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Abstract

Deep learning has shown considerable promise in medi-
cal image analysis, but significant challenges remain. These
stem from the inherent complexities of medical images, such
as varying sizes of lesions within the same image and the
potential coexistence of multiple diseases. To address these
issues, we propose a novel model combining TResNet with
Feature Pyramid Network (FPN). This model adeptly han-
dles multi-label classification, demonstrating robust perfor-
mance across a range of lesion sizes. Furthermore, most
medical images follow a long-tail distribution, presenting
class imbalance problems, where the occurrence of one le-
sion often correlates with the presence of others. Consid-
ering these correlations, we introduced a strategy for deal-
ing with the class imbalance issue by augmenting minority
classes using bounding box information of the disease. Our
proposed approach offers a novel solution for handling the
unique challenges in deep learning-based medical image
analysis, paving the way for more precise interpretations
of complex medical images. The performance of mAP in 26
disease classes has been improved from 32.76% to 33.37%
in a single model, and 35.11% in ensemble model.

1. Introduction
Tackling multi-label classification problems in the med-

ical image domain holds paramount importance, as it en-
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ables accurate and comprehensive detection of multiple dis-
eases within a single image. The ability to address multi-
label classification in medical imaging has significant impli-
cations for improving diagnostic accuracy, treatment plan-
ning, and patient outcomes, making it a crucial area of
scholarly pursuit.

Various research efforts have been undertaken to ad-
dress the challenges posed by multi-label classification
problems. Among the well-known approaches for tackling
multi-label classification tasks, the binary relevance (BR)
[5]transformation stands out. This method involves training
independent classifiers for each label. However, it suffers
from the limitation of overlooking label correlations as it
handles each label independently [43]. Subsequently, to ad-
dress this limitation, alternative techniques that explicitly
consider the correlation among labels have been proposed,
such as classifier chain or graph neural network-based ap-
proaches [44, 12, 17].

In multi-label classification tasks, another important as-
pect to consider in real-world applications is the presence
of data with long-tailed class distributions [30, 33, 36, 25].
Long-tailed distribution refers to a situation where a few
classes, known as the “head” classes, dominate the major-
ity of the data, while many classes, known as the “tail”
classes, have only a small amount of data. The class imbal-
ance observed in long-tailed classification leads the mod-
els to be biased towards the abundant head classes, result-
ing in significantly lower performance for the tail classes
[51, 8, 50, 7, 21].

Addressing the issue of long-tailed class imbalance has
been the focus of numerous studies in recent years [8, 50,
28, 58, 59]. One common approach in long-tailed learn-
ing is the re-weighting method, where different training loss
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weights are assigned to each class to adjust the loss. This
re-weighting minimizes the bias caused by class imbalance.
Representative methods include Class-balanced Loss [14],
Balanced Softmax [46], Focal Loss [32], and Vector Scal-
ing Loss [39]. All of which have shown improvements in
tail class performance.

Another widely used paradigm is information augmenta-
tion, which involves providing additional information dur-
ing model training to enhance performance in long-tailed
scenarios. This encompasses transfer learning and data
augmentation methods. One previous study utilizing trans-
fer learning involved training the model for representation
learning on all long-tailed samples and then fine-tuning it on
a more class-balanced subset [15]. This approach gradually
transferred the learned features to the tail classes, ensuring
balanced performance across all classes. On the other hand,
data augmentation involves applying predefined transfor-
mations to the training data to increase both the quantity
and quality of the data [40]. A related study, MiSLAS [61],
in deep long-tailed learning, validated that data mixup as a
form of data augmentation addressed the model’s overcon-
fidence issue, resulting in performance enhancement.

To address the challenge of long-tailed multi-label clas-
sification, we created synthetic data to augment the existing
dataset. Leveraging this augmented data, we trained a novel
model called Feature Pyramid Sum Model (FPSM). Instead
of combining different scale feature map outputs such as
bounding boxes or classification indexes, we firstly create
the results of each of these feature maps. The difference is
that the SUM process that combines them exists once more
to give an ensemble effect. By adding this process, it is
more suitable for multi-label classification than object de-
tection. Through FPSM, our novel approach successfully
captures features of diseases of various sizes and shapes.

Furthermore, proposed Diseased Area Data Augmention
Method (DADAM) enhances the robustness of our method-
ology against class imbalance.The data augmentation tech-
nique primarily focused on classes that constitute the tail,
given their propensity to induce class imbalance. Our data
augmentation approach employs two distinct methods. The
first involves utilizing existing normal images from the
dataset as background images, from which disease patches
are extracted from disease images and overlaid. The second
method incorporates images containing classes that corre-
spond to the tail as the background, onto which the disease
patches are then superimposed. A notable consideration
during the implementation of these methods was the interre-
lationship amongst the diseases. By primarily augmenting
classes that constitute the tail through these techniques, not
only is class imbalance mitigated, but the inherent feature of
medical images, multi-labeling, is also accounted for, with
due regard to the interrelationship between diseases.

2. Related Works
2.1. TResNet

The TResNet [47] model originated from ResNet50,
aimed to enhance model performance while preserving
GPU efficiency. TResNet introduces various modifications
to achieve improved model performance and increased GPU
throughput.

Firstly, TResNet replaces stem unit of ResNet50 [23]
with the SpaceToDepth stem [48], which rearranges spa-
tial data blocks into depth, enabling more efficient data pro-
cessing. This minimized information loss while enhanc-
ing GPU throughput. Secondly, TResNet combines ele-
ments from ResNet34’s BasicBlock layer and ResNet50’s
Bottleneck layer [23]. The BasicBlock layer, comprised of
two conv3×3 layers, offers a larger receptive field, while
the Bottleneck layer, consisting of two conv1×1 and one
conv3×3 layers, achieves higher accuracy at the expense of
increased GPU usage. As a result, TResNet strategically
places BasicBlock layers in the initial two stages and Bot-
tleneck layers in the last two stages, effectively improving
GPU throughput and model performance. Thirdly, TResNet
replaces BatchNorm + ReLU with the In-place activated
batchnorm (Inplace-ABN) layer. Inplace-ABN combines
BatchNorm and activation into a single in-place operation,
effectively reducing the memory requirements during deep
network training. Additionally, TResNet employs Leaky-
ReLU as the activation function for the Inplace-ABN, lead-
ing to increased GPU inference speed and accuracy. Finally,
TResNet introduces optimized squeeze-and-excitation [26]
layers (optimized SE layers) in the first three stages and
adopts anti-alias downsampling for the downsampling layer
[57]. These adjustments result in a reduction in GPU
throughput but significantly enhance model performance.

By incorporating these modifications derived from
ResNet50, TResNet achieved state-of-the-art accuracy in
single-label datasets besides ImageNet, and multi-label
classification task, at the time of its publication.

2.2. Feature Pyramid Networks

The Feature Pyramid Network [31] (FPN) is a devised
method primarily aimed at object detection. The main ob-
jective of this approach is to recognize various-sized ob-
jects present within an image. Previously, several attempts,
such as featurized image pyramid and pyramidal feature
hierarchy, were made to detect objects of different scales.
The featurized image pyramid method involves resizing the
input image to different scales and feeding them into the
model, which yields promising results in capturing objects
of varying sizes. However, it suffers from slow inference
speed and excessive memory usage.

On the other hand, pyramidal feature hierarchy extracts
feature maps at predefined convolutional layers in the net-
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work, utilizing multi-scale feature maps to achieve high per-
formance. Nevertheless, it faces the issue of a semantic gap
arising from differences in feature map resolutions.

In contrast, the Feature Pyramid Network incorporates a
top-down pathway and lateral connections, enabling the uti-
lization of transformed feature maps. This unique approach
enhances the ability to detect smaller objects more effec-
tively.

This capability allows FPN to effectively handle objects
of different scales, proving valuable in a wide range of com-
puter vision applications, including image recognition and
object detection tasks.

2.3. Data Augmentation

Data augmentation refers to a set of methods designed
to enhance the volume of data by creating additional data
instances derived from the original ones. This approach is
particularly valuable in the medical image domain, where
challenges in data scarcity and class imbalance hinder the
performance of deep learning models. Data augmentation
encompasses a range of transformations, starting from ba-
sic geometric alterations such as flipping and rotating within
a single image to more sophisticated methods like using
Generative Adversarial Networks (GANs) [19] to create en-
tirely new data. Recently, innovative approaches like Mixup
[56], CutMix [55] and Copy-Paste [20], which involve mix-
ing different data samples, have gained prominence in the
research community. Of particular interest is the CutMix
technique, which involves replacing regions of an original
image with patches from other images. This method bears
strong resemblance to the augmentation techniques we have
employed. Leveraging data augmentation, researchers can
diversify the dataset without the need to collect new data
directly, resulting in an expanded and more varied dataset.

2.4. Automated Machine Learning

Automated machine learning aims to reduce develop-
ment costs while providing high-performance models. Two
prominent techniques in this field are Neural Architecture
Search (NAS) and Hyperparameter Optimization (HPO).
NAS is an algorithm for exploring neural network model ar-
chitectures, and it encompasses various methods depending
on how the search space, search strategy, and performance
estimation strategy are defined [18]. The search space rep-
resents the domain in which the algorithm explores, encom-
passing aspects such as the number of layers and convolu-
tion methods. The search strategy determines how the op-
timal architecture is discovered within the search space and
is designed to balance exploration and exploitation. Lastly,
the performance estimation strategy involves predicting the
performance of candidate architectures extracted through
the search strategy. This predicted performance guides NAS
in iterating the process of creating new architectures.

Hyperparameter Optimization (HPO) is the process of
fine-tuning various variables, such as learning rate, batch
size, and loss function, among others, during the model
training process to find the optimal combination.

HPO encompasses a range of methods, including Grid
Search, Random Search [4], and Bayesian Optimization
[49], as fundamental approaches. Grid Search explores all
possible combinations exhaustively to identify the optimal
configuration, whereas Random Search explores random
combinations of hyperparameters. In contrast, Bayesian
Optimization leverages previous results to suggest promis-
ing hyperparameter combinations, making the search for the
optimal solution more efficient. Each method has its own
strengths and weaknesses, and selecting the appropriate ap-
proach depends on the specific context and requirements of
the optimization task.

2.5. Ensemble Methods

Ensemble techniques refer to machine learning meth-
ods that combine predictions from various individual mod-
els known as base learners, resulting in a more accurate
and powerful predictive model. Given that each individual
model possesses its distinct strengths and weaknesses, this
amalgamation of diversities contributes significantly to the
overall enhancement of predictive performance.

The most prominent model ensemble techniques en-
compass model averaging [53, 27] and bagging [6]. To
begin with, model averaging can be categorized into un-
weighted model averaging [53] and weighted model aver-
aging [27]. Unweighted model averaging is typically em-
ployed when ensembling similar or identical base learners,
whereas weighted model averaging is used when ensem-
bling base learners with different structures. Bagging [6]
is a two-step process involving bootstrapping and aggrega-
tion. Bootstrapping divides the original dataset into subsets
called bagging samples, and each base learner is trained on
different subset samples. Consequently, each base learner
produces independent observations, which are combined at
aggregation step using methods like voting. By combin-
ing model outputs through the aforementioned ensemble
techniques, the ensemble model can achieve superior per-
formance compared to individual models [53, 27, 6].

3. Proposed method
3.1. Feature Pyramid Sum Model (FPSM)

The proposed feature pyramid multi-label classification
model can be conceptually applied to both CNN mod-
els and transformer models, which is not a pre-processing
method models that changes or amplifies the size or char-
acteristics of an input image, and also not a post-processing
method such as non-maximum-suppression for output. It
is a performance-enhancing technique that can be applied
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Figure 1: Chest X-Ray Feature Pyramid Sum Model (CXR-FPSM)

(a) Original (b) augmented with normal image (c) augmented with disease image

Figure 2: Illustrative images using Diseased Area Data Augmentation Method (DADAM). Disease regions are identified
using bounding box information provided by the MIMIC-CXR-JPG, ChexDet, NIH Chest X-ray, VinDR-CXR datasets. The
images include: (a) Shows the location of the disease in a normal image. (b) Utilizes the normal image as the background
and overlays patches of diseases that are highly correlated. (c) Uses the image of the disease as the background and attaches
patches of diseases that have a high correlation with the given disease.

directly to the model itself.

Description of each block As shown in Figure 1, TRes-
Net [47] was used for base-network. Table 1 explains three
quantities in the feature pyramid model: feature map size,
channels, and feature dimension. The number of output
channels of each feature pyramid layer is equal to 76, 152,
1216, and 2432 from stage 1 to stage 4, respectively. When
a feature is created in this way, the next step is to convert the
feature map into a 1-dimensional channel vector through a

global average pooling layer. The next step allows you to
add binary embedding. This step is an optional process,
and binary embedding can be fused to existing features with
a length of two, which is the number of datasets. It goes
through the fully connected layer again and makes it into a
feature with a length of 26. The purpose is to make it possi-
ble to recognize affected areas of various sizes by extracting
four types of multi-scale features made of the same length.
To achieve this purpose, firstly we calculate the multi-label
soft margin loss on each separate feature map. Secondly, we
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Layer Feature map Channels Feature
Width × Height Dimension

Input Image 448 × 448 3 N/A
Stage 1 112 × 112 76 76 (+2)
Stage 2 56 × 56 152 152 (+2)
Stage 3 28 × 28 1216 1216 (+2)
Stage 4 14 × 14 2432 2432 (+2)

Table 1: TResNet Feature Pyramid Feature map size, Chan-
nels and Feature dimension

sum those four losses into one scalar value in one training
step.

3.2. Diseased Area Data Augmentation Method
(DADAM)

The Long-tail problem refers to the phenomenon in clas-
sification tasks where the distribution of each class varies
significantly [37]. This can lead to a decrease in classi-
fication performance, particularly in the tail classes vthat
have limited samples compared to the dominant classes [2].
Class imbalance is closely related to the Long-tail problem,
as it exacerbates the performance degradation caused by the
uneven class distribution [60]. The imbalance can result in
biased models that tend to favor the majority classes, mak-
ing it challenging to effectively classify minority classes.
The Long-tail problem can significantly impact the perfor-
mance of classification models. The scarcity of samples
in the tail classes makes it difficult for the model to learn
their distinguishing features accurately [22]. The dominant
classes receive more attention during the training process,
leading to a biased decision boundary and lower accuracy
for the tail classes.

In medical datasets, diagnosing diseases through medi-
cal imaging often involves distinguishing subtle differences
between abnormal conditions and normal images [34]. This
poses unique challenges for data augmentation techniques
commonly used in computer vision tasks [54]. Traditional
augmentation methods such as cropping or color transfor-
mations may inadvertently remove or diminish the features
related to the disease region, as the differences between nor-
mal and abnormal images can be subtle [41].

Medical image datasets often consist of multi-label im-
ages, where an image can have multiple diseases or abnor-
malities simultaneously [10]. This is due to the nature of
medical conditions where patients can have comorbidities
or multiple pathologies [1]. Therefore, classifying medical
images requires handling multiple labels simultaneously. In
multi-label medical image classification, there is often a
correlation among different diseases present in an image
[45]. Certain diseases may co-occur or exhibit dependen-

cies, which can provide valuable contextual information for
accurate diagnosis [9]. Figure 3 illustrates the correlations
between diseases in both the original dataset and the aug-
mented dataset. By calculating the inter-disease correla-
tions in the original dataset and reflecting these findings in
the data augmentation process, we are able to generate an
augmented dataset that retains a similar disease correlation
structure as the original. This methodical approach ensures
the creation of a meaningful and representative dataset for
further model training and evaluation. Incorporating the in-
terrelationship among diseases can enhance the model’s un-
derstanding of complex patterns and improve classification
performance.

To address the Long-tail problem and leverage the corre-
lation among diseases, we propose two augmentation strate-
gies for medical image classification.

CutMix of diseased area patches on the normal image
Given the objective of mitigating the long-tail problem, the
augmentation of tail classes is crucial. In this process, a
disease class from the tail is randomly selected, following
which a disease patch is extracted using bounding box in-
formation from the corresponding diseased image. While
appending this patch onto a normal image, the relative posi-
tions in the diseased and normal images are kept as identical
as possible. Given that the dimensions and other attributes
of the images can vary widely, exact alignment proves chal-
lenging. However, an approximate alignment suffices in
preserving the disease-specific features. Furthermore, in
the case of multi-label datasets, several diseases may co-
exist in a single image. Therefore, patches from other dis-
eases, preferably those strongly correlated with the initial
disease, should also be appended onto the normal images to
maintain the multi-label nature. It is essential to ensure that
the appended patches do not overlap to prevent the loss of
disease-specific features.

Mixup of diseased area patch on the disease image In
cases where obtaining disease images or accurate bounding
box information for tail classes is challenging, we propose
an alternative approach. We randomly select a disease from
the tail classes and use an image containing that disease
as the background. To ensure that the most correlated dis-
ease is represented, we exclude the other diseases present in
the background image and extract a disease patch using the
bounding box information. The patch is then blended into
the background image, considering a transparency value of
0.6 to effectively differentiate the disease features. Given
that the background image may contain multiple diseases,
blending the patch ensures that relevant disease information
is preserved.

Our proposed strategies, patch fusion with normal im-
ages and disease patch blending with background images,

2761



Figure 3: An illustrative comparison of the Pearson corre-
lation coefficients for the two datasets used in model train-
ing. The figure presents the correlations in the 210k dataset
and the 320k dataset respectively, providing insights into
the structure and relationships within each dataset.

Figure 4: A comparison of the distributions between the
210k and 320k datasets utilized for model training. Rows
represent the 26 various diseases, while columns indicate
the number of data points for each disease.

aim to mitigate the Long-tail problem and improve the ac-
curacy of medical image classification models.

Figure 2 illustrates examples of chest X-ray images
where the disease-relevant regions are depicted with bound-
ing boxes, as well as examples of augmented images gener-
ated using our two proposed augmentation techniques. It is
worth noting that multiple diseases can be contained within
a single image, and the size of these diseases can vary con-
siderably. To account for this, we propose the use of a Fea-
ture Pyramid Network, capable of recognizing features of
diverse sizes, to enhance the accuracy of medical image
classification. This strategy, with its ability to consider a
broad range of disease feature sizes, shows promise in in-
creasing the robustness and precision of disease detection in
medical imaging.

4. Experiments

4.1. Datasets

To train the proposed model, we utilized an expanded
version of MIMIC-CXR-JPG [29], a prominent benchmark

dataset for automated thorax disease classification. Each
CXR study in the dataset was tagged with 12 additional dis-
ease findings derived from the corresponding radiology re-
ports [24]. The subsequent long-tailed dataset includes a
total of 377,110 CXRs, with each one labeled with a mini-
mum of one of the 26 possible clinical findings(inclusive of
a ”No Finding” class).

We also employed the VinDR-CXR [38] dataset, which
comprises 18,000 images of diseases, each labeled with
one of 28 multi-labels(including ”No Finding” class). This
dataset embodies 22 critical findings (local labels) and 6 di-
agnoses (global labels), and includes bounding box infor-
mation for 983 images.

Another dataset used in our research was the NIH Chest
X-ray [52] Dataset, consisting of 112,120 X-ray images
from 30,805 unique patients, with fourteen image labels of
diseases text-mined from the associated radiological reports
using natural language processing, where each image may
have multiple labels. This dataset features approximately
1,000 bounding box annotations.

The ChexDet [35] dataset, which incorporates 3,578
images from NIH ChestX-14 was also utilized. This
dataset classifies images into 13 common disease categories
and contains bounding box information for 2,478 images.
For the augmentation of data using our proposed disease
patch application method, we utilized the MIMIC-CXR-
JPG dataset and three other public datasets: VinDR-CXR,
NIH Chest X-ray, and ChestX-Det, each comprising chest
X-ray images with bounding box information on diseases.

We utilized a total of 264,851 images from the MIMIC-
CXR-JPG dataset to train our model. The dataset was split
into training and validation subsets at a ratio of 8:2. From
the designated training subset, we augmented images using
two proposed methods. First, by affixing disease patches
from diseased images onto normal images, we generated an
additional 50k images. Second, we produced 50k more im-
ages by attaching disease patches to diseased images used
as the background.

To train our proposed model, we established two sep-
arate datasets based on the augmented images. The first
dataset was comprised of the original 210k images, derived
from the training split of the MIMIC-CXR-JPG dataset.
The second dataset was an extended version of the first, in-
tegrating the original 210k images with an additional 100k
augmented images, thereby totaling to a count of 330k im-
ages. The distribution of the 210k and 320k datasets is
depicted in Figure 4. In an effort to reduce the dispar-
ity between classes, the 320k dataset has been primarily
augmented focusing on the tail classes. By doing so, we
aim to mitigate the long-tail problem, thereby achieving a
more balanced class distribution for enhanced model perfor-
mance. These datasets were curated meticulously to ensure
a robust training mechanism for our proposed model.
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4.2. Feature Pyramid Sum Method

Tables 2, 3, and Tables 1, 2 in Appendix A are the results
of training on the 210k Train dataset by randomly dividing
the entire 270k MIMIC dataset into Train:Validation=8:2.
As shown in Table 2, the feature combination set of the
Feature Pyramid Sum Model optimized for Chest X-Ray
data has the highest value of F1-score=27.68% and Preci-
sion=20.90% in the 4th+3rd+2nd+1st feature set (using all
features). The 4th+3rd+2nd feature set (using all features ex-
cept first feature), it has the highest values at mAP=33.10%,
Recall=76.98%, and AUC=82.83%. Thus, we experimen-
tally proved that using FPSM feature sets that include multi-
scale features of various organ sizes in parallel are better
feature sets for multi-labeling problems compared to using
only one feature (TResNet baseline feature). Ultimately,
the problem that this model aims to solve is to answer
which diseases are present simultaneously in a single im-
age. Therefore, it can be understood that different feature
sets are more suitable depending on the size and shape of
the organs according to various disease-specific organ sizes
using various FoV (Field of View) size feature maps. To
optimize multiple scale features for recognizing multiple
diseases at the same time, loss functions can be separated
by size. As shown in Table 2 and 3 ( use concatenate=0),
the method of summing multiple features is better than the
method of concatenating multiple features (Tables 1 and 2
use concatenate=1 in Appendix A) representing less than
1% performance decrease in all performance metrics except
precision. The precision metric is 7% higher in sum merger
than in concatenate merger. To summarize the two per-
formance benefits of the FPSM described above, 1) 3 or 4
multi-layer features considering various affected part sizes
are simultaneously used to improve performance, and 2) the
multi-layer feature is used to calculate each feature loss,
and the method of selecting features as the sum of individ-
ual losses improves performance even more than a model
that concatenates these individual features and trains them
with a single loss. In particular, in the case of precision,
the difference is improved compared to the sum method in
the case of concatenate. In order to generalize this, we con-
ducted additional experiments on MURA MSK [42] dataset
and found that the above two performance improvements
were occurred in the same way.

4.3. Model Ensemble

By averaging the final output probability values of the
following three models, we achieved the highest perfor-
mance of mAP=35.11% on the validation set by ensem-
ble, which has mAP=32.8% in the test phase. The three
models are as follows. First, we selected the model with
an mAP value of 33.10% using the 4th+3rd+2nd feature set,
which was the best performing model in Table 2. Sec-
ond, we selected the model with an mAP value of 33.04%

Used F1 mAP Recall Pre- AUC
Feature Pyramid cision

4th 27.13 32.77 75.79 20.46 82.65
4th + 2nd 27.24 32.79 76.20 20.53 82.62

4th + 3rd + 2nd 27.51 33.10 76.98 20.87 82.83
4th + 3rd + 2nd + 1st 27.68 32.76 76.06 20.90 82.60

Table 2: Performance of Feature Pyramid Classifier,
use binary enc=0, use concatenate=0

Used F1 mAP Recall Pre- AUC
Feature Pyramid cision

4th 27.18 32.92 76.47 20.45 82.81
4th + 2nd 27.18 32.59 76.28 20.52 82.57

4th + 3rd + 2nd 27.36 33.04 76.14 20.68 82.81
4th + 3rd + 2nd + 1st 27.35 32.94 75.73 20.69 82.67

Table 3: Performance of Feature Pyramid Classifier,
use binary enc=1, use concatenate=0
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Figure 5: AUC performance curve of 26 class diseases be-
tween validation set and test phase set.

using the 4th+3rd+2nd feature set, which was the best per-
forming model in Table 3. Finally, we started fine tunning
with a model having an mAP value of 33.10%. We fine-
tuned it with 320k image dataset augmented by DADAM,
and reached a maximum performance of 33.37% after one
epoch as a single model. By averaging the final output
probability values of these two table models and one above
fine-tunned model, we can obtain a final performance of
mAP=32.80% in the test phase among our submitted mod-
els.

Table 4 shows the 26-class performance metrics of this
ensemble model. Figure 5 shows that the AUC trend of the
26 individual classes between test phase set and the self-
validation set is almost similar. In other words, the distri-
bution of the validation dataset we used can reasonably be
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AP AUC F1
Atelectasis 0.5946 0.8188 0.5154

1Calcification o. A. 0.1159 0.8714 0.0000
Cardiomegaly 0.6398 0.803 0.5322
Consolidation 0.218 0.7789 0.0147

Edema 0.5454 0.8515 0.4474
Emphysema 0.1652 0.8947 0.0271
2Enlarged C. 0.177 0.6054 0.0041

Fibrosis 0.1319 0.9014 0.0089
Fracture 0.2192 0.774 0.0719
Hernia 0.4837 0.8911 0.3914

Infiltration 0.0546 0.6107 0.0000
Lung Lesion 0.0308 0.7691 0.0000
Lung Opacity 0.5839 0.774 0.4775

Mass 0.1665 0.7887 0.059
No Finding 0.4689 0.8493 0.3981

Nodule 0.1663 0.7806 0.0244
Pleural Effusion 0.8219 0.917 0.7355

Pleural Other 0.0419 0.872 0.0000
Pleural Thickening 0.0972 0.8193 0.0000
Pneumomediastinum 0.3081 0.9115 0.1004

Pneumonia 0.2944 0.6446 0.0604
Pneumoperitoneum 0.2352 0.8624 0.1031

Pneumothorax 0.4737 0.8578 0.3859
3Subcutaneous E. 0.5377 0.9745 0.4725
Support Devices 0.9031 0.9418 0.845
Tortuous Aorta 0.0527 0.8136 0.0000

Mean 0.328 0.8222 0.2183

Table 4: Test phase performance of proposed en-
semble model (1Calcification o. A.: Calcification
of Aorta, 2Enlarged C.: Enlarged Cardiomediastinum,
3Subcutaneous E.: Subcutaneous Emphysema)

guessed to be similar to the test set because 20% of the en-
tire MIMIC dataset was randomly selected. Therefore, for
the last ensemble model, if we fine-tune this model with
the entire data set before test phase, it is estimated that the
performance of the test phase (currently 32.8%)could have
been maintained about 35.1% same as validation.

5. Conclusion

In this paper, we proposed a model combining Tres-
net and FPN to address the multi-label classification prob-
lem in medical data. FPN, known for its ability to ex-
tract feature maps of various sizes from a single image,
enables recognition of objects of different scales. By in-
tegrating this FPN with Tresnet, renowned for its GPU effi-
ciency and strong performance in multi-label classification,
we created a model capable of detecting lesions of vary-
ing sizes in medical images. Through experimental com-
parisons between a standalone Tresnet and the Tresnet-FPN

combined model, we demonstrated the efficacy of our ap-
proach. Moreover, to tackle the challenge of the long-tail
distribution problem inherent in medical data, we proposed
a data augmentation technique that considers the correla-
tion between labels and utilizes disease patch bounding box
information. By increasing the number of samples cor-
responding to the tail classes through data augmentation,
we have improved mAP by 0.27% after fine-tunning step.
Overall, the proposed methodologies demonstrate a signif-
icant potential to enhance the performance of multi-label
classification tasks in medical data, thus opening up new
avenues for the application of these techniques in practi-
cal medical diagnosis and treatment planning. Future work
may extend and optimize these techniques further to yield
even better performance.

6. Discussion
In addition to our proposed model, we have experi-

mented with various models such as MoCo-v2 [11, 13] us-
ing self-supervised learning and Vision Transformer (ViT).
Although it is challenging to make a direct comparison
due to the experiments not being conducted under the ex-
act same conditions, we still can mention that our pro-
posed method, FPSM with DADAM, showed the best per-
formance in mAP of 33.37%. We conducted experiments
using self-supervised model pretrained on chest X-ray im-
ages using MoCo-v2 [11, 13] and ViT [16] pretrained on
ImageNet. It is important to note that the pretrained weights
used for MoCo-v2 were from hospital-specific data, not
from MIMIC [13]. During training, both MoCo-v2 and ViT
were trained on 80% of the MIMIC train data (210K sam-
ples) and validated on the remaining 20% of data. The im-
ages were resized to 512×512, and we employed the Adam
optimizer with an initial learning rate of 1e-5, along with the
CosineAnnealingLR scheduler. As for the loss function, we
utilized the asymmetric multi-label loss [3]. The valida-
tion results demonstrated that ResNet50 achieved an mAP
of 26.0%, while ViT achieved an mAP of 29.8%. Addition-
ally, we performed ablation studies on ViT with DADAM
dataset introduced in Appendix C.
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