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Abstract

Colonoscopy is the standard of care technique for de-
tecting and removing polyps for the prevention of colorec-
tal cancer. Nevertheless, gastroenterologists (GI) routinely
miss approximately 25% of polyps during colonoscopies.
These misses are highly operator dependent, influenced
by the physician skills, experience, vigilance, and fatigue.
Standard quality metrics, such as Withdrawal Time or Cecal
Intubation Rate, have been shown to be well correlated with
Adenoma Detection Rate (ADR). However, those metrics
are limited in their ability to assess the quality of a specific
procedure, and they do not address quality aspects related
to the style or technique of the examination. In this work
we design novel online and offline quality metrics, based on
visual appearance quality criteria learned by an ML model
in an unsupervised way. Furthermore, we evaluate the like-
lihood of detecting an existing polyp as a function of pro-
cedure quality and use it to demonstrate high correlation of
the proposed metric to polyp detection sensitivity. The pro-
posed online quality metric can be used to provide real time
quality feedback to the performing GI. By integrating the
local metric over the withdrawal phase, we build a global,
offline quality metric, which is shown to be highly corre-
lated to the standard Polyp Per Colonoscopy (PPC) quality
metric.

1. Introduction

Screening for colorectal cancer is highly effective, as

early detection is within reach, making this disease one of

the most preventable. Today’s standard of care screening

method is optical colonoscopy, which searches the colon

for mucosal abnormalities, such as polyps. However, per-

forming a thorough examination of the entire colon surface

using optical colonoscopy is challenging, which may lead

to a lower polyp detection rate. Recent studies have shown

that approximately 25% of polyps are routinely missed dur-

ing colonoscopies [1].

The success (diagnostic accuracy) of a colonoscopy pro-

cedure is highly operator dependent. It varies based on the

performing physician skills, experience, vigilance, fatigue,

and more. To ensure high procedure quality, various qual-

ity metrics are measured and monitored. E.g., the With-

drawal Time (time from the colonoscope reaching cecum

to removal of the instrument from the patient) metric was

shown to be highly correlated to Adenoma Detection Rate

(ADR) [8, 17, 20, 21, 22, 24]. Another quality metric – Ce-

cal Intubation Rate (proportion of colonoscopies in which

the cecum is intubated) – is considered important to ensure

good colon coverage.

Most of these existing metrics are relatively easy to com-

pute, but can provide only limited data on the quality of a

specific procedure, and are typically used aggregatively for

multiple sessions. Some studies [18] suggest that there are

other factors that impact the polyp detection rate. For ex-

ample, one may wish to distinguish between a good and

bad colonoscope motion patterns, or assess the style of the

examination. The hypothesis is that a better inspection style

yields more informative visual input, which results in a bet-

ter diagnostic accuracy.

In this work we propose a novel quantitative quality met-

ric for colonoscopy, based on the automatic analysis of the

induced video feed. This metric is computed locally in time,

measuring how informative and helpful for colon inspection

a local video segment is. As this instantaneous quality is

very subjective and difficult to formulate, human annotation

is problematic and ill-defined. Instead, we let an ML model

build a meaningful visual data representation in a fully un-

supervised way, and use it to construct a metric highly cor-

related with the clinical outcome. First, we learn visual rep-

resentations of colonoscopy video frames using contrastive

self-supervised learning. Then, we perform cluster analysis

on these representations and build a linear classifier base on

these cluster assignments, bearing a strong correlation with

polyp detection, which can serve as an indicator for “good-

quality” video segments.

While the proposed approach resembles the one pro-

posed in [9], the addressed problems are markedly different,

as [9] does phase detection in colonoscopy. There are other

works aiming to learn frame representations in colonoscopy

videos. However, those descriptors are usually associated

with polyps, and used for polyp related tasks - tracking, re-

identification [4, 25], optical biopsy [23], etc.
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the final published version of the proceedings is available on IEEE Xplore.
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Figure 1: Method overview. (Left) Two augmented views for each frame are used to train the encoder and the projection

head using contrastive learning. (Right top) Feature representations are directly clustered into semantically meaningful

groups using K-means. (Right middle) Learning clusters’ associations. (Right bottom) At inference time, cluster attributes

are leveraged for quality metric evaluation.

By measuring the duration of good quality video seg-

ments over the withdrawal phase of the procedure, we

derive a new offline colonoscopy quality metric. We

show that this measure is strongly correlated to the Polyps

Per Colonoscopy (PPC) quality metric. Moreover, we

show how the real-time measurement of the quality of a

colonoscopy procedure can be used to evaluate the likeli-

hood of detecting a polyp at any specific point in time dur-

ing the procedure.

The rest of the paper is structured as follows: Section 2

introduces the encoding and clustering of frames, which are

then utilized to define quality metrics. Section 3 showcases

the evaluation of the proposed metrics, along with ablation

studies. Lastly, Section 4 summarizes the findings and dis-

cusses potential future directions.

2. Method
Our goal is to learn a colonoscopy quality metric through

the identification of temporal intervals in which effective

polyp detection is possible. We start by learning the

colonoscopy video frame embedding using self-supervised

learning, followed by a cluster analysis. Using those clus-

ters, we learn a ”good” frame classifier, which then serves

as the basis for both global (offline) and local (online) qual-

ity metrics. The end-to-end framework is described in the

following sections, and illustrated in Figure 1.

2.1. Frame Encoding

We start from learning visual representations of

colonoscopy frames using contrastive learning. We use

SimCLR [5], which maximizes the agreement between rep-

resentations of two randomly augmented versions of the

same frame, while pushing away the representations of

other frames (see Fig. 1). Specifically, frame xi is randomly

augmented, resulting in two correlated views, x1
i and x2

i ,

considered as a positive pair. These views are fed to an

encoder fθ(·) and projection layer gφ(·), yielding the em-

bedding vector zai = gφ(fθ(x
a
i )) (a = 1, 2). Given a batch

of N frames, the contrastive loss referring to the i-th frame

is given by:

�(z1i , z
2
i ) = −log

exp(sim(z1i , z
2
i )/τ)∑

k �=i

∑2
a=1

∑2
b=1 exp(sim(zai , z

b
k)/τ)

,

(1)

where τ is a temperature parameter, and sim is the cosine

similarity defined as sim(u, v) = uT v/‖u‖‖v‖. We use

ResNet-RS50 [3] for the encoder and a simple MLP with

one hidden layer for the projection layer, as suggested in

[5].

Our training data consists of 1M frames randomly sam-
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Figure 2: T-SNE plot of frame embeddings. K-means clusters are color coded.

Cluster #0 #1 #2 #3 #4 #5 #6 #7 #8 #9

Samples

Frequency 3.07% 19.3% 9.51% 4.20% 0.27% 6.71% 0.02% 14.0% 32.0% 10.7%

Weight −1.75 −0.12 −1.14 −0.79 −0.48 +0.05 +0.06 −0.17 +0.65 −0.12

Figure 3: Clusters visualization. Random selection of frames from each cluster along with their corresponding relative

frequency. Cluster #0 refers to out-of-body content, thus given a negative weight. Conversely, cluster #8 comprises tubular

clean frames and thus associated with polyp detection with the highest positive weight.
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pled from 2243 colonoscopy videos. Since the designed

metric is supposed to be used for predicting the chance of

detecting a polyp, it is not expected to be used on frames

where the polyp is detected or treated. Therefore, we ex-

clude such frames from the training set, by detecting them

automatically using off-the-shelf polyp and surgical tool de-

tectors [11, 12, 13]. As the negative pairs (red arrows in

Fig. 1/Left) are utilized within the same batch as the pos-

itive ones (green arrows), in each batch, each sample in-

cludes frames from its own temporal neighborhood for a

more challenging negative mining.

For augmentation we use standard geometric transfor-

mations (resize, rotation, translation), color jitter, and the

Cutout [6] with the Gaussian noise filling. The augmented

views are illustrated in Fig. 1/Left.

2.2. Frame Clustering

The second step in our scheme is clustering the

learned representations fθ(xi) into K(=10) clusters using

k-means [14]. While the standard k-means does a hard as-

signment of each frame to its corresponding cluster, we use

a soft alternative based on the distance between the frame

descriptor to cluster centers. Namely, we define the proba-

bility of the i-th frame to belong to the k-th cluster by

ri,k = Prob(fθ(xi) ∈ k) ∼
[

1

‖fθ(xi)− ck‖22

]α

for k = 1, 2, . . . ,K, (2)

where {ck}Kk=1 are the cluster centers, α = 16, and vector

ri = (ri,k)
K
k=1 is normalized to sum 1. Figure 2 shows the t-

SNE projection of frame embeddings with k-means clusters

color coded. Interestingly, the samples are clustered into

relatively compact, meaningful groups. Figure 3 presents

a random selection of frames from each cluster. One can

see that clusters 1, 2 and 7 contains inside-body informa-

tive frames. In contrast, clusters 0, 3, 4, 5, 6, 8 and 9 con-

tain non-informative outside-body and inside-body frames.

Please see the Supplemental Materials for more visual ex-

amples.

2.3. Online (Local) Quality Metric

Based on the learned frame embeddings and clusters, we

now design an online (local) quality metric.

As our objective is to link the visual appearance to polyp

detection, we learn a metric that predicts one from the other.

Namely, we learn a function Q(·) that maps frame xi ap-

pearance encoded by the vector ri (see Eq. 2) to the chance

of detecting a polyp in the following frames.

More precisely, we average the ri over a video segment

of 10 sec to get ri, and train a binary classifier Q(ri) to

predict the detection of a polyp in the following 2 seconds.
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Figure 4: The likelihood of detecting an existing polyp in

a short video segment as a function of local quality metric

Q. As one can see, the proposed quality metric Q correlates

very well with the polyp detection sensitivity (PDS).
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Figure 5: QOffline during the withdrawal phase. The rela-

tionship between the proposed offline quality measure and

the actual number of polyps detected, when QOffline obser-

vations are divided into five equal-sized groups. One can

observe a strong correlation between the QOffline the PPC

metric.

The training set for the classifier is built from a set

of 2243 colonoscopy videos annotated for the location of

polyps. 1086 intervals of 10 seconds before the appear-

ance of polyps are sampled from the training set as posi-

tive samples, and another 1086 random intervals sampled

as negative samples. The Q(·) is implemented as a binary
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classifier with a single linear layer and trained with Adam

optimizer [10] for 500 epochs, using a batch size of 64.

By examining the weights of the linear classifier, we can

gain some insights into how it estimates the likelihood of

detecting a polyp within the next 2 seconds. Each cluster

is assigned a weight as shown in Figure 3. E.g., class #0
refers to out-of-body content, thus given a negative weight.

Conversely, class #8 refers to tubular, clean frames and,

thus, is given the highest positive weight for polyp detec-

tion.

While the Q(·) achieves only a mediocre classification

accuracy (i.e. polyp detection prediction) accuracy of 64%
on the test-set (indeed, it is very difficult to predict a detec-

tion of a polyp when it is not known that the polyp is there),

we will show in the following sections that it can still be

used as a quality metric.

2.4. From Quality Metric to the Chance to Detect a
Polyp

We would like to assess the chance of detecting a polyp

(if it exists) at time t as a function of the procedure quality

Q in the preceding time interval [t−Δt, t]. Let us denote the

event of having a polyp in the colon at time t as E (“exists”),

and the event of detecting it as D (“detected”). For this

analysis we will treat the quality metric Q from the previous

section, as a random variable in the range [0, 1] measuring

the quality of the procedure in the time interval [t−Δt, t].
We are interested to estimate the following probability:

P (D|E,Q) =
P (E,Q|D)P (D)

P (E,Q)
=

=
P (Q|D)P (E|Q,D)P (D)

P (E,Q)
, (3)

representing the chance of detecting a polyp if it exists as

a function of quality. In the above, the first equality uses

the Bayes rule, and the second exploits the chain probabil-

ity relationship. We know that physicians rarely mistake

a non-polyp for a polyp, implying that P (E|Q,D) ≈ 1.

Then, assuming the independence between the existence of

the polyp (E) and the quality of the procedure (Q), Eq. 3

becomes

P (D|E,Q) ≈ P (Q|D)P (D)

P (Q)P (E)
(4)

As mentioned above, the incidence of polyp detection

false alarms in colonoscopy is negligible, hence the ratio

P (D)/P (E) can be interpreted as the average polyp de-

tection rate/sensitivity (PDS). From the literature, we know

that polyp miss-rate in colonoscopy is about 20− 25% [1].

Hence, P (D)/P (E) can be approximated as 0.75 − 0.8,

regardless of Q.

Therefore, to compute P (D|E,Q), all we need to do is

approximate P (Q) and P (Q|D). This can be done empiri-

cally by estimating the distribution of Q in random intervals

and in intervals preceding polyps for P (Q|D).

2.5. Offline Quality Metric (Post-Procedure)

We would like to design an offline quality indicator

based on the above online measure Q. We define the fol-

lowing quality metric by integrating Q over the entire with-

drawal phase,

QOffline =
∑

i∈withdrawal

Q (ri) . (5)

3. Experiments
3.1. Online Quality Metric Evaluation

We would like to evaluate how relevant the proposed on-

line quality metric Q is to the ability of detecting polyps.

We do that by estimating the likelihood of detecting an ex-

isting polyp P (D|E,Q) as a function of Q. The higher the

correlation between Q and P (D|E,Q), the better Q is as a

local colonoscopy quality metric.

As discussed above P (D|E,Q) ∝ P (Q|D)/P (Q).
Both P (Q|D) and P (Q) can be estimated empirically: For

P (Q) we build a 10-bin histogram of Q measured in 543
randomly chosen colonoscopy video segments 10sec long.

The same is done for P (Q|D), but with 543 video segments

preceding a polyp.

The estimated P (D|E,Q) is depicted in Figure 4. As

one can see, the proposed quality metric Q correlates very

well with the polyp detection sensitivity (PDS). Q can be

computed online and provided as a real time feedback to

the physician during the procedure.

3.2. Offline Quality Metric Evaluation

We would like to evaluate the effectiveness of the pro-

posed offline quality metric QOffline in predicting the polyp

detection sensitivity.

To do so, we compute QOffline for 500 annotated test set

colonoscopies. We sort the cases in the increasing order of

QOffline, and split them into 5 bins - 100 cases each, from

lower QOffline to higher. For each bin we compute the av-

erage Polyps Per Colonoscopy (PPC) metric. The resulting

histogram is shown in Figure 5. One can observe a strong

correlation between the QOffline and the PPC metric.

Figure 6 shows the distribution of procedures with (red)

and without detected polyps (blue), as the function of

QOffline. One can see that higher QOffline are more likely to

correspond to procedures with detected polyps.

The evaluations above suggest that the proposed quality

metric QOffline is highly correlated to polyp detection sen-

sitivity (PPS). It is important to note that high QOffline for

any specific procedure does not mean that there is a high

chance of finding a polyp in that procedure, as we don’t
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Figure 6: QOffline during the withdrawal phase. Proce-

dures with high QOffline values are likely to have polyps.

One can see that higher QOffline are more likely to corre-

spond to procedures with detected polyps.
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Figure 7: QOffline during the withdrawal phase. Analyz-

ing the relationship between the suggested metric and the

absolute polyp frame detection scores. As can be seen, the

proposed measure is strongly correlated with the frame de-

tection scores.

know if there are any polyps there and how many. What it

does mean, is that if there is a polyp, there is a high chance

it will be detected.

In the context of individual procedures and the proposed
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Figure 8: QOffline during the withdrawal phase. Exam-

ining the association between the proposed metric and an-

notated number of polyps found in each procedure in each

procedure. As can be seen, our findings reveal a robust as-

sociation between the proposed measure and the presence

of polyps.

metric relationships, our evaluation focuses on measuring

the absolute polyp frame detection scores and the annotated

number of polyps detected in each of the 500 colonoscopies

within the test set. We examine the relationship between

the absolute polyp frame detection score and the suggested

metric in Fig 7, while Fig 8 illustrates the connection be-

tween the suggested metric and the annotated number of

polyps found in each procedure. Notably, our findings re-

veal a robust association between the proposed measure and

the presence of polyps, even within a single procedure. It

is important to note that a low value of this quality measure

does not necessarily indicate poor performance if a proce-

dure does not reveal any polyps. Instead, it could signify

a healthy patient (has no polyps) and a well-conducted in-

spection.

3.3. Experimental Setups

This section elucidates the technical intricacies associ-

ated with our approach. The details encompass various as-

pects, including data collection and the implementation of

algorithms.

Dataset: Our dataset comprises a total of 2743 full

colonoscopy videos obtained from five distinct hospitals in

the United States, Japan and Israel. Each video is captured

in Full HD resolution (1080p) with frame rates ranging from

25 to 60 frames per second (FPS). The duration of each pro-

cedure varies, with some lasting only a few minutes and the
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General information

# of hospitals 5
# of procedures 2743

Gender

Female 54%

Male 46%

Age groups

25-40 12%

41-55 26%

56-70 48%

70+ 14%

Annotations

Polyp intervals 1586

Table 1: Dataset summary. Our dataset consists of full

2743 colonoscopy videos taken from 5 hospitals in the

United States, Japan and Israel.

longest extending up to an hour and a half. In compliance

with privacy regulations, we removed any identifiable infor-

mation, including operator IDs, to safeguard confidentiality.

Other demographic parameters are summarized in Table 1.

Implementation Details: The proposed model was im-

plemented using the Tensorflow framework, utilizing mul-

tiple Tensor Processing Units (TPUs) for efficient train-

ing. For the training of frame encoding (Section 2.1), we

adopted the SIMCLR [5] training scheme as the founda-

tion. The Adam optimizer [10], with its default settings,

was employed for training the network. The initial learn-

ing rate was set to 10−3 and progressively decayed to 10−5

during the training process. Throughout the training, we

maintained a fixed mini-batch size of 512 and conducted

100k optimization steps. Subsequently, for training the lin-

ear classifier 2.3, we once again employed the Adam op-

timizer with an initial learning rate of 10−33, which was

gradually reduced to 10−5. A mini-batch size of 64 was

utilized, and the optimization process spanned 16k steps.

The specific configurations and parameters were chosen to

optimize the performance and convergence of the proposed

model.

3.4. Clustering Ablation Study

Within this section, our focus is on investigating the se-

lection of the clustering algorithm and its corresponding hy-

perparameters in the frame clustering stage of our method.

To conduct this analysis, we randomly sampled 10k train-

ing representations and 5k test representations. Initially, we

choose the clustering algorithm based on the entropy score,

which allows us to determine the algorithm that best suits

our needs. Subsequently, we determine the optimal number

of clusters using the Bayesian information criterion (BIC)

[19] measure. To ensure the reliability of our findings, we

repeat the evaluation process 10 times for each configura-

tion and calculate the mean and standard deviation of the

results. This approach enables us to obtain robust and infor-

mative outcomes.

Algorithm Components Entropy

DBSCAN − 0.39± 0.13
OPTICS − 0.77± 0.15
GMM 10 1.21± 0.21

BIRCH 10 1.41± 0.31
K-Means 5 1.24± 0.27
K-Means 10 2.03± 0.37

Table 2: Algorithmic exploration. The performance of

popular clustering algorithms in terms of entropy scores and

number of clusters. K-means outperforms other algorithms,

producing a larger number of clusters, including many sam-

ples in each group.

In the initial stage of our ablation, we conducted a sys-

tematic evaluation of various clustering methods to identify

the most suitable one. Our primary criterion for comparison

is the level of disorder or entropy exhibited by each algo-

rithm, as a higher entropy indicates a more diverse composi-

tion of clusters. The results of this evaluation are presented

in Table 2, which provides a performance overview of pop-

ular clustering techniques such as DBSCAN [7], OPTICS

[2], GMM [16], BIRCH [26], and K-Means [15]. As can be

seen, K-means outperforms the other algorithms, producing

a diverse number of groups.

In our study, the determination of the appropriate number

of cluster components for the K-means algorithm is accom-

plished through the utilization of the Bayesian information

criterion (BIC) [19], a statistical measure. Inspired by the

principle of Occam’s razor, which favors simpler explana-

tions, the BIC incorporates a penalty for model complexity

by introducing a term proportional to the number of param-

eters in the model. Consequently, when all other factors are

held constant, a model with fewer parameters will exhibit a

lower BIC compared to a model with a greater number of

parameters. Our motivation in this regard stems from the

necessity to establish an adequate number of clusters that

accurately represent the colonoscopy domain. However, we

also aim to constrain this quantity to encompass only gener-

alized representations. This ensures that the clusters possess

sufficient generality to be applicable across a wide range of

procedures while still retaining the ability to discern perti-

nent information. The BIC scores corresponding to vari-

ous choices of the number of components are presented in

Fig 9. The results reveal that the optimal selection, based

on the BIC criterion, occurs when k = 9 components are

employed.
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Figure 9: Bayesian information criterion. Bayesian in-

formation criterion (BIC) computed for 1 to 11 number of

K-Means clusters. Results indicate that employing k =
9 components yields the optimal choice according to the

Bayesian Information Criterion (BIC).

4. Conclusion

We proposed novel online and offline colonoscopy qual-

ity metrics, computed based on the visual appearance of

frames in colonoscopy video. The quality criteria for the

visual appearance were automatically learned by an ML

model in an unsupervised way.

Using a Bayesian approach, we developed a technique

for estimating the likelihood of detecting an existing polyp

as a function of the proposed local quality metric. We used

this likelihood estimation to demonstrate the correlation be-

tween the local quality metric and the polyp detection sen-

sitivity. The proposed local metric can be computed online

to provide a real time quality feedback to the performing

physician.

Integrating the local metric over the withdrawal phase

yields a global, offline quality metric. We show that the

offline metric is highly correlated to the standard Polyps Per

Colonoscopy (PPC) quality metric.

As the next step, we would like to estimate the impact

of the proposed real time quality feedback on the quality of

the procedure, e.g. by measuring its impact on the Adenoma

Detection Rate (ADR) in a prospective study.
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