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Abstract

Accurate medical image segmentation is of utmost im-
portance for enabling automated clinical decision proce-
dures. However, prevailing supervised deep learning ap-
proaches for medical image segmentation encounter signif-
icant challenges due to their heavy dependence on exten-
sive labeled training data. To tackle this issue, we propose
a novel self-supervised algorithm, S3-Net, which integrates
a robust framework based on the proposed Inception Large
Kernel Attention (I-LKA) modules. This architectural en-
hancement makes it possible to comprehensively capture
contextual information while preserving local intricacies,
thereby enabling precise semantic segmentation. Further-
more, considering that lesions in medical images often ex-
hibit deformations, we leverage deformable convolution as
an integral component to effectively capture and delineate
lesion deformations for superior object boundary definition.
Additionally, our self-supervised strategy emphasizes the
acquisition of invariance to affine transformations, which is
commonly encountered in medical scenarios. This empha-
sis on robustness with respect to geometric distortions sig-
nificantly enhances the model’s ability to accurately model
and handle such distortions. To enforce spatial consistency
and promote the grouping of spatially connected image pix-
els with similar feature representations, we introduce a spa-
tial consistency loss term. This aids the network in effec-
tively capturing the relationships among neighboring pix-
els and enhancing the overall segmentation quality. The
S3-Net approach iteratively learns pixel-level feature rep-
resentations for image content clustering in an end-to-end
manner. Our experimental results on skin lesion and lung
organ segmentation tasks show the superior performance of

our method compared to the SOTA approaches. Github.

1. Introduction

Over the past decade, deep learning approaches have

achieved significant success, which can largely be attributed

to the progress made in supervised learning research. How-

ever, the efficacy of these methods is highly dependent on

the availability of a large amount of annotated training data.

In situations where annotated data is limited or resource-

intensive to obtain, these approaches may prove inefficient.

One domain where this scarcity is evident in medical im-

age analysis. Given the large size of medical images and

the importance of precise labeling, which requires experts,

the process of providing a wide range of manually anno-

tated data is time-consuming, labor-intensive, and expen-

sive [5, 23, 34]. Moreover, the process of manual segmen-

tation and labeling is prone to human error. To mitigate the

labor-intensive nature of annotation, several strategies have

been proposed in the literature. One such strategy is transfer

learning, which serves as a benchmark approach. Transfer

learning facilitates the process of representational learning

by fine-tuning the pre-trained network for the new task at

hand. While knowledge transfer provides a promising start-

ing point for the optimization algorithm, the scarcity of an-

notated data on the downstream task limits the network’s

convergence and its ability to learn task-specific features,

resulting in less stable models. Moreover, in complex tasks

such as segmentation, this approach proves to be inefficient

due to the predefined model architecture [4, 3, 31]. Unsu-

pervised methods offer an alternative solution by reformu-

lating the problem based on learning features directly from

the data itself [17, 32, 20, 27, 26, 2]. However, the reliabil-

ity of these approaches is not always guaranteed as no label
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or metric is available to validate their effectiveness.

A semi-supervised algorithm, which is a machine learn-

ing methodology that combines labeled and unlabeled data

to construct predictive models, is also another approach

to tackle the problem of data scarcity. The labeled data

provides explicit supervision, guiding the learning pro-

cess, while the unlabeled data contributes additional infor-

mation for capturing underlying patterns and data struc-

ture [29, 30, 36]. Nevertheless, the effectiveness of semi-

supervised approaches can be compromised when the la-

beled data fails to adequately represent the entire distribu-

tion. Furthermore, although semi-supervised learning re-

duces the need for extensive manual labeling, it still necessi-

tates a small set of labeled data. The process of annotation,

even on a smaller scale, can be time-consuming, expensive,

and dependent on domain expertise. The high cost associ-

ated with labeling data may hinder the scalability and prac-

ticality of semi-supervised methods. Additionally, labeling

bias is another limitation of this approach.

In contrast to the previously mentioned strategies that

rely on modeling the data distribution, the self-supervised

technique has attracted recent interest and uses a differ-

ent perspective by introducing a set of matching tasks

[9, 13, 15, 24]. SSL has gained significant acceptance as a

viable technique for learning medical image representations

without specialized annotations. This approach allows for

learning semantic features by generating supervisory sig-

nals from a large set of unlabeled data, effectively eliminat-

ing the need for human annotation [12]. SSL consists of

two main tasks: the pretext task and the downstream task.

In the pretext task, where the SSL takes place, a model is

trained in a supervised manner using unlabeled data. La-

bels are generated from the data to guide the model to learn

semantic segmentation from the data. Subsequently, the

learned representations obtained from the pretext task are

transferred to the downstream task as initial weights. This

transfer of weights allows the model to fine-tune and suc-

cessfully achieve its intended goal.

Contrastive learning (CL), which has been extensively

studied by various researchers [38, 19, 16], is a success-

ful variant of SSL that has the ability to achieve the per-

formance of SOTA algorithms even with a small number of

annotated data. The CL methods aim to increase the simi-

larity between representations of differently augmented in-

put samples (referred to as positive pairs) while ensuring

that representations of distinct samples (referred to as nega-

tives) are dissimilar. The resulting neural network parame-

ters are well-suited for initializing downstream tasks, where

the learned representations from the pretext task are fine-

tuned to adapt to the specific downstream task. This ap-

proach has been extended to handle dense pixel-wise image

data, facilitating semantic segmentation even with limited

available data [28, 21, 11].

Despite the promising results achieved by CL, we argue

that some aspects are relatively unexplored in the existing

literature. Addressing these gaps has the potential to im-

prove the current SOTA methods in medical imaging. The

first limitation arises when the unlabeled dataset used for

training self-supervised contrastive learning contains biases

or imbalances. In such scenarios, the learned representa-

tions may inherit these biases, as the learned representa-

tions are derived only from the intrinsic structure and pat-

terns in the unlabeled data, resulting in biased predictions

or limited generalization capabilities. Second, accurate se-

mantic segmentation requires a model that can effectively

capture long-range dependencies and maintain local consis-

tency within images. Third, in the medical domain, it is im-

portant to consider that lesions often exhibit deformations

in their shapes. Therefore, a learning algorithm employed

for medical image analysis should possess the capability to

capture and understand such deformations. Moreover, the

algorithm should be invariant to common transformations

encountered in medical images, such as shear, scale, and ro-

tation. This ensures that the algorithm can effectively han-

dle variations and changes in the appearance of lesions.

To address the encountered challenges outlined above,

first, � we propose I-LKA modules, which serve as a fun-

damental building block in our network design. These mod-

ules are specifically designed to capture contextual informa-

tion comprehensively while preserving local descriptions.

By striking a balance between these two aspects, our archi-

tecture facilitates precise semantic segmentation by effec-

tively leveraging both global and local information. Rec-

ognizing the prevalence of deformations in medical image

lesions, � we incorporate deformable convolution as a cru-

cial component in our approach. This enables our model to

effectively capture and delineate deformations, leading to

improved boundary definition for the identified objects. In

order to make our model more robust to geometric transfor-

mations commonly encountered in medical scenarios, � we

integrate a self-supervised algorithm based on contrastive

learning. By emphasizing the acquisition of invariance to

affine transformations, our approach enhances the model’s

capacity to handle such transformations effectively. This

allows the model to better generalize and adapt to differ-

ent spatial configurations and orientations, thus improving

overall performance in medical image segmentation tasks.

To ensure spatial consistency and promote the grouping

of spatially connected pixels with similar features, � we

model a spatial consistency loss term based on edge infor-

mation. This loss term facilitates the learning process by

encouraging the network to capture the relationships among

neighboring pixels. Finally, � our proposed method (Fig-

ure 1) effectively tackles dataset bias by performing the pre-

diction process based on a single image only. This approach

helps to mitigate the potential bias that may arise from im-
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balanced or skewed datasets.

2. Related Works
SSL has shown significant benefits for vision tasks by al-

lowing the extraction of semantic and effective representa-

tions from unlabeled data in an unsupervised manner. This

approach is rooted in the idea that significant performance

improvements can be achieved by enhancing representa-

tion learning. A specific variant of SSL, known as con-

trastive learning, has gained substantial attention in recent

years. Contrastive learning approaches strive to acquire re-

silient representations by optimizing similarity constraints,

enabling the discrimination between similar (positive) and

dissimilar (negative) pairs within a given dataset. In this

direction, Chaitanya et al. [10] introduced a contrastive

learning framework specifically designed for segmenting

volumetric medical images in a semi-supervised scenario.

Their approach involved leveraging contrasting strategies

that take advantage of the structural similarity present in

volumetric medical images. Additionally, they incorpo-

rated a local variant of the contrastive loss to learn distinc-

tive representations of local regions that are useful for per-

pixel segmentation. You et al. [37] introduced SimCVD, a

contrastive distillation framework that improves voxel-wise

representation learning. This contrastive training strategy

involves using two views of an input volume and predict-

ing their signed distance maps, using only two independent

dropout masks. Additionally, they performed structural dis-

tillation by distilling pair-wise similarities. In another work,

Moriya et al. [35] suggested the utilization of k-means

clustering for grouping pixels with similar characteristics

in micro-CT images, facilitating the extraction of signifi-

cant feature representations. Nonetheless, self-supervised

clustering methods encounter constraints such as the need

for manual cluster size selection and difficulties posed by

complex regions characterized by fuzzy boundaries, diverse

shapes, artifacts, and noise. Despite their efforts to learn

task-specific features without relying on annotations, these

methods often demonstrate a bias towards the training data,

which can lead to reduced performance when confronted

with new samples, especially in the presence of domain

shifts. The absence of labeled data for fine-tuning or retrain-

ing the model on the target domain hampers its ability to

adapt and generalize effectively. Hence, the performance of

these annotation-free methods may suffer when faced with

variations in data distribution, making them less robust in

scenarios characterized by domain shifts. Therefore, it is

crucial to address this limitation and explore techniques that

can enhance the adaptability and generalization capabilities

of the method.

To address the concern raised by SSL approaches, recent

work by Ahn et al. [1] introduces SGSCN, which specif-

ically designed for segmenting medical images on a single

image. This method utilizes different loss functions to facil-

itate the grouping of spatially connected image pixels with

similar feature representations. During the process of itera-

tive learning, the network simultaneously learns feature rep-

resentations and clustering assignments for each pixel from

a single image. Moreover, a contextual aware consistency

loss is introduced to enhance the delineation of image re-

gions by enforcing spatial proximity between pixels belong-

ing to the same cluster and its center. More recently, Karimi

et al. [25] proposed a novel dual-branch Transformer net-

work. This network aims to capture global contextual de-

pendencies and local information at different scales. Their

self-supervised learning approach takes into account the se-

mantic dependency between scales, generating a supervi-

sory signal to ensure inter-scale consistency and enforcing

a spatial stability loss within each scale to facilitate con-

tent clustering. Additionally, they introduce a cross-entropy

loss function applied to the clustering score map, effectively

modeling cluster distributions and improving the decision

boundary between clusters. Through iterative training, the

algorithm progressively learns to assign each pixel to a clus-

ter that is semantically related to it. Building upon this

advancement, our method combines a contrastive learning

schema with SSL losses to perform accurate and robust se-

mantic segmentation on a single image.

3. Proposed Method
The framework of our proposed method is depicted in

Figure 1. The S3-Net integrates local and long-range de-

pendencies to perform the feature embedding process. By

incorporating these dependencies, we aim to capture com-

prehensive contextual information while retaining the local

details inherent in the input data. To achieve effective con-

tent clustering without the need for manual annotations, our

approach incorporates auxiliary modules and carefully de-

signed data-driven loss functions. These components syner-

gistically facilitate the learning process and promote the for-

mation of meaningful clusters within the embedded feature

space. By leveraging the inherent structure and relation-

ships present in the data, our approach empowers the model

to drive the segmentation task with robustness and accuracy.

In the subsequent subsections, we will provide detailed ex-

planations of each module integrated into our approach.

3.1. Encoder Network

Our encoder architecture comprises three blocks that col-

lectively encode the input image into the latent space. The

first block adopts a sequential structure comprising of a

3 × 3 convolutional layer, followed by a batch normaliza-

tion layer. This configuration facilitates the embedding of

the input image into a high-dimensional space. In the sub-

sequent stacked N blocks, we employ the I-LKA module

to capture both local and global dependencies. To integrate
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Figure 1. A general overview of the S3-Net framework. The I-LKA module captures the intricate relationships between local and global

features. Subsequently, it leverages a self-supervised learning strategy to enforce feature consistency throughout the network’s predictions.

localized descriptions with the I-LKA module’s output, a

skip connection path is included, followed by another 1× 1
convolutional layer. This setup ensures the preservation of

fine-grained spatial information at the pixel level through

the skip connection, while simultaneously guiding the net-

work to capture global dependencies using the I-LKA mod-

ule. In the last block, we incorporate a deformable convo-

lution layer, specifically designed to effectively model de-

formations in the lesion boundary, which is a common oc-

currence in medical images. This additional layer enhances

the network’s capability to accurately capture and represent

deformations, contributing to the overall performance.

3.1.1 Inception Large Kernel Attention (I-LKA)

The attention mechanism, the process of identifying the

most informative features or important regions, is a critical

step toward learning effective feature representation. Two

popular attention mechanisms are the self-attention mech-

anism and the large kernel convolution mechanism, each

with its own advantages and drawbacks [7]. While the self-

attention mechanism excels at capturing long-range depen-

dencies, it lacks adaptability to different channels, exhibits

high computational complexity for high-resolution images,

and disregards the 2D structure of images. On the other

hand, large kernel convolution is effective at establishing

relevance and generating attention maps, but it introduces

computational overhead and increases parameter count.

To overcome these limitations and leverage the strengths

of both self-attention and large kernel convolutions, we pro-

pose an enhanced approach called the large kernel atten-

tion (LKA) with inception design. In our study, we en-

hance the LKA module [18] by integrating inception strate-

gies. The rationale behind this enhancement is to efficiently

capture and integrate information at various spatial reso-

lutions, which is particularly crucial for dense prediction

tasks. Unlike the original LKA, which employs fixed-sized

filters and thus struggles to fully capture information at dif-

ferent scales within an image, our I-LKA module employs

parallel filters of varying sizes to capture both fine-grained

details and high-level semantic information concurrently.

The LKA module decomposes a C × C convolution into
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three components: a [ cd ]× [ cd ] depth-wise dilation convolu-

tion (DW -D-Conv) (representing spatial long-range con-

volution), a (2d − 1) × (2d − 1) depth-wise convolution

(DW -Conv) (representing spatial local convolution), and a

1× 1 convolution (representing channel convolution). This

decomposition enables the extraction of long-range rela-

tionships within the feature space while maintaining low

computational complexity and parameter count when gen-

erating the attention map. Our I-LKA define as:

Inc(x) = {(DW-Conv(F(x)))r|r ∈ N} (1)

Attention = Conv1×1(DW-D-Conv(Inc(x)) (2)

Output = Attention ⊗ F(x) (3)

where Inc(x) and F (x) ∈ RC×H×W show the inception

features and convolutional operation, respectively, while

Attention ∈ RC×H×W represents the attention map. The

symbol ⊗ denotes the element-wise product, with the value

of the attention map indicating the importance of each fea-

ture. Notably, unlike conventional attention methods, the

I-LKA approach does not require additional normalization

functions such as Sigmoid or SoftMax.

3.2. Network Prediction

Given an input image XH×W×C , where H × W rep-

resents the spatial dimensions and C denotes the number

of channels, our network initiates the segmentation process

by utilizing the encoder module to generate a soft prediction

map SH×W×K , where K represents the number of clusters.

To obtain the final semantic segmentation map Y H×W×K ,

we apply the ArgMax function at each spatial location to

activate the corresponding cluster index. During the train-

ing phase, we employ an iterative approach to minimize

the cross-entropy loss, which measures the discrepancy be-

tween the soft prediction map and the segmentation map.

By optimizing this loss function, our network learns to pro-

duce accurate and meaningful segmentation results:

Lce (S,Y) = − 1

H ×W

H×W∑
i=1

K∑
j=1

Yi,j log (Si,j) . (4)

While the cross-entropy loss employed in our approach ef-

fectively captures the distribution of clusters by promoting

the grouping of similar pixels and increasing the separation

between different clusters, it falls short in modeling the spa-

tial relationships within local regions. Consequently, it ex-

hibits limitations in accurately merging neighboring clus-

ters, leading to sub-optimal performance. To address this

issue, we propose the integration of a spatial consistency

loss, which serves as an additional regularization term.

Sobel X

Sobel Y

Sobel XY

Figure 2. Illustration of the spatial loss calculation process. The

spatial loss, denoted by LS, is computed by subtracting pixel val-

ues in X , Y , and XY directions, and then taking the absolute

difference between the resultant image and the zero image Z. The

summation of these absolute differences is the output of LS loss.

3.3. Spatial Consistency Loss

In addition to the cross-entropy loss, which primarily

focuses on capturing the distributional differences among

clusters, we introduce the spatial consistency loss to ad-

dress the limitation of disregarding spatial arrangements.

The spatial consistency loss takes into account the local dis-

crepancies in the image by leveraging edge information. By

calculating the edges in the X , Y , and XY directions using

the Sobel operator, we can model the spatial relationships

and boundaries between regions. By minimizing the pair-

wise differences based on the edge information, our spatial

consistency loss promotes spatial coherence and encourages

neighboring pixels with similar visual characteristics to be

grouped. This enables our method to not only capture the

distributional information but also consider the spatial ar-

rangement of pixels, resulting in more accurate and visually

coherent segmentation. The spatial loss function, denoted

as LS, is formulated as follows:

LS =
∑
i,j

( |(Xi,j −Yi,j)− Zi,j |+

|(Xi,j −XYi,j)− Zi,j |+
|(Yi,j −XYi,j)− Zi,j |),

(5)

where Xi,j , Yi,j , and XYi,j represent the edge informa-

tion at pixel location (i, j) in the X , Y , and XY direc-

tions, respectively. Zi,j also represents a zero image with

the same dimension as edge images. The L1 distance is

computed between the pairwise differences of edges in dif-

ferent directions and the zero image, and the absolute dif-

ferences are summed over all pixels in the image. The goal

is to minimize spatial loss, which encourages the alignment

of edges and promotes spatial consistency between neigh-

boring pixels. This helps enhance the accuracy and visual

coherence of the segmentation results. The overall process

of the spatial consistency loss is depicted in Figure 2.

3.4. Surrogate Task

To further promote the network’s robustness against

affine transformations, we introduce an additional segmen-
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tation head and leverage the concept of consistency in the

feature space. By incorporating affine transformations in

both the feature space and the ground truth masks (we use

the prediction of the main path as a pseudo label), we aim

to establish consistency between the transformed features

and the corresponding transformed masks. This approach

enables the network to learn positive pairs in the form of

contrastive learning, facilitating the generation of a feature

space that is resilient to affine transformations. The moti-

vation behind incorporating consistency over affine trans-

formations lies in the inherent challenges posed by geomet-

ric distortions commonly encountered in medical imaging.

Affine transformations, such as translation, rotation, scal-

ing, and shearing, can significantly alter the spatial arrange-

ment and appearance of anatomical structures in medical

images. Consequently, accurate segmentation in the pres-

ence of such transformations becomes a critical requirement

for reliable medical image analysis. To this end, we define

the affine loss as:

LAT

(
Y

′
,Ya

)
= − 1

H ×W

H×W∑
i=1

K∑
j=1

Ya
i,j log

(
Y

′
i,j

)
,

(6)

where Ya = A ·Y + t shows affine transformation (indi-

cated with affinity matrix A and translation parameter t) ap-

plied on the network prediction map Y and Y
′

indicate the

prediction map of the second path. This consistency over

transformation loss encourages the network to minimize the

discrepancy between the predicted masks generated from

the transformed features and the transformed ground truth

masks. This drives the network to become more robust and

capable of accurately modeling and segmenting anatomical

structures despite variations caused by transformations.

3.5. Joint Objective

The final loss function employed in our training process

encompasses three distinct loss terms as:

Ljoint = λ1Lce + λ2LAT + λ3LS , (7)

where, the first term, denoted as Lce, represents the cross-

entropy loss. This term measures the discrepancy between

the predicted scores generated by the network and the cor-

responding maximum index of the ground truth labels. Its

purpose is twofold: to ensure prediction confidence by opti-

mizing the agreement between the network’s output and the

true labels, and to enable the network to learn the distribu-

tion characteristics of each cluster. The second term in our

loss function, denoted as LAT, is designed to enhance the

network’s invariance against affine transformations. In our

self-supervised strategy, we integrate a contrastive learning

approach that emphasizes the acquisition of invariance to

affine transformations. The final term, denoted as LS, is in-

cluded to promote spatial consistency within each image re-

gion. This term aims to reduce local variations and facilitate

the smooth merging of neighboring clusters. To control the

relative importance of each loss term, we introduce weight-

ing factors λ1, λ2, and λ3. These factors allow us to balance

the influence of each term.

4. Experiments

Skin Lesion Segmentation: For the first task, we focused

on segmenting skin lesion regions in dermoscopic images.

To evaluate our method, we utilized the PH2 dataset [33],

which consists of 200 RGB images of melanocytic lesions.

This dataset offers a diverse range of lesion types, pre-

senting a challenging real-world problem for segmentation.

Similar to [1], we utilized all 200 samples from the dataset

to assess the performance of our method.

Lung Segmentation: In the second task, we addressed lung

segmentation in CT images. To conduct this evaluation, we

employed the publicly available lung analysis dataset pro-

vided by Kaggle, as described in [6]. This dataset includes

both 2D and 3D CT images. Following the approach out-

lined in [6], we prepared the dataset for evaluation. Specifi-

cally, we follow [25] and extract 2D slices from the 3D im-

ages, and selected the first 700 samples for our evaluation.

As the organ tissue is usually separable based on the pixel

values in this experiment, we have also included the pixel

values alongside the score map to predict the lung organ.

4.1. Experimental Setup

Training: To learn the trainable parameters, we employ

SGD optimization, minimizing the overall loss function it-

eratively for a maximum of 50 iterations. The SGD opti-

mization is configured with a learning rate of 0.36 and a

momentum of 0.9. The experiments are performed using

the PyTorch library on a single RTX 3090 GPU.

Evaluation Protocol: We employ the Dice (DSC) score,

XOR metric, and Hammoud distance (HM) as evaluation

metrics. These metrics allow us to compare our method

against both the unsupervised k-means clustering method

and recent self-supervised approaches, namely DeepClus-

ter [8], IIC [22], and spatial guided self-supervised strategy

(SGSCN) [1], and MS-Former [25]. In accordance with the

methodology presented in [1], we only consider the clus-

ter that exhibits the highest overlap with the ground truth

(GT) map as the target class prediction for evaluating our

method. In our evaluation, the DSC score serves as an indi-

cator of the agreement between the predicted target region

and the GT map. Higher DSC scores reflect improved per-

formance. Conversely, the HM and XOR metrics measure

the discrepancy between the predicted target and the GT

map. Therefore, lower HM and XOR values correspond to

superior performance.
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(a) Input Image (b) Ground Truth (c) k-means (d) DeepCluster (e) SGSCN (f) MS-Former (g) Our Method

Figure 3. Visual comparison of different methods on the PH2 skin lesion segmentation and Lung datasets.

4.2. Evaluation Results

Skin Lesion Segmentation In the skin lesion segmentation

task (refer to Table 1), our method outperforms the SOTA

approaches across all evaluation metrics, demonstrating the

effectiveness of our self-supervised content clustering strat-

egy. Notably, our method exhibits superior performance

compared to SGSCN and MS-Former by modeling spa-

tial consistency at both the pixel and region levels. This

modeling of spatial dependency provides a stronger foun-

dation for accurate segmentation. Furthermore, our ap-

proach incorporates consistency over transformations, al-

lowing the network to learn transformation-invariant fea-

ture representations, leading to smoother clustering space.

This recalibration of feature representations contributes to

improved segmentation accuracy. The visual comparison in

Figure 3 confirms the superiority of our strategy, as it gener-

ates smoother segmentation maps with better delineation of

lesion boundaries compared to DeepCluster and K-means

methods. Additionally, our method successfully avoids

under-segmentation issues encountered by MS-Former and

SGSCN, where edges around the lesion and inside the le-

sion class are mistakenly treated as a separate class.

Lung Organ Segmentation The quantitative results for

lung organ segmentation (refer to Table 1) further highlight

the superiority of our self-supervised method over SOTA

approaches. Our approach demonstrates exceptional per-

formance in addressing the specific challenges encountered

when working with CT images, as evidenced by its out-

standing results across various evaluation metrics. CT im-

ages are known for their inherent noise and the presence of

spiky ground truth labels, which can pose significant obsta-

cles to traditional self-supervised methods. However, our

self-supervised approach excels in overcoming these chal-

lenges and achieves highly accurate segmentation results.

Notably, the utilization of the k-means algorithm proves

particularly effective in lung segmentation tasks, benefiting

from the comparatively simpler shapes and lower variations

observed in localized areas of the lung dataset. The visual

segmentation outputs showcased in Figure 3 further vali-

date the efficacy of our approach, as they exhibit noticeably

smoother contour lines compared to alternative methods, af-

firming the superiority of our proposed methodology. This

improvement indicates that the integration of the I-LKA

module facilitates the network’s ability to accurately per-

ceive the actual boundary of the target.

Table 1. The performance of the proposed method is compared to

the SOTA approaches on the PH2 and Lung datasets.

Methods PH2 Lung Segmentation
DSC ↑ HM ↓ XOR ↓ DSC ↑ HM ↓ XOR ↓

k-means 71.3 130.8 41.3 92.7 10.6 12.6

DeepCluster [8] 79.6 35.8 31.3 87.5 16.1 18.8

IIC [22] 81.2 35.3 29.8 - - -

SGSCN[1] 83.4 32.3 28.2 89.1 16.1 34.3

MS-Former [25] 86.0 23.1 25.9 94.6 8.1 14.8

Our Method 88.0 20.4 22.0 94.7 8.8 13.1

4.3. Ablation Study

In our proposed method, we integrated two pivotal mod-

ules, namely affine transformation invariance and spatial

consistency, to improve the feature representation for pixel-

level image clustering. This section focuses on conducting

an ablation study to explore the process of hyperparameter

selection for the loss functions. Furthermore, we examine

the influence of these modules on the model’s generaliza-

tion performance.

Hyper-parameter Tuning: The hyperparameters for our

method were carefully selected and fine-tuned based on em-

pirical evaluations using a small subset of skin lesion seg-

mentation images (10 samples) from the ISIC 2017 dataset

[14]. We employed a grid search approach within a limited

range (0 - 3) to identify the optimal values for λ1 = 1.2,

λ2 = 0.3, and λ3 = 0.3. These obtained hyperparameters

were used for both datasets.

To comprehensively evaluate the impact of hyperparam-

eters on the new dataset, we conducted a series of additional

experiments. The primary objective was to determine the

optimal hyperparameters specifically tailored to the lung
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(a) Input Image (b) Ground Truth (c) Our Method (d) Lce (e) Lce + LAT (f) Lce + LS (g) Ljoint

Figure 4. Segmentation results of the proposed method on the skin lesion segmentation task using the PH2 dataset.

segmentation dataset, utilizing a subset of ten samples for

this purpose. Through an iterative process, we identified

the values of λ1 = 1, λ2 = 0.5, and λ3 = 0.6 as the most

effective configuration. Subsequently, we assessed the per-

formance of the model using these updated hyperparameters

and observed a slight improvement compared to the original

configuration, with a 0.5% increase in the DSC.

Impact of Affine Transformation: Our network architec-

ture incorporates a second branch dedicated to modeling ro-

bustness against affine transformations and providing a su-

pervisory signal to learn invariant feature representations.

To evaluate the specific contribution of this module, we con-

ducted an experiment excluding the affine consistency loss.

The results are summarized in Table 2. The omission of the

affine consistency loss led to a 2.1% decrease in the DSC

score compared to our main strategy. From a qualitative

standpoint, as shown in Figure 4, it can be observed that

the absence of this loss function resulted in challenges re-

lated to accurate boundary separation. Additionally, the ab-

sence weakened the condition of multi-scale feature agree-

ment within the network, leading to the incorrect merging

of small clusters with neighboring clusters.

Impact of Spatial Consistency: Next, we examined the

effect of spatial consistency loss on the clustering process.

Quantitative results are presented in Table 2, where it is

evident that our model without the spatial consistency loss

performed poorly across various metrics. This observation

underscores the significance of spatial consistency for seg-

mentation purposes. Notably, our spatial consistency ap-

proach incorporates edge information in both vertical and

horizontal directions to effectively model local consistency.

Moreover, visual evidence presented in Figure 4 shows that

the absence of spatial consistency resulted in non-consistent

cluster predictions and hindered cluster merging. This ef-

fect becomes more pronounced when the algorithm deals

with complex surfaces.

Impact of Inception and Deformable convolution: In or-

der to assess the impact of the inception module in our LKA

and the deformable convolution in our architecture, we con-

Table 2. Impact of individual loss functions on model perfor-

mance. The experiments were conducted using the PH2 dataset.

Lce LAT LS DSC ↑ HM ↓ XOR ↓
� � � 86.1 22.8 25.6

� � � 86.4 22.2 24.6

� � � 85.9 22.7 25.2

� � � 88.0 20.4 22.0

(a) Input Image (b) Ground Truth (c) Binary Mask (d) Multi-class Mask

Figure 5. Limitations of the proposed method on the PH2 dataset.

ducted an experimental analysis by excluding each of these

modules individually and replacing them with a simple con-

volution block. Our results on the PH2 dataset showed a

slight decrease of 0.6% in the DSC score when the incep-

tion module was removed. Similarly, the absence of the de-

formable convolution led to a 0.8% DSC reduction in per-

formance. These results showcase the importance of both

the inception module and the deformable convolution.

Limitations: Our proposed method has consistently out-

performed SOTA approaches on both datasets, as evidenced

by the experimental results. To gain deeper insights into

the efficacy of our self-supervised segmentation strategy

and to identify potential challenges, we have conducted

additional visualizations. Figure 5 illustrates cases where

our proposed method struggles to accurately predict re-

gions of interest, particularly when there is a significant

overlap between the object of interest and background re-

gions. This limitation becomes more prominent when deal-

ing with complex clustering scenarios, which poses chal-
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lenges for the model to precisely locate the boundaries of

the lesions. Additionally, the presence of noisy annotations

in the ground truth masks further impedes the model’s abil-

ity to generate accurate segmentation maps.

5. Conclusion

This paper introduces a novel SSL appraoch that com-

bines the I-LKA module with deformable convolution to

enable semantic segmentation directly from the image it-

self. Additionally, our network incorporates invariance to

affine transformations and spatial consistency, providing a

promising solution for pixel-wise image content clustering.

Experimental results along with the ablation study demon-

strate the remarkable performance of our method for skin

lesion and organ segmentation tasks.
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