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Abstract

Robust classification and localization of bone fractures
are beneficial to avoid misdiagnosis or underdiagnosis.
However, state-of-the-art classification methods aim to im-
prove accuracy which lacks reliability, and tackled localiza-
tion problems in a supervised manner with much-annotated
data that leads to high costs. In this paper, we pro-
pose a multistage feature map (MSFM) learning network
to predict the class of the image and the area of interest
without annotated bounded box. MSFM consists of three
stages to predict the representation with different objec-
tives and aims to improve the accuracy and reliability of
classification. The weakly supervised MSFM model lo-
calizes the region of interest (ROI) by taking representa-
tion from all the stages supervised by image-level labels
only. We also introduced a feature augmentation technique
to enforce the model to consider other discriminative re-
gions. End-to-end training of MSFM is performed jointly
at all stages. Based on the comprehensive experiments, our
approach achieves state-of-the-art results on the standard
MURA dataset, which includes the elbow, finger, forearm,
humerus, shoulder, wrist, hand, and bone tumor dataset.
Code: github.com/MAXNORM8650/MSFM.

1. Introduction
Medical image analysis has been an active research area

in recent years, intending to develop automated systems that

can assist radiologists in the diagnosis and treatment of var-

ious diseases. X-ray imaging is one of the most commonly

used imaging modalities in clinical practice as it provides

a quick and cost-effective way of detecting and monitoring

various pulmonary diseases.

How to tell an X-ray abnormality? How to detect that ab-

normality? These are challenging tasks even for the aver-

Figure 1: This image shows components of the Class activation

map (CAM), activation map (A), and weighted feature map (F)

from the first stage classifier of the MSFM model.

age person and usually require domain expertise. Detecting

musculoskeletal (MU) abnormalities are particularly impor-

tant because 1.7 billion people globally suffer from muscu-

loskeletal disorders [18].

Disease localization in X-ray images is a challenging

task due to the complexity and variability of the human

anatomy and the presence of various disease patterns that

can be difficult to identify. Traditional supervised learning

methods require a large amount of labeled data [16, 19],

which can be time-consuming and expensive to acquire,

particularly for rare diseases or conditions that require spe-

cialized expertise. To address this issue, weakly supervised

learning has emerged as a promising approach for disease

localization in X-ray images. Weakly supervised learning

leverages the availability of image-level labels, which indi-

cate the presence or absence of a disease in an image, to

learn a model that can automatically localize the disease re-

gions within the image. Previous work by the authors of the

paper [26] proposed a weakly supervised learning approach

for thoracic disease classification and localization using X-

ray. They used a convolutional neural network (CNN) [23]

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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with a localization layer to predict the disease regions in

the images. A multi-instance deep learning framework [27]

is used for body part recognition in medical images. They

used a CNN with attention mechanisms to identify the dis-

criminative local anatomy in the images and attention-based

multiple instance learning [9] utilize the attention mecha-

nism to highlight the disease regions in the images. [21]

employed a CNN with a pooling layer for feature extrac-

tion. This approach, rooted in multi-instance learning, al-

lowed the model to predict disease presence in individual

patches and aggregate these predictions to achieve accurate

disease localization results. Recent work on WSL by [13]

used a CNN with an attention mechanism to learn the dis-

ease regions in the images and a segmentation network to

generate the semantic segmentation priors in the medical

image. These studies have shown the potential of weakly

supervised learning for disease localization in medical im-

ages. Many works [24, 3, 17, 30] have shown the potential

in increasing the robustness of the models using multi-stage

learning. Class Activation Mapping (CAM) [32] is also

gained a lot of interest in WSL for medical images [28],

but CAM-based localization methods lack robust data vari-

ability, unclearness to the localization results, and may not

capture complex disease patterns. Recent studies have pro-

posed new weakly supervised learning methods that use at-

tention mechanisms, multiple instance learning, or semantic

segmentation priors to improve disease localization perfor-

mance. In this work, we present a multi-stage feature map

(MSFM), a novel weakly supervised learning approach for

disease localization in X-ray images. MSFM is based on

two main components in CAM, feature map (map before

global average pooling in CNN network) based activation

map (A) and fully connected (FC) layers’ weight-based

class feature map (F ). A and F, as shown in Figure 1, con-

sist of more information related to the object than trivial

CAM as it not only learns to localize the most discriminat-

ing features but also contains full information about the ob-

ject. MSFM consists of multiple stages which make it more

robust to the variations in the image for disease localization

and generalize CAM for the entire object as shown in Fig-

ure 1. Based on our experiments we observed that MSFM

is biased towards artifacts if the training data contained a

large number of artifacts or if the artifacts are highly cor-

related with the disease patterns. To solve this problem,

we also proposed a feature augmentation method to remove

the artifacts based on high intensity. Overall, our proposed

approach has the potential to improve the accuracy and ef-

ficiency of disease localization in X-ray images, which can

ultimately benefit patient care and outcomes. The main con-

tributions of our work are as follows:

• Proposed a multistage model (MSFM-net) architecture

consisting of three stages that aim to improve the ac-

curacy and reliability of image classification.

• Opportunistic fracture localization in a weakly super-

vised manner which does not require a bounded box

for training.

• An Augmentation technique that uses the feature map

to calculate the magnitude of the high-intensity values

and remove them.

• On top of that, we conducted a comparative analysis of

loss functions to resolve class imbalances as well as a

comprehensive evaluation of a large dataset of X-ray

images with various abnormalities and a benchmark

dataset for localization. Our proposed model achieves

excellent classification results with exceptional detec-

tion visualization.

2. Methodology
2.1. Class activation map decomposition

If we have an image X of size C × H × W , we would

like to have a representation that consists of approximately

all the image’s information to classify it. Typically, a neural

network comprises convolutional layers followed by the av-

erage pooling, and a fully connected layer for classification

is used to compute the CAM as follows:

CAM(X) = WT
clF (X). (1)

Where F : RC×H×W =⇒ Rn×h×w represents features

map before average pooling for (h,w) spatial dimension of

the n channels. Wcl ∈ R are the weights of the FC layer

corresponding to the target class cl. Authors from [10] try

to bridge the gap between the classification and localization

by decomposing CAM in terms of a cosine similarity map

as follows:

CAM (X) = ‖Wcl‖F (X)‖cosθ ≤ ‖Wcl‖‖F (X)‖ (2)

Where cosθ is the cosine similarity between two vectors

whose large value represents the less degree of alignment

between the vectors. We define a weighted feature space

(F ) map which corresponds to every class of target as fol-

lows:

F = ‖W · FA(X)‖, (3)

Where W ∈ Rnclass×n = [W1, . . .Wcl, . . .Wnclass] and

norm is taken for all the classes. Based on Figure 1,

CAM alone cannot localize the full informative object cor-

responding to its class level as it learns the difference be-

tween the classes which leads to poor localization. How-

ever, normed feature map ‖F (X)‖ and weighted norm fea-

ture map F contain more information to localize the object

corresponding to its class level. The object can be local-

ized based on F and activation map A as shown in Figure
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1 where A = ‖F (X)‖. If the position (i, j) in A is higher

than the mean of activation map (Ā) is part of the object

which we need to localize for ∀i ∈ [0, h], and ∀j ∈ [0, w].
Mathematically:

Ā =

∑h−1
i=0

∑w−1
j=0 A (i, j)

h × w
(4)

M̂(i,j) =

{
1, if A (i, j) ≥ Ā

0, if A (i, j) < Ā
(5)

Where M̂(i,j) is the possible area of the object to local-

ize. The final possible area is based on the intersection of

the area obtained by the ensemble of F and A. When the

informative region is localized, the cropped image contains

additional information that can provide additional insights

into the image by looking at closure using localized images.

It does not require any additional parameters as it is based

on the trained classifier model. By observing Figure 1, the

area with the higher value of is the area where the key parts

are located, most of the time CAM indicates the joints of

the bone which may be incorrect for tumor identification.

We use a technique that involves dividing the image into

overlapping windows, and then classifying each window as

a foreground (marked as 1) or background (marked as 0)

using the equation 5. The overlapping windows are then

moved across the image, allowing the classifier to process

multiple regions of the image in a sliding manner.

2.2. MSFM learning network.

The architecture MSFM model is shown in Figure 2. We

have used a Resnet [6] as the encoder (En) to encode the

image into a feature representation. Our main model con-

sists of main three stages that include: The main stage, the

Object stage, and the Parts stage.

• Main stage: We encode the image using En to get the

feature representation map. A coordinate of the bound-

ing box is generated using the intersection of the infor-

mative region by feature map (FM) and Class feature

map (CFM) which is shown in Figure 2. In this stage,

the full feature is used for classification using the FC

layer to produce CFM . Furthermore, the hypothetical

object using the box generated by the second stage is

cropped from the image and passed to the object stage.

• Object stage: Cropped image is used to get its fea-

ture representation map by shared parameter from En

of the main stage (first stage). Then it is passed into

the second stage to get the discriminative regions. Hy-

pothetically that regions cover the informative part.

• Parts and multi-scale stage: Local proposed region

from the object stage are cropped. Now different win-

dows are proposed based on some scale to produce

Figure 2: The full MSFM architecture of the multi-stage network

that consists of three stages starting with CNN in the training phase

and dotted black box is the structure in the test phase. The CFM

represents the product of Fully Connected (FC) weights and FM.

“Yes” represent the condition to the output for a specific class

(fractured image in our case), and ‘+’ in the output image is to

paste the combined part in the original image. The CNN and FC

layers of the same color represent parameter sharing.

multiple parts. These parts (wn’s) are supervised by

the label of corresponding classes. Finally, these parts

are combined to produce one possible box for fracture.

For each image in the training set, we optimized the over-

all loss for all stages using three types of loss function by

sharing the parameter shown by the same color in Figure 2.

Due to the class imbalance problem, we have used weighted

cross entropy that is defined in the equation 6.

CEj
t (P (θ) , Q) = −

∑
pi∈P

∑
j∈T

wj
+qi lnP (qi = 1|pi)−

∑
qi∈Q

∑
j∈T

wj
−qi lnP (qi = 0|pi)

(6)

Where, P (θ) = {p1, p2, . . . , pn} are the predicted labels,

Q = {q1, q2, . . . , qn} are the ground truth labels for

the corresponding instances in P (θ), P (qi = 1|pi) is the

predictive probability ∀qi ∈ {0, 1} conditioned onP (θ), T
is set of all the parts in the MURA data, wj

+ is the weight

for all positive class of part type j ∈ T , and wj
− is the

weight for the negative class of part type j ∈ T . To focus

on misclassification due to the class imbalance problem, we

have also used the focal loss [14] of the second type which

is defined in equation 7.

FLt (θ) =
1

N

N∑
i=1

(
1− e−CEi

t(θ)
)β

CEi
t (θ) (7)
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Where CEt (θ) is cross entropy attth step with θ shared

parameter defined in equation 6, β is the focal loss hyper-

parameter. It is clear from the equation 7, to get the loss for

the tth step we need to run in the entire mini-batch size to

get the mean which increases the little computation. So in-

stead of mean, we have used a scaler α. Rewriting equation

7 as,

FLt (θ) = α
(
1− e−CEt(θ)

)β

CEt (θ) (8)

So, the total loss is the sum of the loss of all stages which is

shown in the equation 8.

Ltotal
t (θ) = FLM

t (θ) + FLO
t (θ) +

wn∑
i=1

FLPi
t (θ) (9)

2.3. Class Feature Map

For c class classification problem from an image, we are

interested in the c different feature map to get the image rep-

resentation concerning output weights for the correspond-

ing class level. Inspired by TS-CAM [5], we use CFM to

get a better feature map of interest from the feature map of

the last layer and the output attention weight.

CFM = W × F (10)

Where F ∈ n×h×w is feature and W ∈ Rc×h×w×Rn×h×w

is a weights of output layer.

2.4. Feature Localization and Amplification

The class feature map ( CFM in equation 10) of the

full image is binarized based on the equation using mean

thresholding value as shown in equation 5. The pixels are

connected according to their neighboring values if they are

equal in value when pixels are mounted in a binary map.

In this case, it refers to how many orthogonal hops a pixel

must undergo to be considered a neighbor that will return

all connected regions that are assigned the same value. We

also find the area based on the feature map and select the

intersecting region to produce a bounding box if the inter-

esting area is zero, we assign a default bounding box of w

width and h height (same as the spatial dimension of each

feature). Finally, we selected the region that covers the max-

imum activation area to look closer as shown in Figure 3(a)

for the localization of informative region within X-ray with

bilinear upsampling method.

2.5. Informative regions localization

Although the cropped local image contained the infor-

mative region with good probability, the idea is to localize

the key part of the image. Based on the feature map, we

search for the areas with higher activation (A), which indi-

cates the location of key parts in the local image (cropped

image). So, we extract the feature map of the cropped image
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Figure 3: (a) This network trains to localize the key area in a

weakly supervised manner. The informative area is represented by

the bounded box. (b) This pipeline is based on the second stage

of MSFM. Here red, orange, yellow, and green colors indicate the

order of the proposed window and the white window indicates the

final window by combining all the windows using discounted fac-

tor method in the same order. (c) This figure represents the fea-

ture map-based augmentation. CNN of different colors represents

the different pre-train CNN for removing the high-intensity values

based on the drop mask that produces FMA with the product of

the original image.

by sharing the En’s parameter to obtain the activation map

(A) for the selected region (the region of the window with

height hw, and width ww) and calculate the score by Av-

erage pooling with Kernal size of (hw, ww). Window size

(hw, ww) is a hyperparameter to tune the different types

of problems. The basic idea for selecting the window size

is to cover as different parts as possible (see Figure 3(b)).

Localization is based on the binary map obtained from the

activation map of each window by mean thresholding (Āw)
for the window as defined in equation 4. Non-Maximum

Suppression (NMS) [7] is applied after scoring to select the

fixed number of parts in images so that there are fewer re-

dundant parts in each region.

2.6. Feature Map-based Augmentation

In our experiment, the model was initially biased toward

the artifacts or some high-intensity values present in the

training images due to its weakly supervised nature. Data

augmentation helps to increase the variety of relevant train-

ing data and helps to improve the performance of the model

but random erasing in the training data may remove the in-

formative region instead of removing the non-informative

region. Inspired by SWS-DAN [29], we augment the image

based on the feature map pre-trained on imagenet21k which

represents the high-intensity value. The presence and inten-
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sity of artifacts (e.g., letters) in the Mura dataset are high, so

we reduced the intensity of artifacts by percentage (p) be-

fore feeding into the network. As shown in Figure 3(c), all

the highly active regions are then thresholded which makes

the model no more biased toward artifact (See Figure 10).

2.7. Abnormality detection

From the informative regions localization section, the

larger the value of āw, the larger the information the part

contains. We combine w windows to detect the fracture by

discounting the value window for decreasing the value of

āw after shorting. The final window value (U) is given by:

U (x, y, ww, hw) =

wn∑
i=1

γi U (xi, yi, wwi, hwi) (11)

Where γ ∈ R(0,1] are the weights assigmn to the win-

dows, and for wn number of the proposed windows,

U (xi, yi, xi + wwi, yi + hwi) is sizes of the windows

∀ i ∈ [1, wn].

3. Experiments
3.1. Experimental Setting

Dataset Description: For training and testing of the

model, we have used MURA dataset [18], a large dataset

of a bone X-ray image that consists of seven parts elbow,

finger, forearm, hand, humerus, shoulder, and wrist. The

task in the dataset is a binary class problem to find the pos-

itive and negative classes. The size of each image in the

dataset is different and varies from 117×512 to 512×512.

The presence of an imbalanced class and the inconsistency

in the size of the image, make MURA dataset classifica-

tion a challenging problem. The MURA dataset contains

musculoskeletal imaging studies from 14, 863 patients and

is tagged by certified radiologists as positive or negative.

There are one or more views in each study that are labeled

as 0 for positive or 1 for negative. The training dataset con-

sists of 36, 812 images, and the testing dataset consists of a

total of 3, 197 images. A summary of all parts in the MURA

dataset is shown in Figure 4 for training and testing the

models. The authors have made MURA dataset freely avail-

able at http://stanfordmlgroup.github.io/competitions/mura.

Furthermore, Tumor detection can be a problem in X-ray

images, especially if the tumor is small or located in an

area with complex overlapping structures. To work on this,

We have also collected bone Tumor 1, 100 X-ray images to

check the performance of the model on it. We divide this

dataset by 70%− 30% for training and testing of the model

with 1, 200 images of normal bone inference data to make

a binary classification problem.

Implementation details : We pre-processed the image to

size 448 × 448 to get the image for augmentation, for the

Figure 4: Part size represents the size of the corresponding part

concerning the size of the Mura dataset. Positive and Negative

classes represent the fracture and non-fracture image split respec-

tively.

first stage, and second stage, as shown in Figure 2. After

cropping the original image with the first stage, input in the

second stage is also scaled to 448 × 448. All images are

reshaped to 224 × 224 for the part stage. For the augmen-

tation based on the feature map, the percentage reduction

of the high pixel we have used is 0.15, and the threshold

value we have used is 0.6 based on our experiments. As

discussed, we select the window with broad categories of

scale: {[6× 6, 7× 5] , [8× 8, 6× 10, 7× 9] ,
[10× 10, 9× 11, 8× 12]}. The h × w is 14 × 14 which

is the size of activation map A, and the number of the im-

age’s part images is wn = 7, where w1n = 2, w2n = 2,

and w3n = 3 are number of broad categories of scales. We

have also used pre-trained Resnet-50 on the MURA dataset

as the backbone to fire the feature map as shown in Figure 2

within the same-colored CNNs. We have also used Resnet-

50 pre-trained on ImageNet for augmentation based on the

feature map to remove the high-intensity pixel. During the

training of the model, we do not use any type of annota-

tion other than image class labels, but annotated data were

used in testing to measure the performance. We optimize

the loss using SGD [20], initial learning rate 1× 10−4 and

minibatch size of 5 on RTX A400 GPU. We used PyTorch

as our codebase.

Baseline: We have used Res-Net as a baseline network for

the feature map. First, we trained on the full Mura training

dataset (size 33k) to use in the main network where Res-Net

is also pre-trained on ImageNet-21k [4]. We used multiple

architecture resnet18, resnet34, and resnet50 for ablation.

3.2. Performance of the models

We have evaluated our model on seven parts of the pub-

licly available largest bone-fracture Mura dataset and com-

pare its accuracy and Cohen’s kappa statistic (κ) with the

existing baseline classifiers.

Classification performance of the models: We have re-

ported the accuracy of the models for each part in Table 1.

Our MSFM models achieve good performance compared to

baseline models based on CNNs. We achieved highest accu-
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racy of 87%, 81%, 84%, 89%, 80%, 87%, and 79% for each

part with MSFM model with resnet-50 backbone. The aver-

age accuracy for all parts is 85%. The highest 89% accuracy

was achieved in the Humerus part, and the lowest accuracy

was achieved in 79% in the Hand part using Resnet-50 as

a backbone. More importantly, we have also reported the

results of Tumor detection in Table 1. MSFMR50 is outper-

forming in the Tumor dataset as well as other models.

Comparison based on Cohen’s kappa statistic (κ): The

performance of classifier models is evaluated through the

utilization of statics called Cohen’s kappa statistic (κ). We

compared all results with Cohen’s kappa statistic (κ) [15]

which agrees on each model with the gold standard. In [18],

authors chose three random radiologists to give the com-

parison of their performance with the deep learning models

based on the gold standard. We have reported the average

performance of all three radiologists (RD), and the aver-

age performance of the existing models to compare with

our models. This is done using Cohen’s kappa score shown

in Table 2.

Localization interpretation To check the localization

performance from the first stage, we have reported the

Percentage of Correctly Localized Parts (PCP) metric in

Table 3. PCP is the percentage of predicted boxes that

are correctly localized with more than 50% IOU with the

ground-truth bounding box. The Attention Object Learn-

ing Module (AOLM) [30] initially achieved an impressive

PCL of 85.1% using two ResNet-50 layers and a pre-trained

ImageNet21k backbone. However, the PCL declined to

71.1% during training as the CNN-based network prior-

itized prominent regions. Our proposed model, combin-

ing attention and backbone modules, outperformed recent

weakly supervised methods, achieving the highest accuracy

of 82.6%. Although the PCL decreased to 74.4% as training

progressed, it still surpassed the performance of the other

weakly supervised object localization models.

Comparison with CAM : In Figure 5, we compare CAM

from first stage of MSFM resnet50 backbone and CAM

from training resnet50. CAM highlights the significant area

in the image that helps in classification and confirms our

model’s smooth training. Drawing a bounding box from the

CAM (MSFM) produces similar localization results as our

proposed method, demonstrating the agreement between

CAM (MSFM) and our method. However, CAMs cannot

identify the regions responsible for errors in an image, mak-

ing it challenging to determine the necessary improvements

to increase accuracy, as evident in the first and second im-

ages of Figure 5. In contrast, our method provides a clear

idea of the required bounded box The figure also ensures

the robustness of the model because of multi-stage training

compared to normal CAM. Our method carefully inspects

the image in the first stage, followed by the second stage

that decides on windows with a different confidence. These

windows have a low probability of being incorrect as the

first stage ensures accuracy, and we combine all windows

to form the final bounded box.

Fracture result visualization: The image visualization

Figure 5: Visual comparison with weakly supervised CAM.

of the model in each step is shown in Figure 6. It consists

of different columns namely original image, feature map-

based augmentation (FMA), area localization and looking

closer as discussed in Main-stage, and the final column.

These results are based on the MSFM approach in each part

of the Mura datasets. FMA removes the non-informative

region shown in the second column. Looking closer is the

output of the first stage which is the input of the first stage.

Finally, for the fracture class, we have reported the results

in the column of abnormality. These results show the poten-

tial of MSFM as weakly supervised learning (More results

of this dataset are provided in Figure 2 and Figure 3 of sup-

plementary material).

Tumor result visualization: Tumors can be difficult to

distinguish from surrounding tissue in X-ray images, as they

often appear as subtle changes in density or shape. Tumor

detection is shown in Figure 7. These results can be in-

terpreted based on the bouned box which is containing the

Tumor. This description provides information about the lo-

cation of the tumor (left femur), and its appearance on the

X-ray images (well-defined radiolucent lesion with a scle-

rotic margin). This information can help doctors determine

the appropriate treatment for the tumor and monitor its pro-

gression over time. Hence our approach can be used to de-

tect the severity of abnormality which also shows the gen-

eralizability of the model (More results of this dataset are

provided in Figure 1 of supplementary material).

3.3. Ablation Studies

Model variants: Comparison based only on accuracy

is not the sole indicator, so we have used Joint prediction

error (JPE) [11, 12] to check the combined effect of F1-

score being fractured or not which is defined as,

JPE (γJ) =

(
1− FA

1

)2
2

+

(
1− FB

1

)2
2

(12)
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Table 1: Comparison based on classification results to baseline models. The highest accuracy of each part is highlighted. MSFM-R-n is

our proposed method with the backbone of R=Resnet for n= [18, 34, 50].

Part Name Elbow Finger Forearm Hand Humerus Shoulder Wrist Av. Tumor

Res Net[6] 0.79 0.65 0.73 0.72 0.61 0.75 0.78 0.72 0.94

Dense Net [8] 0.85 0.73 0.58 0.75 0.76 0.75 0.76 0.74 0.76

Inception [22] 0.69 0.61 0.70 0.64 0.71 0.75 0.76 0.70 0.90

APGA [1] 0.83 0.77 0.83 0.79 0.86 0.76 0.84 0.81

MSFMR50 0.87 0.81 0.84 0.79 0.89 0.80 0.87 0.85 0.97
MSFMR18 0.84 0.73 0.68 0.72 0.85 0.71 0.81 0.77 0.89

MSFMR34 0.80 0.78 0.77 0.79 0.82 0.75 0.82 0.79 0.94

Table 2: Results based on Cohen’s kappa statistic (κ) score and comparison to the baseline technique and three unbiased radiologists.

RD1, RD2, and RD3 represent three radiologists. The highest Cohen’s kappa score in all RDs/models and the models marked as bold. Av.

is the average kappa score of all parts.

RDs/models ↓ Parts Name → Elbow Finger Forearm Humerus Shoulder Wrist Hand Av.

RD1 [18] 0.85 0.30 0.79 0.86 0.86 0.79 0.66 0.74

RD2 [18] 0.71 0.40 0.80 0.73 0.79 0.93 0.92 0.72

RD3 [18] 0.71 0.41 0.79 0.93 0.86 0.93 0.78 0.77
Dense [18], [8] 0.71 0.38 0.50 0.60 0.72 0.62 0.55 0.58

Res Net [6] 0.59 0.34 0.46 0.22 0.50 0.54 0.39 0.44

Inception [22] 0.39 0.26 0.41 0.43 0.50 0.53 0.17 0.42

MSFMR34 0.61 0.57 0.55 0.65 0.50 0.64 0.54 0.58

MSFMR18 0.68 0.47 0.37 0.71 0.43 0.61 0.38 0.54

MSFMR50 0.72 0.62 0.64 0.77 0.73 0.67 0.56 0.70

Table 3: Localization performance of the first stage of MSFM on

CUB. “Yes” represents the training from scratch.

Methods Training from scratch PCL (%)

ACOL [31] No 46.0

ADL [2] No 62.3

SCDA [25] No 76.8

MMAL [30] No 71.1

MSFM (ours) Yes 77.4

Where F1 is the F1 score, γJ is ‘0’ for the best-performing

model, and ‘1’ for the worst-performing model. We com-

pare our models for different Resnet-based feature extrac-

tors as a backbone to our model across all the parts of the

Mura dataset, both in terms of joint prediction error (JPE)

and accuracy. The accuracy for the resnet-18, resnet-34,

and resnet-50 as the backbone in MSFM is reported in Ta-

ble 1 whereas the value of γJ is reported in Figure 8 through

the table and the γJ graph. MSFM-R50 gives the best re-

sults for most of the parts, except Elbow where MSFM-

R18 is performing best. The worst performing model is in

part Forearm with MSFMR18. MSFMR34 is performing

better in the Hand part, than MSFM-R50 and MSFMR18.

MSFMR34 and MSFMR50 are outperforming the same in

Elbow, Shoulder, and Wrist and MSFMR50 is better than

MSFMR34 in another part.

Effect of Loss functions variety : Mura training dataset

has the problem of imbalance classes that can be seen in

Figure 4. The performance in some parts is not up to the

mark due to the high-class imbalance, especially in the hand

part where 27.77% is the ‘+’ class and 73.22% for the ‘−’

class. This is one of the reasons models perform worst

in the Shoulder and Hand parts of the Mura dataset. To

overcome this problem, three types of loss function as de-

scribed in equations 6 7 8 based on cross-entropy is per-

formed. The weighted cross-entropy (WCE) loss function

is shown in equation 6 and CE is the special case by putting

equal weightage. Similarly, MFL and α − FL, represent

the mean focal loss and α focal loss, shown in the equation

7 and equation 8 respectively. From Figure (B), the highest

accuracy is achieved using WMFL which is approximately

the same for α-FL and α-WFL whereas the lowest accuracy

is achieved by CE. Based on Cohen’s kappa score, α-WFL

is the best-performing loss function for our models. α-WFL

is used in all our experiments because of the highest Co-

hen’s kappa score and approximately the same accuracy as

the highest performing loss function based on accuracy.

Effect of feature map-based augmentation parame-
ter: FMA has two hyperparameters, one is the thresholding

value, and the other is the reduced weight of the pixel value

(r). The r = 0.70 indicate that the pixel value was reduced
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Original FMA Look Closer Abnormality

Figure 6: Output from MSFM at each step of the model. The

first column consists of an original image from each part followed

by the columns of FMA, Look Closer in the original image, and

abnormality detection in the original image.

Image Look Closer Tumor Detection

Figure 7: Tumor detection output visulization

by 70% because of the elimination of unnecessary region-

like artifacts. Figure 10 (A) shows that when the intensity

of the artifact (assuming high-intensity value) is reduced by

a reduction rate (r=0.15), the bounding box is free from the

artifact, while if the reduction rate (r) is 0.7, the bounding

box contains the artifact with the informative region. There

is one region for the highest intensity value, but many im-

ages are consisting of metal and some more artifacts. One

image is shown in Figure 10 (B) and consists of multiple

high-intensity regions and the effect of r is also shown for

the feature augmented image. As the value of r decreases,

Figure 8: Comparison of MSFM on backbone models using JPE.

Figure 9: Effect of loss function on Cohen’s kappa statistic.

Figure 10: (A) The effect of r in the output bounded box due to

artifact. (B) Effect of r on FMA image visualization.

the FMA starts to remove the region from taking away high-

lighters, increasing the localization accuracy based on our

experiments.

4. Conclusion

Our study presents a robust classification and localiza-
tion approach for informative regions, eliminating the need
for costly bounding box annotation. Extensive experiments
demonstrate superior fracture classification and localization
accuracy compared to baselines. The multistage structure
efficiently leverages MSFM images from various stages,
contributing to its excellent performance. Future work in-
cludes applying the MSFM model to diverse medical and
natural image datasets, expanding its scope beyond pre-
trained models.

2449



References
[1] Kaiyang Cheng, Claudia Iriondo, Francesco Calivá, Justin
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