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Abstract

Chest X-rays (CXR) are essential in the diagnosis of lung
disease, but CXR image classification is challenging be-
cause patients often have multiple diseases simultaneously.
This requires multi-label classification to identify multi-
ple abnormalities within a single image, which is compli-
cated by different disease patterns and overlapping patholo-
gies. In addition, CXR image classification faces the prob-
lem of long-tail distribution, with few common and mostly
rare diseases, which can lead to biased predictions, espe-
cially for rare classes. There have been limited attempts to
address these challenges in the medical domain, and ap-
plying general domain approaches to medical data may
not be straightforward due to the unique characteristics
of medical data. This paper presents an optimized ensem-
ble framework to solve multi-label long-tailed classifica-
tion on the MIMIC-CXR-LT dataset, which is the main ob-
jective of the ICCV CVAMD 2023 workshop competition,
CXR-LT: Multi-Label Long-Tailed Classification on Chest
X-Rays. Various experiments have been conducted, from ar-
chitecture design to data augmentation, to identify the most
suitable components. The proposed framework improves
the performance of the long-tail distribution classification
problem on class-imbalanced multi-label medical images
and is placed in the top ranks in the CXR-LT competition.

1. Introduction
Chest X-ray plays a crucial role in diagnosing various

lung diseases. Recent advances in deep learning have shown

great promise in medical image analysis, assisting radiolo-

gists in the accurate detection of diseases [1, 2, 3, 4]. Nev-

ertheless, the chest X-ray image classification task poses

several practical challenges including class co-occurrences,
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long-tailed distribution, and so on.

Diagnosing chest X-rays involves a multi-label classifi-

cation problem [5, 6, 7], as patients often present with multi-

ple disease findings simultaneously. Unlike traditional clas-

sification tasks, where each image is assigned to a single

class, multi-label classification requires models to capture

multiple abnormalities within a single chest X-ray image.

The coexistence of diverse disease patterns in a single im-

age adds complexity to the classification process, requiring

the recognition of intricate interrelationships among differ-

ent pathologies. The overlapping nature of diseases further

complicates accurate disease detection. Furthermore, chest

X-ray image classification faces the long-tail distribution

problem [11], where only a small subset of diseases is fre-

quently observed while a majority of diseases are hardly

observed. The imbalance in disease distribution poses chal-

lenges in model training as rare diseases often incur bi-

ased predictions leading to reduced performance on the less

prevalent classes [10].

Few attempts have addressed the challenges in multi-

label classification and long-tail distribution handling in the

medical domain. While some approaches have been pro-

posed for general domains [21, 23, 18], they may not be

directly applicable due to the unique characteristics of med-

ical data.

This paper presents an optimized ensemble framework

for multi-label long-tailed classification on chest X-rays.

To effectively handle the multi-label classification task,

our approach employs the class-specific residual atten-

tion (CSRA) classifier head [24], which captures separate

features for every class. Additionally, to tackle the long-

tail problem, it leverages an ensemble technique, which

combines predictions from the head-specific (HEAD), tail-

specific (TAIL), and head-and-tail (ALL) models, yield-

ing more balanced predictions and improved performance.

We explored various model architectures, loss functions,

optimizers, and data augmentations for our task. To fur-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
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the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. Long-tailed distribution of a total of 26 pulmonary disease labels for MIMIC-CXR-LT with both original and newly added classes.

The values for each bar indicates the number of class frequency. The textured bars represent the added classes for long-tailed distribution.

The “Support Devices” class (purple) is included in both head and tail categories.

ther enhance the performance, CXR pre-training on the

NIH ChestXRay14 [20] dataset was conducted, enabling

the model to leverage domain-specific information. We

performed extensive experiments on the MIMIC-CXR-LT

dataset provided by ICCV CVAMD 2023 workshop com-

petition “CXR-LT: Multi-Label Long-Tailed Classification
on Chest X-Rays (CXR-LT)1” and validated the effective-

ness of our approach.

To summarize, the main contributions of this work are as

follows:

• We successfully address the multi-label classification

by incorporating the CSRA classifier head into our

model.

• We effectively address the long-tail distribution prob-

lem by leveraging an ensemble approach via a combin-

ing prediction of the HEAD, TAIL, and ALL models.

• We explore various model architectures, loss func-

tions, optimizers, data augmentation techniques, and

pre-trained models, and evaluate their effectiveness on

the chest X-ray image classification dataset.

The rest of this paper is organized as follows. Section 2

defines our task and discusses the dataset. Our approach is

described in Section 3, and experimental results are pre-

sented in Section 4. We conclude this work and discuss fu-

ture work in Section 5.

1https://codalab.lisn.upsaclay.fr/competitions/
12599

2. Multi-Label Long-Tailed Classification on
Chest X-Rays

This section first defines our target task in this work and

then discusses the specifications of the dataset and evalua-

tion metrics.

2.1. Task Definition

The main objective is to develop a classification model

that accurately identifies and classifies a wide range of clin-

ical findings, including lung opacity, infiltration, pleural ef-

fusion, and other thorax diseases, in chest X-ray images.

This task requires multi-label classification as more than

one abnormality can be observed simultaneously on a sin-

gle chest X-ray image. In the absence of findings, the model

should predict “No Finding”, which can co-occur with the

“Support Devices” class but not with any other ones.

In addition, the distribution of abnormalities follows a

long-tail pattern, where a small number of common ab-

normalities have abundant instances available for analysis,

while the majority of abnormalities are rarely observed. For

example, as depicted in Figure 1, the most prevalent clini-

cal finding, lung opacity, has 79,931 instances, whereas the

least frequent finding, pneumoperitoneum, has only 543 in-

stances.

2.2. Dataset

Our work is based on an expanded version of MIMIC-

CXR-JPG [12] dataset, MIMIC-CXR-LT, which is com-

2740



Figure 2. The examples of Chest X-rays in MIMIC-CXR-LT

with view positions of (a) Anterior-Posterior (AP), (b) Posterior-

Anterior (PA), and (c) Lateral.

Train Validation Development Test Total

224,894 40,000 36,769 75,492 377,110

Table 1. MIMIC-CXR-LT Data split. The number of CXRs

for each data split provided from ICCV CVAMD 2023 workshop

competition.

posed of a total of 26 pathology classes and 377,110 CXR

images with three different view positions as shown in

Figure 2. The MIMIC-CXR-JPG originally has more than

200,000 CXRs in 14 classes along with corresponding clin-

ical reports. Based on the approach of producing extra la-

bels from studies of long-tailed [11] and multi-label classi-

fication [15], the labels of the new 12 classes are obtained

by parsing matching reports. Consequently, the expanded

dataset, MIMIC-CXR-LT, exhibits a strong long-tail distri-

bution with multiple labels.

The MIMIC-CXR-LT dataset, provided by the ICCV

CVAMD 2023 workshop competition, is officially split into

training, development, and test sets, consisting of 264,849,

36,769, and 75,492 samples, respectively. The develop-

ment and test sets are provided without labels, and the

evaluation with the test set was allowed up to five times

after the development phase ended. To evaluate bench-

mark performance during training, we tentatively split the

given training set into two groups to generate an addi-

tional validation set as shown in Table 1. The data for

this validation set was randomly chosen while maintain-

ing a long-tailed class distribution similar to the whole

dataset. Lastly, all view positions—Anterior-Posterior (AP),

Posterior-Anterior (PA), and Lateral—were employed with-

out the exclusion of specific views.

2.3. Evaluation Metrics

The evaluation of our approach was performed through

three metrics: 1) mean macro Average Precision (mAP),

2) mean Area Under the Reciever Operating Characteris-

tic Curve (mAUC), and 3) mean F1 score (mF1). Though

mAUC is commonly used to evaluate the performance of

classification tasks, it might be inappropriate due to the se-

Feature extractor Classifier Val. mAP

MLP-Mixer-Base Linear 0.2067

PoolFormer-M48 Linear 0.2757

EfficientNet-B5 Linear 0.2739

ConvNeXt-Base Linear 0.3025

ConvNeXt-Small CSRA 0.3034

ConvNeXt-Base CSRA 0.3198
ConvNeXt-Large CSRA 0.3065

Table 2. Architecture. Comparison of feature extractor and clas-

sifier architectures. The upper block compares the performance of

feature extractors with a linear classifier, and the lower block com-

pares the performance of ConvNeXt variants with CSRA classifier.

vere class imbalance in MIMIC-CXR-LT. Therefore, mAP

was adopted as the primary evaluation metric for long-

tailed multi-label classification task; it calculates the results

through decision threshold and exhibits strong robustness

to highly class-imbalanced data. Note that mAUC and mF1

were considered to estimate the validity of our approach’s

performance thoroughly.

3. Our Approach
This section presents our approach for solving multi-

label long-tailed classification in detail. To begin with, the

experiments for selecting a suitable model architecture were

implemented by exploring existing pre-trained models. We

identified an appropriate loss function and image input size

using the validation set by referring to the earlier experi-

mental results and tuned hyperparameters for optimization

on the development set. To tackle the long-tailed problem,

an ensemble approach was employed by integrating the

best-optimized HEAD, TAIL, and ALL models. Further ex-

periments for searching domain-specific pre-trained models

were explored. In the end, our final proposed optimized en-

semble framework, illustrated in Figure 3, consists of two

phases: 1) pre-training phase, and 2) ensemble phase.

3.1. Label Grouping

To handle this skewed distribution, the thorax disease

classes are divided into two groups: HEAD for classes with

over 20,000 instances, and TAIL for the remaining classes.

Additionally, the “Support Devices” class represents the

presence of specific medical devices or equipment used for

patient care and monitoring. Unlike other disease classes,

it has the potential to appear simultaneously with the “No

Finding” class. These distinguishing characteristics lead to

its inclusion in both the head and tail categories.

3.2. Architecture

Table 2 shows a comparison between four different mod-

els including MLP-Mixer [19], PoolFormer [22], Efficient-
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Figure 3. Optimized ensemble framework for long-tailed multi-label medical image classification using ConvNeXt-Base model with

ImageNet-21K pre-trained model. The dashed arrow indicates the initialization of the feature extractors for MIMIC-CXR-LT. μ denotes

the “Average” ensemble strategy.

Net [17], and ConvNeXt [13] pre-trained on ImageNet-

21K [16] with a linear classifier. Among these models, Con-

vNeXt demonstrated superior performance. One of the no-

table strengths of CSRA [24] is its ability to effectively cap-

ture different spatial regions occupied by objects from dif-

ferent classes. To further leverage the benefits of CSRA and

enhance our model’s performance, the CSRA classifier was

integrated with ConvNeXt across various model sizes. Such

an integration facilitates the utilization of unique spatial in-

formation and class-specific features, resulting in more pre-

cise and robust predictions. After a thorough exploration

and evaluation, we selected ConvNeXt-Base as the feature

extractor and CSRA as the classifier, as the combination led

to the best performance for our task.

3.3. Loss Function

In our pursuit of finding the most effective loss func-

tion for addressing the multi-label and long-tail problems

in CXR images, various loss functions were explored thor-

oughly. They include the binary cross-entropy (BCE) loss,

which is commonly used for multi-label classification tasks,

the weighted binary cross-entropy (WBCE) loss, which is

designed to handle class imbalance, and specific loss func-

tions tailored to tackle the challenges of the long-tail prob-

lem, such as distribution balanced (DB) loss, label smooth-

ing (LS) loss, and focal loss. As shown in Table 3, the BCE

Loss function Val. mAP

BCE 0.3198
WBCE 0.2661

DB 0.2875

LS 0.3031

Focal 0.3014

Table 3. Loss Function. Comparison of loss functions derived

from binary cross-entropy.

loss exhibited the best performance compared to the other

loss functions, and we adopted the BCE loss for our task.

3.4. Input Size Selection

We determined the most appropriate input size through

experiments, where three different input sizes were consid-

ered: 224×224, 448×448, and 640×640. To set the size of

the images, two different techniques were applied: resize
and random resized crop. According to Table 4, the input

size of 448×448 with random resized crop during the train-

ing phase lead to the best performance. Note that during

inference, center crop was employed instead of random re-
sized crop.
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Input size Val. mAP

Rz (224×224) 0.2984

RRC (224×224) 0.3400

Rz (448×448) 0.3198

RRC (448×448) 0.3454
Rz (640×640) 0.3053

RRC (640×640) 0.3307

Table 4. Input size Selection. Comparison of different input sizes

by employing resize (Rz) or random resized crop (RRC) during

the training phase.

Optimizer Learning rate (β1, β2) Val. mAP Dev. mAP

AdamW 4e-3 (0.9, 0.999) 0.3454 0.3093

Lion 4e-4 (0.9, 0.99) 0.3549 0.3322

Lion 1e-5 (0.9, 0.99) 0.3691 0.3364

Lion 4e-5 (0.9, 0.99) 0.3633 0.3419
Lion 4e-6 (0.9, 0.99) 0.3652 0.3374

Lion 4e-5 (0.95, 0.98) 0.3693 0.3324

Table 5. Optimizer. Comparison between the AdamW and Lion

optimizers. The hyperparameters for the Lion optimizer have been

tuned and optimized.

3.5. Optimizer

The AdamW optimizer [14] sets learning rates adap-

tively, which are adjusted based on the gradient magnitude.

Such a strategy makes it suitable for a wide range of prob-

lems and architectures. On the other hand, the Lion opti-

mizer [8] is more memory-efficient than AdamW as it only

keeps the track of the momentum. To compare these two

optimizers, the performance was calculated not only on the

validation set but also on the development set. As presented

in Table 5, the Lion optimizer outperformed the AdamW

optimizer in most cases by about 3% points in the develop-

ment set. Hence, we focused on tuning the hyperparameters

of the Lion optimizer. As a result, the best performance was

achieved with a learning rate of 4× 10−5, where β1 and β2

were set to 0.9 and 0.99, respectively.

3.6. Ensemble Strategy

To mitigate the class imbalance issue, separate models

for each category were trained, namely the HEAD and TAIL

models. Initially, we merged these two specialized models

by concatenating their prediction scores for each class and

averaging the prediction scores of “Support Devices”. How-

ever, this strategy was not particularly good compared to

ALL model, which was trained with both head and tail cat-

egories together, as shown in Table 6. The reason lies in

the nature of multi-label classification; the HEAD and TAIL

models tend to focus on their respective categories, result-

ing in a failure to capture the intricate relationships between

these two groups.

Ensemble Models Strategy Dev. mAP

ALL - 0.3419

� HEAD, TAIL Merge 0.3332

� ALL, HEAD, TAIL Max 0.3420

� ALL, HEAD, TAIL Average 0.3426

Table 6. Ensemble strategy. Comparison of different ensemble

strategies.

Data augmentation Dev. mAP

F, RRC 0.3459
F, RRC, R 0.3450

F, RRC, GC 0.3442

F, RRC, R, GC 0.3485

Table 7. Data augmentation. Comparison of different combina-

tions of data augmentation techniques for training.

To overcome this drawback and improve overall per-

formance, we developed two additional ensemble strate-

gies that integrate the ALL, HEAD, and TAIL models. The

“Max” strategy selects the highest prediction value for each

class among the three models, and the “Average” strat-

egy computes the average of the prediction scores of over-

lapping classes in these three models. These strategies al-

lowed us to leverage the unique characteristics of each cat-

egory while simultaneously capturing the interrelationship

between different classes.

According to Table 6, the “Average” strategy is the best

among the three strategies, thereby being adopted as the fi-

nal ensemble strategy. Averaging predictions from multiple

models mitigates variance introduced by individual models’

errors, ensuring stability and consistency of predictions. It

also balances the importance of predictions across classes,

enhancing ensemble robustness by compensating for noisy

model predictions and improving overall reliability. The

prediction value for class c of the ensemble model is de-

fined as

ec :=

⎧⎪⎪⎨
⎪⎪⎩

1
3 (ac + hc + tc), c ∈ S
1
2 (ac + hc), c ∈ H − S
1
2 (ac + tc), c ∈ T − S

, (1)

where ac, hc, and tc denote the prediction values of class

c given by ALL, HEAD, and TAIL models. S is a set con-

sisting of a single element “Support Devices”, and H and T
are sets of head and tail categories, respectively.

3.7. Pre-training on NIH CXR

Drawing insights from [9], which demonstrated that

when transfer learning to large X-ray targets, the mod-

els pre-trained on a large-scale natural image dataset such
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Submission Data augmentation Models Pre-trained Test mAP Test mAUC Test mF1

Test S1 F, RRC ALL ImageNet-21K 0.3506 0.8361 0.2622

Test S2 F, RRC, R, GC ALL ImageNet-21K 0.3513 0.8366 0.2608

Test E1 F, RRC ALL, HEAD, TAIL ImageNet-21K 0.3520 0.8364 0.2630

Test E2 F, RRC, R, GC ALL, HEAD, TAIL ImageNet-21K 0.3535 0.8370 0.2623

Test Final F, RRC, R, GC ALL, HEAD, TAIL NIH CXR 0.3537 0.8361 0.2656

Table 8. Summary of experimental details and results of our final submissions. The test mAP, mAUC, and mF1 scores for our final

submissions to the CXR-LT competition, based on different experimental setting combinations.

Category Class Test S1 Test S2 Test E1 Test E2 Test Final

Support Devices 0.9079 0.9086 0.9088 0.9091 0.9064

HEAD

Lung Opacity 0.5966 0.5977 0.5962 0.5971 0.5971

Cardiomegaly 0.6479 0.6511 0.6503 0.6529 0.6523

Pleural Effusion 0.8276 0.8274 0.8280 0.8288 0.8288

Atelectasis 0.6061 0.6070 0.6083 0.6087 0.6087

Pneumonia 0.3060 0.3064 0.3050 0.3058 0.3054

No Finding 0.4734 0.4727 0.4756 0.4769 0.4782

Edema 0.5511 0.5511 0.5527 0.5534 0.5530

Enlarged Cardiomediastinum 0.1864 0.1858 0.1849 0.1857 0.1844

TAIL

Consolidation 0.2274 0.2297 0.2270 0.2286 0.2278

Pneumothorax 0.5285 0.5310 0.5313 0.5349 0.5330

Fracture 0.2549 0.2585 0.2634 0.2655 0.2624

Infiltration 0.0593 0.0585 0.0586 0.0579 0.0573

Nodule 0.1859 0.1865 0.1875 0.1889 0.1920

Mass 0.2201 0.2250 0.2187 0.2247 0.2244

Calcification of the Aorta 0.1386 0.1403 0.1405 0.1412 0.1403

Emphysema 0.1901 0.1932 0.1899 0.1920 0.1926

Hernia 0.5634 0.5802 0.5763 0.5866 0.5853

Tortuous Aorta 0.0619 0.0615 0.0631 0.0627 0.0613

Pleural Thickening 0.1051 0.1102 0.1043 0.1070 0.1083

Lung Lesion 0.0403 0.0422 0.0413 0.0422 0.0419

Subcutaneous Emphysema 0.5527 0.5434 0.5560 0.5512 0.5557

Fibrosis 0.1674 0.1486 0.1621 0.1528 0.1628

Pneumomediastinum 0.3715 0.3715 0.3724 0.3844 0.3843

Pleural Other 0.0412 0.0347 0.0401 0.0343 0.0372

Pneumoperitoneum 0.3044 0.3104 0.3094 0.3190 0.3165

Test mAP 0.3506 0.3513 0.3520 0.3535 0.3537

Table 9. Test mAP scores of our submissions from each class. The classes are listed in descending order from head to tail category.

“Support Devices” is on the top since it is the most occurrences and belongs in both categories.

as ImageNet-21K achieve comparable or superior perfor-

mance to the networks pre-trained on a large-scale medical

X-ray dataset, we aim to enhance performance through pre-

training on the NIH ChestXRay14 (NIH CXR) [20] dataset.

The 14 lung disease classes in NIH CXR are identical to

some of the classes in MIMIC-CXR-LT, and for training

convenience, we used only six of them, based on descend-

ing class frequency values. The 86,524 images for training

and 25,596 images for testing were used on the chosen ar-

chitecture.

4. Experiments

This section describes the implementation details of our

model including experimental setup and data augmentation

strategy and analyzes our results.

4.1. Implementation details

Experimental setup We train with both the train and

validation sets, 264,849 images in total, to find the best

model. Based on the observations discussed in the previ-

ous section, the pretrained model was trained using the bi-

nary cross-entropy loss and the Lion optimizer, with an in-

put size of 448×448. Additionally, for learning an ensem-

ble model, the “Average” strategy was adopted. All models

were trained for 30 epochs on a single NVIDIA A100 80GB

PCIe GPU.
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Data augmentation To investigate the effectiveness of

data augmentation, we tested several data augmentation

strategies, which include horizontal flip (F), random resized
crop (RRC), rotation (R), and gamma correction (GC). Ac-

cording to Table 7, the use of F, RRC, or F, RRC, R, GC

achieves the best performances on the development set. Our

model adopted these two combinations for data augmenta-

tion for the final submission.

4.2. Results

We made a total of five submissions for the final evalua-

tion under the CXR-LT competition policy. Comprehensive

details and corresponding scores for each submission are

provided in Table 8. While Test S1 and Test S2 were exe-

cuted using single models with each specific data augmenta-

tion method as previously described, the ensemble approach

was employed for Test E1, Test E2, and Test Final. No-

tably, Test Final, our proposed framework, was pre-trained

using the NIH CXR dataset, unlike other submissions pre-

trained on ImageNet-21K. The experimental results demon-

strate that Test Final achieves the best performance in our

target evaluation metrics in general. Although the mAUC

of Test Final is not the highest, it is still comparable to the

other submissions.

Table 9 lists the mAP scores for individual classes in the

head and tail categories.s. Class-wise AP from the ensem-

ble model sets, including Test E1, Test E2, and Test Final,

tends to improve compared to the sets with a single model,

including Test S1 and Test S2. Although Test E2 shows the

highest class-wise AP scores for most classes, Test Final

attains the best mAP by addressing the challenges of the

long-tail distribution and achieving a well-balanced class-

wise AP.

5. Conclusion and Future work

We explored an optimized ensemble framework for

multi-label long-tailed classification on chest X-rays in this

paper. To address this challenging task, we examined crucial

components including model architectures, loss functions,

optimizers, and data augmentation strategies. Moreover, an

ensemble approach was adopted to tackle long-tailed dis-

tribution. Our final submission pretrained on NIH CXR

demonstrated competitive performance on the MIMIC-

CXR-LT dataset.

One limitation of our approach is that our model relies on

the NIH CXR dataset with full supervision. Unsupervised

pretraining methods could allow us to learn better represen-

tative features from large-scale datasets, potentially leading

to further performance enhancements and improved gener-

alization capabilities.
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