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Abstract

Globally, stroke is a leading cause of death and disabil-
ity, and accurate and timely diagnosis of large vessel occlu-
sion (LVO) is essential for positive outcomes. We present
our robust deep learning-based method for detecting both
internal carotid artery (ICA) and middle cerebral artery
(MCA) large vessel occlusions (LVO) from computed to-
mography angiography (CTA) scans. Our proposed two
LVO detection models achieved an overall combined accu-
racy of 90.9% with a sensitivity of 89.8% and specificity of
91.4%. Further, the proposed model is lower in computa-
tional complexities and produces the results in less than 40
seconds, validating its adequacy for deployment in the clin-
ical workflow.

1. Introduction
Acute Ischemic Stroke (AIS) is a significant cause of

death and disability worldwide, and timely diagnosis and

management are essential for better treatment prognosis

outcomes [1]. In high-income countries, the thirty-day

mortality rate of AIS is around 15% [2][3]. The patients

admitted to critical care units generally have poor prog-

noses while the mortality rate is as high as 50% [4][5].

AIS caused by LVOs requires a prompt response in pre-

hospital triage similar to acute myocardial infarcts detection

using electrocardiograms [6]. The reduction in morality and

morbidity for suspected LVOs patients depends widely on

timely diagnosis and treatment via endovascular thrombec-

tomy (ET) [7][8]. Post 2015, based on several random-

ized control trials published that endovascular therapy is

more efficacious than alteplase alone [9][10][11][12][13].

However, the outcome of using positive endovascular ther-

apy to achieve vessel recanalization and disability-free life

for patients is vastly time-dependent. According to a re-

cent study, the medicare population increased by 5% from

2012-2019 while the shortage of diagnostic radiology work-

force has grown significantly [14]. Moreover, unfamiliarity

among non-neuroradiologists with reading CTA during on-

call hours and the comparatively small caliber of the M2 and

A2 segments may cause a diagnostic error. A robust auto-

mated solution is required to identify LVO from CTA scans

to address these issues and reduce inter-reader variability.

In recent years, a deep learning-based computer-aided

diagnostic model capable of learning underlying deep dis-

criminative features has proven to outperform hand-crafted

based feature techniques in the multidisciplinary domain

such as breast cancer detection using histopathological im-

ages [15], automated ASPECT scoring [16], and detection

of critical finding from head CT scans [17][18]. A recent

study published to detect LVO from Multiphase CTA scans

using Deep Convolutional Neural Network (CNN) has re-

ported an AUC of 0.74, a sensitivity of 77%, and a speci-

ficity of 71% [19] on 63 images. However, the study had

relatively small positive cases, and a granular image of the

model’s capability in detecting the occlusion locations was

also not reported. In another work, a commercially avail-

able LVO detection algorithm was utilized to detect Middle

cerebral artery-M1 (MCA-M1) and Internal Carotid Artery-

Terminus (ICA-T) occlusions. Overall analysis on 876 CTA

scans was performed, and the AUC of 86.3%, the sensitivity

of 90.1%, and the specificity of 82.5% were reported [20].

However, the published study needs to include the identi-

fication of LVOs from the source image and the generaliz-

ability of the proposed model to be deployed in real clinical

settings and the resource constraint environment. In addi-

tion, these methods often require significant manual anno-

tation of training data and are limited in performance due to

the need for large amounts of training data.

To address these limitations, we present a deep learning-

based approach for detecting MCA and ICA LVOs in CTA
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Figure 1: Algorithm Description: First, a CTA scan is cropped to the cranium volume as detailed in section 2.1. As described

in section 2.2, we extract the relevant arterial regions to focus on. Finally, it outputs the MCA VT volume, on which the

MIP is reconstructed, and the ICA VT volume. The ICA VT volume uses the Patch Generator to generate and stack left and

right ICA patches. Later, we feed the MCA MIP to the MCA LVO Detection model, as detailed in section 2.3, to output the

occlusion site if present. We also feed the stack of ICA patches to the ICA Detection Model, as detailed in section 2.4, to

output per-patch predictions. These predictions are aggregated to give the final label per CTA scan.

scans. The proposed model is extensively validated and

demonstrates significant performance in standard evalua-

tion metrics. Moreover, our model eliminates the need for

detailed manual annotation and segmentation, enabling ra-

diologists to make faster and more accurate decisions.

The main contributions of this work are summarized as

follows:

• We propose a novel method to generate high-quality

Maximum Intensity Projections (MIP) by mitigating

venous phase contamination caused by delayed acqui-

sition. Even if our detection model may fail for distal

MCA occlusions, these MIPs can still be valuable for

visual inspection.

• For ICA detection, we introduce a novel generalized

framework that utilizes patch-level predictions and ag-

gregates them to obtain a final decision.

• The proposed model classifies LVOs in under 40 sec-

onds, making it suitable for implementation in time-

sensitive stroke management settings, crucial for posi-

tive stroke outcomes.

1.1. Related Work

Several existing solutions describe automated CTA LVO

detection. In [21], they use elastic registration to remove

the skull and then compare contralateral hemispheres to de-

tect vessel density asymmetry, determining normal blood

flow or occlusion. The median turn-around time was 158

seconds (IQR: 140–176 seconds), with elastic registration

being the most time-consuming step ( 130 seconds).

However, this method has limitations. It may miss distal

M1-MCA occlusions if there is reconstitution of proximal

M2 segments [22]. Delayed CTA acquisition can cause ve-

nous phase contamination, affecting prediction results when

comparing contralateral hemispheres. Similarly, there are

many FPs noticed because due to stenosis in ICA causes

asymmetrical vascular density in contralateral hemisphere

resulting in false prediction. Moreover, many petrous and

cervical ICA occlusions are missed as the algorithm’s focus

is not on these regions. The results of contralateral compar-

ison heavily depend on skull stripping, and elastic registra-

tion does not guarantee intact ICA vessels due to its vicinity.

In [23], a deep learning CNN solution was presented to

detect occlusions. It provides a binary output (LVO de-

tected: ’Yes’ or ’No’). For positive LVO cases, it displays

an occlusion box centered around the proximal occlusion

site in axial, coronal, and sagittal views. The focus is on

ICA Terminus occlusion.

However, one drawback is the relatively long process-

ing time, taking approximately 4 minutes and 59 seconds

(SD±1 minute and 12 seconds) as reported in the paper. In

their supplementary paper, they evaluated the algorithm’s

diagnostic performance on the MR CLEAN Registry [24]

and PRESTO [25] datasets, considering the impact of CTA

acquisition timing on imaging quality. They observed a sig-

nificant drop in performance metrics in the venous phase

compared to the peak arterial or equilibrium phase.

In [26], they propose a 3D segmentation CNN based on

the U-Net [27] architecture to segment ICA-T or M1 seg-

ment vessels. This CNN is trained on numerous manual
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segmentations of the ICA-T and M1 regions. To identify

cases where ICA-T and M1 segments are not visible due to

an ICA occlusion and no retrograde filling, they compare

the lengths of the left and right segmentations. If one side is

significantly shorter than the other, it indicates an LVO, and

the system triggers an alert.

Additionally, another 3D CNN is trained to segment all

vessels (not limited to ICA-T and M1 vessels). The outputs

of both networks are combined to refine the MCA vessel

tree. Finally, they identify the end points of the MCA ves-

sels and check if the total distance between the ICA-T and

the end point falls below a predefined threshold. If so, an

LVO is detected, and the system triggers an alert.

2. Methodology

2.1. Data Pre-processing

In stroke evaluation, CTA scans are commonly used to

assess the head and neck region. Our primarily focus on to

detect LVO in the head, including the cervical segment of

ICA.

Let X ∈ R
N×H×W represent the input CTA scan, where

N is the total number of slices. We denote each slice of X
as I1, I2, . . . , IN , forming a sequence of DICOM slices in

R
H×W .

The Cranium Slice Selector, denoted as fCSS :
R

H×W → [0, 1], is a deep learning model that classifies

CTA slices based on the presence of the cranium.

We feed all the slices I1, I2, . . . , IN into the Cranium

Slice Selector model, resulting in predicted probabilities

p̂1, p̂2, . . . , p̂N , where p̂i = fCSS(Ii).

Using a threshold value t, we define a binary sequence

B = [b1, b2, . . . , bN ] where bi =

{
1, if p̂i > t

0, otherwise
.

The estimated cranium location range is determined by

finding the length � of the longest consecutive subsequence

of slices with a value of 1 in B, given by:

� = max
i,j

j∑
k=i

bk, where 1 ≤ i ≤ j ≤ N

By obtaining the maximum length � of the consecutive

subsequence, we estimate the cranium location with a high

probability of containing the cranium.

Let Xcranium ∈ R
L×H×W represent the set of slices ob-

tained from the Cranium Slice Selector model.

The Cranium Localization model , denoted as floc :
R

H×W → R
4, is developed using bounding box regression.

The model is trained by minimizing the mean-square-error

(MSE) between the predicted coordinates and the ground

truth coordinates. Here, H and W represent the height and

width of the CT slice.

Figure 2: Bounding box regressor output (green one) vs

ground truth (red one)

For each slice Di ∈ Xcranium, the object localization

model floc predicts the bbox coordinates as follows:

floc(Di) = (xmin,i, ymin,i, xmax,i, ymax,i) (1)

We take the minimum value of xmin,i and ymin,i among

all slices, and the maximum value of xmax,i and ymax,i

among all slices. Now final bounding box we get be

this (xmin, ymin, xmax, ymax), applied on Xcranium to crop

out unnecessary background and we get Xcropped ∈
R

L×H′×W ′
.

Xcropped = Xcranium[:, ymin : ymax, xmin : xmax] (2)

We introduced Tilt-Correction to standardized the input

for our proposed LVO Detection models.

Let Ifixed be the fixed template, which is a symmetric

CTA Head scan or tilt-corrected CTA scan. Let Imoving be

the moving image, which is Xcropped obtained from the ob-

ject localization model.

The goal is to register the moving image Imoving with re-

spect to the fixed template Ifixed resulting in a symmetric

or tilt-corrected CTA scan using the antspy library, which

utilizes the affine-fast transform for image registration.

The registration process can be represented as a function

fregistration : R
Dmoving×Hmoving×Wmoving → R

Dfixed×Hfixed×Wfixed ,

where Hmoving, Wmoving, and Dmoving are the height, width,

and depth of moving image, and Hfixed, Wfixed, and Dfixed

are the height, width, and depth of the fixed template.

The registered image Iregistered is obtained by applying

the image registration function to the moving image:

Iregistered = fregistration(Imoving) (3)

2.2. Volume Extraction

In this section, we present two semantic segmentation

models developed for the extraction of the intracranial re-

gion and vascular territory of interest from CTA scans.

These volumes are essential for the proposed Large Vessel

Occlusion (LVO) detection models.
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Figure 3: Tilt correction using affine fast transform registra-

tion using ANTSpy [28] .

Our motivation for undertaking this to overcome the

challenges posed by bones and overlapping large vessels,

as well as the presence of visible venous phases caused by

delayed acquisition. These factors often obstruct the vessels

of interest and introduce noise into the MIP image. Some

example of noisy MIP shown in Fig 4.

Figure 4: MIP of ICV showing venous phase and

vessel overlap

Some example of clear MIP only showing vessel of in-

terest, in our case is MCA is shown in Fig 5.

Figure 5: MIP showing MCA vessels only

The Intracranial Volume semantic segmentation
model aims to accurately separate the vasculature from the

surrounding bone structures within the cranium. This seg-

mentation model was trained and validated using a dataset

consisting of 485 CTA scans. To annotate the Intracra-

nial Volume (ICV) mask on CTA slices, corresponding non-

contrast CT scans (NCCT) with matching dimensions were

used as a reference.

The Vascular Territory semantic segmentation model
is specifically designed to identify and segment arterial ter-

ritories in the brain from CTA scans. For training and vali-

dation, a dataset of 942 CTA scans was meticulously anno-

tated by an expert neurologist.

During the annotation process, two distinct arterial re-

gions were delineated: the Middle Cerebral Arterial (MCA)

region and the Internal Carotid Arterial (ICA) region. Fur-

thermore, the arterial regions were subdivided based on the

contra-lateral hemispheres, resulting in four binary masks

per CTA scan. These masks enable precise localization and

differentiation of arterial territories within the brain, provid-

ing valuable information for subsequent analysis and detec-

tion algorithms.

The input to both models is a CT slice resized to

224 × 224, with four channels generated by manipulating

the window width and window level parameters. The op-

timal values for these parameters are (250,500), (900,300),

(600,300), and (max, min). The 4-channel input image is

generated using the following equation:

I4ch = f(ICT, ww,wl) (4)

where ICT represents the original CT slice, ww and wl
are the window width and window level, respectively, and

f is a function that manipulates the Hounsfield Unit (HU)

values of the CT slice to generate the four channels.

Both segmentation models utilize the U-Net [27] archi-

tecture with ResNet-18 [29] backbones similar to as shown

in figure 8. The U-Net architecture is depicted as follows:

Mpred = U-Net(I4ch) (5)

Here, Mpred denotes the predicted mask

During the ICV segmentation, differentiating the Inter-

nal Carotid Artery (ICA) from other structures poses a chal-

lenge for the U-Net model [27], as the ICA passes in close

proximity to the cranium, and its HU values fall within a

similar range. To address this issue, additional weightage

is given to the loss function derived from the ICA territory

region and the inferior slices of the cranium.

L(z) =

{
L1, if z > 0.4n

α ∗ L1 + β ∗ LICA, otherwise

Here, n represents the number of slices present in the

cranium volume. The function L calculates the loss based

on the slice location z within the cranium. L1 denotes the

focal loss [30] calculated on the segmentation output, and

LICA represents the focal loss calculated specifically for

the ICA territory region. Through experimentation, we de-

termined that the values α = 2 and β = 5 yielded the best

performance for our task.
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In the case of the Vascular Territory Semantic Segmenta-
tion Model, the output is a 4-channel output with the same

height and width as the original image. Each channel cor-

responds to one class of output, representing the left MCA

territory, right MCA territory, left ICA territory, and right

ICA territory. This can be represented as:

Mpred =

⎡
⎢⎢⎣
MleftMCA

MrightMCA

MleftICA

MrightICA

⎤
⎥⎥⎦ (6)

Where MleftMCA, MrightMCA, MleftICA, and MrightICA are

the binary masks representing the respective territories.

Figure 6: Vascular territory segmentation output (a) ICA

Territory (b) MCA Territory

On the other hand, the Intracranial Volume Seman-
tic Segmentation Model produces a single-channel output,

which is the ICV mask. This can be represented as:

Mpred = MICV (7)

Where MICV is the binary mask representing the In-

tracranial Volume.

Figure 7: Intracranial volume Segmentation model output

Volume required for LVO Detection models,

XICV = Xcropped �MICV (8)

MMCA = MleftMCA ∨MrightMCA (9)

XMCA = XICV �MMCA (10)

XleftICA = Xcropped �MleftICA (11)

XrightICA = Xcropped �MrightICA (12)

Finally on XMCA and XICV volume, CT windowing are

applied with a window width of 600 and window level of

300 to enhance the visibility of contrast-enhanced vessels.

2.3. MCA LVO Detection Model

As mentioned in section 1.1, some solutions focus on

comparing MCA vessel voxels between contralateral hemi-

spheres, but they may not perform well in cases of vessel

reconstitution or venous phase contamination. Another so-

lution detects the occlusion site, but its performance signif-

icantly drops in venous phase scan. Moreover, their algo-

rithm takes 4-5 minutes, which is impractical for triage.

To address these issues, our algorithm detects abrupt

changes in MCA blood flow even their is reconstitution. We

also mitigate the effects of venous phase contamination by

extracting only the arterial region, leaving behind contrast-

enhanced veins as described in section 2.2. Furthermore,

we reconstruct a 2D MIP from 3D CTA volume, which re-

duces time complexity compared to 3D models using the

whole 3D volume as input.

Let’s define the MIP of a given 3D volume as follows:

MIP(X) =
N

max
n=1

X(n, i, j)

Here, X ∈ R
N×H×W represents the 3D volume, and

MIP(X) ∈ R
H×W denotes the resulting 2D image.

The equation calculates the maximum intensity value at

each pixel location (i, j) across the entire depth dimension

(N ) of the 3D volume X. These values are then stored in

the corresponding locations within the 2D image MIP(X).
Our proposed model aims to classify whether an MIP

image exhibits LVO on MCA sites. Our objective was to

test the hypothesis that factors like venous phase and other

vasculature overlap could significantly affect the perfor-

mance of AI systems in detecting LVO. To investigate this,

we explored two distinct sets of inputs: MIP(XICV) and

MIP(XMCA) along with their tilt-corrected counter-parts,

as described in section 2.1. The summarized results of these

experiments are available in Table 2. MIPs are rescaled to

224 × 224 to be used as inputs. Data augmentations are

applied such as random rotation, shift and flipping.

Initially, we utilized a ResNet-18 architecture for binary

classification on both input sets to determine the presence

of MCA LVO. To incorporate pixel-level annotations, pro-

vided by an experienced neuro-radiologist, around the oc-

clusion site, we extended the ResNet-18 encoder by adding
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Figure 8: Used architecture in MCA LVO Detection model

a decoder, resulting in a U-Net-like architecture. This mod-

ification allowed us to train the model with additional infor-

mation. Consequently, the model produces two outputs: the

classification probability and a segmentation mask as shown

in figure 8.

These two outputs contributed to the total loss for our

model, as shown in Equation 13.

L = α ∗ L1 + β ∗ L2 (13)

Here, L1 represents cross-entropy loss on the classifi-

cation output, and L2 represents the focal loss [30] on the

segmentation output. We performed a grid search on a log-

linear scale between 1 and 100 to determine the optimal val-

ues for the hyperparameters α and β. Ultimately, we found

that α = 1 and β = 0.5 worked best for our task.

2.4. ICA LVO Detection Model

As highlighted in section 1.1, the current solutions pri-

marily focus on proximal ICA, which might encounter chal-

lenges when dealing with situations involving clots at the

ICA origin and reconstitution at the proximal level. In order

to overcome this drawback, we introduce a novel approach

that expands the analysis from ICA-T to the origin of ICA.

Furthermore, existing solutions commonly rely on a

skull stripping method, which poses a challenge in preserv-

ing intact ICA vessels. To overcome this limitation, our

proposed method eliminates this step and instead adopts the

use of the entire ICA territory volume, as thoroughly ex-

plained in section 2.2.

Our proposed model, as discussed in section 2.1, utilizes

tilt-corrected CTA scans obtained through registration with

a CTA Template. By using the CTA Template as a refer-

ence, we precisely identify a slice range of 65 slices con-

taining the ICA.

In section 2.2, we describe the application of ICA terri-

tory masks on the cranium volume, as shown in equations

11 and 12. This application ensures that regions outside the

ICA territory are effectively masked out, resulting in empty

regions with voxel values set to zero.

By cropping out these empty regions from XleftICA and

XrightICA and selecting the 65 slices containing the ICA re-

Figure 9: A total of 130 patches containing the ICA re-

gion are obtained from both sides, with 65 patches extracted

from each contra-lateral side.

gion, as mentioned earlier, we successfully obtain the de-

sired patches. This process is visually depicted in figure

9, illustrating the extraction of the ICA patch from the CT

volume.

In collaboration with experienced neuro-radiologists, we

annotated ICA patches and classify them into several sub-

classes. Considering our focus on determining LVO, we

combine these sub-classes into two main classes: LVO or

non-LVO. The sub-classes we consider are as follows:

• Normal blood flow in ICA: Non-LVO

• Calcified ICA with blood flow: Non-LVO

• Narrowing in ICA: Non-LVO

• Occluded ICA: LVO

• Occluded ICA with calcification: LVO

Model Development We first used ResNet-18 [29]

as encoder and performs binary classification on single

patches converted into 6 channel inputs as described in fig-

ure 10, outputting the classification label- LVO/Non-LVO.

After experimenting with different configurations, we

achieved better sensitivity and specificity of patch classfi-

cation model.

To achieve our ultimate goal of identifying LVOs per

CTA scan, we utilize a method that aggregates predictions

from all the patches. This involves training another model

using the pre-trained weights from the patch model, with a

batch size of 130. By employing this strategy, we seam-

lessly combine patch-wise and scan-wise learning within
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Figure 10: Each ith patch is concatenated with its adjacent

(i−1)th and (i+1)th patches to incorporate nearby context.

Consequently, each patch is transformed into a two-channel

input using CT windowing, resulting in a model input to be

dimension of 6× 64× 64.

the same model, allowing for comprehensive analysis of the

entire scan.

To ensure a balanced representation from both contra-

lateral sides we choose tilt-corrected CTA scans to obtain

an equal number of patches from both sides.

The equations below describe the process of combining

these losses:

probi = sigmoid(pi) (14)

losspatch = loss([prob1, ..prob130], [gt1, ..gt130]) (15)

logitsscan = f(p1, p2, ...., p130) (16)

lossscan = loss(logitsscan, gtscan) (17)

probscan = sigmoid(logitsscan) (18)

L = α · losspatch + β · lossscan (19)

Here, probi represents the patch probability calculated

using the sigmoid activation function applied to the logits

output pi from the patch classification model, gti denotes

the corresponding ground truth labels for the patches. The

log-sum-exponential function f aggregates the patch logits

to obtain logitsscan, gtscan refers to the ground truth for

LVO per CTA scan.

The combined loss L is determined by adding the cross-

entropy loss losspatch, which takes into account the predic-

tions and ground truth labels for all the patches in a scan,

and the cross-entropy loss lossscan, which is based on the

predictions and ground truth for the entire scan. To opti-

mize the model’s performance, we found that setting α = 1
and β = 1.5 as hyperparameters worked best for our task.

By leveraging the information from both individual

patches and the complete scan, our model effectively in-

tegrates local and global context for accurate LVO identifi-

cation in the CTA scans.

Finally, the second model takes all the patches present in

a CTA scan as inputs and outputs the probability probscan
of LVO for the entire scan. By applying an optimal thresh-

old to the output probabilities, we obtain the final LVO de-

tection result.

3. Experimental Result and Discussion

3.1. Dataset Description

The dataset used in this study consists of cases with pos-

itive and negative instances of MCA and ICA LVOs. All the

CTA scan in our dataset have a resolution of 512× 512 pix-

els and spacing between slices ≤ 1.25mm. The proposed

model was validated using this dataset, and it’s worth not-

ing that the datasets used in the ICV and VT segmentation

models are independent of the dataset used for the develop-

ment of the LVO models.

The detailed distribution of the dataset is presented in

Table 1:

Table 1: Dataset Distribution

Dataset MCA ICA
Positive Negative Positive Negative

Train 831 3837 250 507

Val 170 1119 93 64

Test 372 538 256 538

Total 1373 5494 599 1209

3.2. Experimental Settings and Performance Eval-
uation Metrics

In section 2, when employing U-Net for the segmenta-

tion task, we conducted experiments with different decoder

depths. After thorough evaluation, we opted to use a de-

coder depth of 3 for our final model. This choice was driven

by the finding that increasing the decoder depth did not lead

to substantial performance improvements and instead intro-

duced higher computation time as a trade-off.

Our chosen architecture consisted of an ResNet-18 en-

coder depth of 3 with decoder channels set to [64, 32,

16]. We incorporated batch normalization [31] for im-

proved training stability, and for decoder attention, we uti-

lized scSE (Spatial and Channel Squeeze & Excitation) [32]

block.
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Figure 11: Some examples of MCA LVO detection model output (a) complete occlusion on the left side of the brain, (b)

occlusion at the ICA terminus, (c) occlusion in M1 segment of MCA branch, (d) proximal M2 occlusion

Table 2: Performance Evaluation based on Test Set

MCA LVO Detection
Task Sensitivity Specificity DSC

ICV MIP Classification 0.65 0.67 -

MCA MIP Classification 0.76 0.77 -

MCA MIP Classification + Segmentation 0.85 0.86 0.86

MCA MIP Classification + Segmentation (Tilt corrected) 0.88 0.91 0.90

ICA LVO Detection
ICA Per Scan Classification 0.93 0.94 -

In the context of MCA LVO Detection, we applied aver-

age pooling and introduced a dropout rate of 0.3 at the clas-

sification head to enhance generalization and prevent over-

fitting during training. To optimize the model during the

training process, we employed Stochastic Gradient Descent

(SGD) with a momentum value set to 0.9.

In this section, we outline our iterative approach to en-

hance the MCA LVO detection model. The outcomes of

each iteration, along with corresponding quantitative re-

sults, are summarized in Table 2.

Initially, we encountered subpar performance using ICV

MIP as input for the binary classification model due to in-

terference from other vasculature, as depicted in figure 4.

To overcome this limitation, we trained the model on MCA

VT MIPs, resulting in notable improvements in sensitivity

(from 0.65 to 0.76) and specificity (from 0.67 to 0.77), as

shown in Table 2. We also introduced pixel-wise ground

truth for enhanced model supervision, leading to an addi-

tional 9% boost in sensitivity and specificity.

Furthermore, applying a preprocessing step to correct tilt

contributed to an extra 4% enhancement in sensitivity and

specificity. To validate our segmentation output throughout

all iterations, we employed the Dice Similarity Coefficient

(DSC).

Our iterative approach effectively improved the perfor-

mance of the MCA LVO detection model. Some of the

model outputs on the tilt-corrected MCA MIPs are shown

in figure 11. Additionally, we expanded the test set by in-

cluding 63 distal M2 LVO positive scans, from which our

model accurately identified 40 cases while missing 23.

For the Vascular Territory Segmentation model, we

achieved an overall DSC of 0.90 on 232 CTAs, while the

Intracranial Volume Segmentation model achieved a DSC

of 0.98 on 98 CTAs.

Table 3: Performance Evaluation based on Validation Set;

SN: Sensitivity, SP: Specificity.

Valdation Set SN SP AUC Threshold
MCA LVO 0.9059 0.8892 0.9483 0.5649

ICA LVO 0.914 0.9024 0.9731 0.5464

Overall, our MCA LVO detection model achieved an ac-

curacy of 89.8% with a sensitivity of 87.4% and specificity

of 91.4%. The ICA LVO detection model achieved an ac-

curacy of 92.6% with a sensitivity of 93.4% and specificity

of 92.2%.

4. Conclusion
In conclusion, our proposed solution utilizes deep-

learning models to automate the identification of large

vessel occlusions (LVOs) in acute ischemic stroke (AIS)
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patients from CTA scans. This approach reduces inter-

observer variability and enhances stroke care efficiency.

To strengthen our models, we aim to validate and im-

prove their generalizability by testing them on larger and

more diverse datasets. This will refine their performance

and reliability. Additionally, we plan to extend their ca-

pabilities to detect distal occlusions and differentiate and

detect stenosis, further enhancing their usefulness in stroke

diagnosis and treatment.

An exciting aspect of our research is the potential inte-

gration of these models into clinical decision support sys-

tems and assist radiologists and clinicians in diagnosing and

treating stroke patients, ultimately leading to better patient

outcomes and quality of life.
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