain are

used. For example, if MRI is the target domain for an exper-

iment, we use three folds of CT and MRI slices for training

and only CT labels are considered. The remaining CT fold

is treated as validation set. After training, we evaluate the

segmenter on the remaining MRI fold, from which we com-

pute the dice score as well as average symmetric surface

distance (ASSD) for each volume, then report the average

and the standard deviation for the fourfold runs.

4.2. Settings

The backbone of our generative model is based on

ResNet[11]. We firstly use two convolutional layers with

stride equal to 2 to downsample the input image, followed

by 9 residual blocks. As for the segmenter, we deploy a U-

Net[23] with 4 resolution stages. To reduce memory usage,

we build a fully convolutional network with 3 layers as our

discriminator architecture, same as that described in [15].

We implement the generative models and discriminator with

the deep learning package PyTorch. The GPU devices used

are two NVIDIA Tesla P100 with 16GB memory each. The

optimizers used for updating weights are all based on the

Adam[18] algorithm. The learning rate is also the same for

all four models, lr=0.0002, (β1, β2) = (0.5, 0.999). The

batch size is set as 4, considering the limitation of memory.

The training iteration number is 200 because we observe

convergence of losses for all models after training for that

number of epochs.

4.3. Baselines

To validate the effectiveness of our proposed method, we

conduct experiments with state-of-the-art approaches under

the same setting as comparison. CUT[22] is a representa-

tive for image translation methods, and the segmentation

part is not trained at the same time as the generative model.

Accordingly, we just use CUT framework to translate im-

ages from source domain to target domain, and use the fake

target images with source domain labels to supervise the

training of the segmentation model. The reason why we

don not include the results of CycleGAN is that the base-

line methods below already shows their methods have su-
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Table 1. Comparison between state-of-the-art methods and the proposed methods w.r.t. segmentation dice scores on abdominal MRI

volumes. The translation direction is CT → MRI. The average dice score and corresponding standard deviation over four independent

folds are presented for all four organs, including liver, LK (left kidney, RK(right kidney) and spleen.

Methods
Dice% ↑

liver LK RK spleen avg

Supervised 89.00±1.08 87.19±2.49 83.31±5.05 88.08±1.82 86.90±2.19

W/o adaptation 10.15±3.94 3.67±3.57 4.04±2.95 7.15±6.81 6.25±1.26

CUT[22] 38.17±6.33 32.20±10.69 34.01±9.32 35.83±10.44 35.05±8.19

VarDA[29] 41.63±1.77 32.95±6.47 34.53±4.14 32.23±4.72 35.33±2.60

SASAN[25] 67.23±9.98 61.41±12.95 67.94±14.63 62.63±13.65 64.80±11.48

SIFA[3] 77.24±2.03 68.03±5.60 68.99±5.16 66.79±4.87 70.26±3.69

CISFA(no weight) 76.14±10.72 72.12±4.52 74.94±4.14 73.18±3.11 74.10±1.84

CISFA 80.13±2.21 74.45±5.67 74.51±5.16 75.86±5.28 76.24±2.17

Table 2. Comparison between state-of-the-art methods and the proposed methods w.r.t. segmentation dice scores on abdominal CT volumes.

The translation direction is MRI → CT.

Methods
Dice% ↑

liver LK RK spleen avg

Supervised 89.03±.95 85.53±12.79 83.94±9.46 85.49±4.05 86.00±3.67

W/o adaptation 9.38±3.08 8.88±1.26 8.40±1.31 9.70±1.52 9.09±0.68

CUT[22] 17.78±8.74 28.34±8.05 21.16±11.83 19.29±10.60 21.64±8.66

VarDA[29] 32.78±2.29 38.11±4.17 31.71±4.32 30.26±3.33 33.22±2.38

SASAN[25] 75.36±4.24 67.33±6.43 67.25±6.08 58.70±15.24 67.13±4.32

SIFA[3] 74.03±1.13 65.21±9.88 63.17±10.91 63.53±11.85 66.49±5.61

CISFA(no weight) 77.45±2.15 66.91±7.16 64.92±4.57 65.40±13.12 68.67±2.03

CISFA 75.78±3.70 69.30±7.77 70.15±4.77 66.57±12.40 70.45±2.81

perior peformance than CycleGAN, but none of them gives

the comparison with CUT. VarDA [29] is the latest work

that only uses feature adaptation in the field of biomedi-

cal UDA segmentation, and its feature adaptation is based

on adversarial learning. SIFA [3] and SASAN [25] are the

state-of-the-art methods based on synthetic images, derived

from CycleGAN framework. For all these baselines, we

directly use the codes provided by the authors on github,

and the exact same setting is used when comparing these

methods with ours, to make a fair comparison. CISFA (no

weight) and CISFA are both our approaches, no weight re-

ferring to no weights on Lpcl, thus having no information

in the label space. Meanwhile, we also provide the segmen-

tation performance of supervised training with all labels on

the target domain. We do not need to beat this baseline as it

is fully supervised, but can view it as an important reference

as the performance ceiling of any UDA methods without la-

bels. On the other hand, w/o adaptation refers to directly

applying the model trained on the source domain to target

images, which serves as the performance floor.

4.4. Abdominal Image Domain Adaptation

4.4.1 Comparison with the State of the Art

We switch the source and target domains for the bidirec-

tional experiments, and Table 1 present dice score CT →
MRI while Table 2 shows MRI → CT results. We also plot

the prediction masks of different methods in Fig.3 to visual-

ize segmentation performance. The color coding for differ-

ent organs in the label space is that white, yellow, orange,

and red represents liver, left kidney(LK), right kidney(RK),

and spleen, respectively.

We can make several important observations from quan-

titative and qualitative comparisons. First of all, although

there is still a gap compared with the fully supervised

method, considering that we do not any target domain an-

notations, the gap might be reduced if using a very small

amount of sparsely labeled data to fine-tune the weights in

the segmenter. Thus, our proposed method still proves to be

of high clinical practical values. In addition, CISFA has the

highest dice score for all four organs, and increases the av-

erage dice of existing best methods by 5.98 and 2.72 percent

in the two tasks. In terms of statistically significance, the p-

values for t-test comparing CISFA with CISFA w/o weights,

SIFA, and SASAN are 0.0018, < 0.001 and < 0.001, re-

spectively, while in Table. 2, these p-values are 0.015,

< 0.001, and < 0.001, respectively. Secondly, VarDA fails

to get segmentation performance comparable to other im-

age synthesis approaches in the abdomen dataset. There is

a noticeable amount of false positives for liver and spleen in

the visual results, which imply that only feature adaptation

is not sufficient for significant domain shift cases. Thirdly,

in terms of our methods, CISFA achieves higher average

dice in segmenting target domain images than CISFA (no
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Figure 3. Visualization of segmentation results on the target domain regarding various methods. For the first two rows , the domain

translation direction is CT → MRI, and for the other two rows, the direction is MRI → CT.

Table 3. Ablation study of two contrastive losses in CISFA on the

CT → MRI adaptation task. Patch-wise contrastive is weighted.

Lpcl Lgcl how Lgcl is combined Dice↑ ASSD↓
- 39.64 7.63

� - 55.76 3.39
� sum 46.63 4.86

� � sequential 66.50 3.47
� � sum 76.24 2.52

weight), which shows the benefits brought by the improved

Lpcl. Lastly, as shown in Fig.3, without any adaptation tech-

nique, the prediction mask is meaningless, while our meth-

ods output segmentations that are closest to the ground truth

among all the UDA methods. All these illustrate that CISFA
is an effective complement to current UDA methods in med-

ical imaging segmentation when it is difficult to get target

domain annotations.

4.4.2 Ablation Study

Among the contributions of this work, the benefits of intro-

ducing weights in patch-wise contrastive loss is clear from

the comparison between CISFA (no weight) and CISFA. The

benefits of using contrastive loss over adversarial learning

for feature adaptation is clear from the comparison between

VarDA and CISFA. Here, we further show that both the

weighted patch-wise loss Lpcl and global contrastive loss

Lgcl are important in CISFA by comparing the dice score

and ASSD from different configurations as shown in Ta-

ble 3. According to the table, removing either of the two

losses leads to performance degradation. When no con-

trastive loss is included, CISFA has the lowest segmentation

accuracy. On the other hand, the influence of Lpcl seems to

be more significant than that of Lgcl. In our opinion, this

is because Lpcl directly determines translated image qual-

ity, and cutting Lpcl means no shape consistency constraint.

If organ structures get distorted, it makes no sense for the

global contrastive loss to draw images with different content

closer in the feature space. Notice that CISFA without either

component is different from CUT [22]. The segmenter is

integrated into the image synthesis flow, and there is Gs to

distinguish between prediction masks of real and fake target

domain images.

We also explore the impact of how Lgcl is combined with

other losses in the overall workflow. There are actually two

choices: one is to directly add the loss to all the other losses

relevant to the segmenter, denoted as “sum” in the table; and

the other is to update the weights of the encoder before op-

timizing other losses for the segmenter at every training it-

eration, denoted as “sequential”. It turns out that the former

is better for medical imaging domain adaptation as shown

in the table. Although the logic of “sequential” is similar to

pretraining in most self-supervised works, the discrepancy

in the objectives of sequential weight update process may

create problems for the training. After updating the weights

in the encoder for minimizing Lgvl, the subsequent segmen-

tation training also modifies them but with the purpose of

reducing dice loss.

4.4.3 Image Translation

Fig.4 displays original translated images for the two dif-

ferent domain adaptation tasks. In general, all the meth-

ods succeed in translating the source domain images to a

fake target domain that is quite similar to the real target do-

main, with only slight differences in brightness, contrast,

and quality. However, with a closer look at the generated

images, we can observe some deformations and blurring of
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Figure 4. Images of original images and the corresponding syn-

thetic images via SIFA, CISFA (no weight), and CISFA. The up-

per two rows are translating CT to MRI, and the bottom two rows

are translating MRI to CT. We also attach the ground truth of each

source image to show the ROI.

the organ regions of interest from SIFA. In the first row, it

is evident that the spleen (red) is expanded regarding the

shape, and the boundary to background is also blurred for

SIFA. Additionally, in the third row SIFA wrongly trans-

lates the area in the red box by adding a new structure in the

cavity. These distortions are all related to areas containing

subject organs, which will then influence the followup su-

pervised segmentation training. When it comes to compar-

ing the two version of our proposed method, in the second

and last row, the right kidney and liver areas are more obvi-

ous for CISFA. This phenomenon is caused by the increased

weights on subject organs in our pair-wise contrastive loss,

which function as an attention mechanism so that the gen-

erator addresses content in the relevant areas more.

4.5. Whole Heart Image Domain Adaptation

We also compare our methods with the state-of-the-art

methods under the same setting on MMWHS dataset, as

shown in Table 4. It can be noticed that the suprvised

method have higher dice score on MMWHS dataset than

the abdominal dataset, which is might due to larger num-

ber of total slices for all cardiac scans. We can see that if

we directly apply the model trained on MRI to CT dataset

(w/o adaptation), the dice is lower than that in the abdomi-

nal dataset and ASSD could not even be computed because

of the large number of false positives, which indicates that

domain adaptation is more challenging for this task. The

reasons behind the bad performance of ”W/o adaptation”

have two aspects. On one hand, it reflects that the domain

shift between MRI and CT scans in the MMWHS dataset

Table 4. Comparison between the state-of-the-art and the proposed

methods on MMWHS dataset for MRI → CT adaptation.

Method Dice% ASSD

Supervised 89.78±1.26 0.33±0.05
W/o adaptation 3.13±1.99 -

CUT[22] 37.28±8.32 3.37±1.54
VarDA[29] 40.36±2.86 2.74±0.67
SASAN[25] 61.74±3.34 1.80±0.78

SIFA [3] 64.50±4.21 2.14±1.21

CISFA (ours) 68.87±3.15 1.49±0.31

is more drastic than that in the previous abdominal dataset.

On the other hand, we observe that there is also a large vari-

ation between CT scans and it might due to being collected

from different institutions and CT scanners. Therefore, the

UDA experiment results have a larger gap to the supervised

training performance in MMWHS than the previous dataset.

Despite that, we can draw almost the same conclusion from

Table 4 as the discussion in section 4.4. Firstly, Feature-

alignment methods, like VarDA fails to output a satisfactory

segmentation accuracy in contrast to style-transfer meth-

ods, like SASAN and SIFA. Secondly, The experiment re-

sults show that our method CISFA achieve higher dice score

and lowest ASSD than other approaches on this task, which

demonstrates that our proposed method can be generalized

well to a different dataset. The p-value comparing CISFA

with SASAN and SIFA are both less than 0.01.

5. Conclusion
In this paper, we proposed a novel framework which

builds on image domain translation and unsupervised fea-

ture adaptation for cross-modality biomedical image seg-

mentation. We introduce a new weighted patch-wise con-

trastive loss to directly exert shape constraint on the in-

put images and translated images, with special attention on

non-background patches. Meanwhile, we innovatively use

self-supervised representation learning as feature adapta-

tion to improve segmentation performance. Experiments on

two public datasets convinced the superiority of our method

over state-of-the-art. In the future, we will further reduce

the gap between our methods and the supervised training

baselines in order to make our CISFA framework applica-

ble to real clinical scenarios. We might introduce a few

sparsely labeled target domain images and test how much

we can reduce the annotation efforts if we would like to get

the equally accurate segmentation as fully supervised train-

ing, which is definitely beyond the scope of unsupervised

domain adaptation.
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