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Abstract

Contrastive Language-Image Pre-training (CLIP) has
shown its ability to learn distinctive visual representations
and generalize to various downstream vision tasks. How-
ever, its applicability in the classification of pathology im-
ages with limited labeled data is still under study due to the
giant domain shift (between large natural image datasets
in the source domain and small-scale target pathology im-
ages) and overfitting issues. In this work, we first explore
the zero-shot transferability of CLIP on pathology classifi-
cation tasks and benchmark the performance. Then, we pro-
pose Residual Feature Connection (RFC) to fine-tune CLIP
with a small amount of trainable parameters. RFC aims
to fuse the task-specific knowledge learned from the target
domain and the original knowledge pre-trained from CLIP.
We show that RFC can adapt pre-trained CLIP to down-
stream pathology tasks and achieve good performance with
just a few annotated samples. Specifically, RFC achieves
over 19% improvement in accuracy when only using 0.1%
of labeled data in PCam with only 10 minutes of fine-tuning
while running on a single GPU.

1. INTRODUCTION
Deep learning with better network designs and large-

scale well-curated datasets has achieved significant perfor-

mance improvement in pathology image analysis tasks [15,

19]. However, collecting high-quality datasets with reliable

annotations for every vision task can be time-consuming

and labor-extensive [20, 44]. This may prevent the broad

adoption of advanced deep learning techniques. To relieve

the reliance on such datasets, pre-training and fine-tuning

methods have been studied in vision tasks: pre-train the

model on a large-scale dataset and then fine-tune the model

on different downstream tasks [6]. There are several chal-

lenges of such methods: 1) they may still require a large

amount of labeled set to avoid the overfitting issue when

fine-tuning the model for the downstream task [22, 37]; 2)

the fine-tuning may not bring satisfactory performance in

the target domain due to the existence of a large domain gap

between the pre-trained data and pathology images [31].

To fill the performance gap due to domain shift,

Contrastive Language-Image Pre-training (CLIP) [25] has

shown its power in learning generic and distinctive visual

representations via language supervision. It aligns images

and texts in the same feature space and uses a contrastive

loss to formulate the learning objective. CLIP uses two

separate encoders for images and texts, then maximizes

the similarity score of positive pairs of images and texts

while minimizing for the negative pairs [25,45]. It achieves

promising results on various image classification tasks with-

out needing any annotated data, i.e., zero-shot transfer set-

tings. As a language-vision model, CLIP uses prompts as

the supervision, where the visual labels are entered into the

hand-crafted template. By pre-training the model at a large

scale, models can learn the visual contents and easily be

transferred to downstream tasks through the prompt-based

zero-shot transfer.

However, the manual design of prompts can be a non-

trivial and time-consuming task. In [45], the authors found

that even a slight change in the prompt (e.g., one word)

can make a big difference. They introduced Context Op-

timization (CoOp) to automate prompt engineering to gen-

erate continuous soft prompts instead of using hand-chosen

hard prompts [45]. CoOp requires substantial computing re-

sources, and the results of CoOp are not interpretable. Be-

sides, CoOp faces performance degradation when there is

a big domain shift, e.g., from natural to pathology images,

making it hard to adapt to medical imaging tasks.

In this work, we aim to fine-tune CLIP efficiently with

light computing resources for pathology image classifica-
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Figure 1. An overview on the inference stage of CLIP in computer

vision tasks: f is the output from the vision encoder while W is

the output from the text encoder.

tion tasks. There are several challenges in fine-tuning

CLIP. First, overfitting is a severe issue if we directly adapt

CLIP to the downstream tasks since CLIP is pre-trained

on a 400M dataset while the new domain dataset can be

small [7]. Second, it is unclear how to effectively learn

the new knowledge while retaining the original pre-trained

knowledge to maintain the generalization of CLIP. Third,

there are limited studies on benchmarking CLIP’s transfer-

ability in the pathology domain; hence, its applicability re-

mains unclear.

To address the above issues, we first study the applicabil-

ity of CLIP on two pathology datasets and benchmark the

zero-shot ability of CLIP on them. Then, we propose Resid-

ual Feature Connection (RFC) as a lightweight approach for

adapting CLIP to pathology images. It will fuse the origi-

nal knowledge from CLIP and the new knowledge learned

from the new pathological task with only a tiny number of

trainable additional weights instead of optimizing the en-

tire encoders in CLIP. Third, to further improve the fine-

tuning ability, we propose using Language-Vision Align-

ment (LVA) in the fine-tuning stage to mimic contrastive

learning in the pre-training stage.

We summarize our contributions as follows:

• We explore the applicability of CLIP on pathology im-

ages and benchmark its zero-shot transfer ability.

• We propose CLIPath to introduce CLIP in pathology

image applications. In CLIPath, we propose Resid-

ual Feature Connection (RFC) and Language-Vision

Alignment to fine-tune CLIP on pathology tasks with

limited labeled data.

• We show that CLIPath has the potential to quickly

adapt pre-trained CLIP to downstream tasks with good

performance but light computational cost.

2. Related Work

2.1. Language-vision model

Language-vision models have exhibited promising per-

formance in acquiring general visual representations [11,

23, 25, 41]. Recent advancements in these models in-

volve text representation learning using large-scale Trans-

formers [29] and training on extensive datasets from the

web [45]. Transformer-based multimodal learning has

achieved remarkable success on such vast datasets [28, 35].

For instance, CLIP [25] was trained on 400 million image-

caption pairs and achieved state-of-the-art performance

across various domains [16, 25, 38–40]. CLIP comprises

two encoders: a vision encoder, which can be ResNet [9]

or ViT [4], and a text encoder, such as Transformer (e.g.,

BERT [3]).

In a recent study [26], CLIP was fine-tuned for video

data and demonstrated competitive results compared to

more complex methods specifically designed for video pro-

cessing. Another application, PointCLIP [43], employed

CLIP for 3D recognition. CLIP has also been utilized for

image generation tasks [5] and exhibits the ability to reduce

data collection. However, the optimal approach for adapting

CLIP to downstream tasks is still under investigation, par-

ticularly when the new domain, such as the medical field,

significantly differs from the pre-trained domains.

2.2. Language-vision training in medical domain

Language-vision pre-training, which involves training

models to understand language and visual information, typ-

ically relies on vast amounts of web images and captions

from diverse domains. For instance, the CLIP model uti-

lizes a 400 million image-caption pairs dataset [25]. How-

ever, medical datasets are considerably smaller in compar-

ison, posing a challenge in applying pre-training methods

to the medical domain. Additionally, annotating medical

images require specialized domain knowledge [20], further

increasing the cost of training when dealing with multiple

medical tasks. To illustrate, Lai et al. conducted a study on

the distribution of Amyloid-β plaques, a prominent pathol-

ogy in Alzheimer’s disease, in grey and white matter. This

investigation involved two learning tasks: image segmenta-

tion and object detection, each requiring separate datasets

and their respective annotations [13–15, 24].

Although expert annotation of medical images is al-

ready expensive, the situation becomes even more challeng-

ing when incorporating language-vision training due to the

need for captions and prompts for the images. For exam-

ple, MedCLIP [33] achieved 60% zero-shot accuracy by

employing 570,000 image-text pairs. Acquiring datasets of

such magnitude is particularly daunting in pathology image

tasks, where each slide is at the gigapixel level. Efforts to

adapt CLIP for the medical domain have been limited, pri-

2375



Figure 2. Overview of the proposed framework: the image and text encoders of CLIP are frozen while the Trainable Layer (RFC) is of

a downsampling-upsampling architecture of linear layers. It blends the fine-tuned knowledge with the original knowledge from CLIP’s

vision encoder (F (·)).

marily due to the substantial disparity between general im-

ages and medical images. In this study, our objective is to

develop an efficient adaptation framework that can be eas-

ily applied to multiple downstream tasks in the medical field

while addressing the scalability issue.

3. METHODS

3.1. CLIP and Setup

CLIP [25] has a vision encoder F (·) and a text encoder

G(·). The vision encoder maps a high-dimensional image

into low-dimensional image embeddings. The text encoder

is built on Transformer [29] and generates text embeddings

from the prompt. During training, CLIP jointly trains F (·)
and G(·) to optimize the similarity score (e.g., symmetric

cross-entropy loss [32]) between the visual and textual em-

beddings for each batch. Specifically, the input consists

of an image and its corresponding prompt (e.g., “this is a

dog”). Then given a batch of image-prompt pairs, CLIP

maximizes the similarity score for positive pairs while min-

imizing it for negative pairs.

For the inference process, as shown in Fig. 1, an image

I is transformed into a feature manifold f ∈ R
D, where

D is the feature dimension. Then, f is multiplied with a

classifier weight matrix W ∈ R
D×K , where K is the num-

ber of classes in the learning task. We get a K-dimensional

logit after matrix multiplication. Then we apply softmax to

convert this logit into a probability vector p ∈ R
K over the

K classes. The whole process can be summarized as the

following equation:

pi =
exp(Wi

T × f)/τ
∑K

i=1 exp(Wi
T × f)/τ

, (1)

where τ is the temperature parameter learned by CLIP dur-

ing training and Wi is the prototype weight vector for class-

i.

3.2. Residual Feature Connection

In this subsection, we introduce Residual Feature Con-

nection (RFC) to learn the task-relevant context when we

adapt CLIP to the downstream learning tasks. Inspired by
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CLIP-Adapter [6] that achieves promising results on com-

puter vision few-shot benchmark, we argue the importance

of preserving the original knowledge and fusing the new

knowledge. Unlike CoOp’s prompt tuning, which may

not address the domain shift issue between the natural and

pathology images, we focus on fine-tuning the visual fea-

tures f . However, simple fine-tuning of the entire network

may fail in a new pathological task due to the overfitting is-

sue caused by a large number of parameters and a shortage

of the training samples [10]. Inspired by [10] that fine-tunes

the model with additional layers, we argue the importance

of retaining the features from CLIP and propose a residual

connection architecture to dynamically fuse the fine-tuned

knowledge with the original CLIP’s feature.

As shown in Fig. 2, given an image X , we get the visual

feature f from the image encoder and compute the classifier

weight W from the text encoder. Then we design trainable

fine-tuning layers L to convert f into L(f). L can be multi-

ple layers of linear transformations in a “down-and-up” ar-

chitecture. As shown in Fig. 2, we have four layers to trans-

form the feature dimension as “1024-256-64-256-1024” so

that L(f) can be of the same size of f and blended with f
as follows:

f∗ = αL(f) + (1− α)f, (2)

where α is a residual ratio to balance the fine-tuned knowl-

edge and the original CLIP’s knowledge. Then we adopt

Equation 1 with the new f∗ to get the class probability vec-

tor and predict the category with the highest probability.

During the fine-tuning, the weights of the trainable layers

are optimized through the symmetric contrastive loss used

in CLIP [25]. The prompt here is “this is a photo of []”,

where “[]” is filled with the class name. For example, “[]”

can be “healthy lymph node tissue” or “healthy lymph tu-

mor tissue” in PCam [30].

3.3. Language-vision Alignment

Although CLIP has shown promising zero-shot ability,

there is a strong preference to enhance performance by en-

gaging in supervised fine-tuning in many scenarios. This in-

volves additional training and adjustments to the pretrained

parameters using a limited set of labeled images, which can

lead to further improvements [8]. While RFC can retain

the pre-trained knowledge and learn new knowledge, it may

still suffer from overfitting issues when the target dataset is

too small. Goyal et al. [8] studies the importance of con-

trastive loss in the fine-tuning stage to alleviate this issue.

Different from previous fine-tuning approaches that mini-

mize a standard supervised loss (e.g., cross-entropy loss on

an image classifier), they claim that keeping the contrastive

loss used in the pre-training stage is more advantageous.

Therefore, in CLIPath, we follow [8] and use a contrastive

loss in the fine-tuning.

4. EXPERIMENTS
4.1. Data Preparation and Setup

The datasets used for validation of our framework are

collected from two distinct pathology projects [30, 34].

Both projects make their data available as patches, ex-

tracted from H&E stained Whole Slide Images (WSI)

digitized from Formalin-Fixed Paraffin-Embedded (FFPE)

slides. Each dataset has a distinct binary classification task

aimed at detecting different cancerous tissue.

Minimalist Histopathology Image Analysis Dataset
(MHIST) [34]. MHIST contains 3,152 patches from col-

orectal regions at 224×224 pixel resolution. These patches

were extracted from 328 WSIs scanned at 40× resolution.

Each patch may be labeled as Hyperplastic Polyp (HP) or

Sessile Serrated Adenoma (SSA). HP is the majority class

with 68.59% of the labels. The labeling of colorectal polyps

between HP and SSA is a challenge due to high inter-

pathologist disagreement. Seven pathologists contributed

in the ground truth to ensure reliable labels.

PatchCamelyon (PCam) [30]. PCam patches were ex-

tracted from Camelyon16 challenge [1]. The original 400

WSIs from Camelyon16 were digitized breast tissue with

potential metastasized cancerous tissue on the lymph nodes.

The original WSIs were scanned at 40× resolution but

later downsampled to 10×. The WSIs were collected from

two different centers. PCam extracted 327,680 patches at

96×96 resolution and labeled them as positive or negative.

Positive labeled patches present tumor tissue in the central

32×32 patch region. There are an equal amount of positive

and negative labeled samples.

For a fair comparison, we use ResNet-50 [9] as the back-

bone in the vision encoder f(·). We follow CLIP [25] to

use gradient scaling in facilitating mixed-precision training.

We set the learning rate as 0.0001. The batch size is 32. We

use Adam [12] as the optimizer. All of the experiments are

conducted on one piece of GPU (Nvidia RTX 2080Ti) to

compare the computational complexity.

4.2. Main Results

In this subsection, we report the results on PCam [30]

and MHIST [34] to show how RFC’s fine-tuning improves

CLIP. We select Accuracy, Recall, Precision, F1-score, and

AUC to have a comprehensive comparison. The main re-

sults on PCam [30] when only using 0.5% data for fine-

tuning are summarized in Table 1. First, CLIP shows its

strong zero-shot ability: it can achieve 56.5% accuracy un-

der this setting. Our proposed method can get better results

than semi-supervised learning approaches that use extra un-

labeled data [17, 18, 21, 27, 36, 42]. Therefore, CLIP and its

efficient adaptation are promising for minimizing data col-

lection efforts in clinical applications. Similar observations

can also be found in MHIST, summarized in Table 2.
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Table 1. Quantitative comparison on PCam. Precision, Recall, and F1-score refer to the macro-averaged values from all classes

Learning Manner Labeled Ratio Algorithm Accuracy Precision Recall F1-score AUC

Supervised 100% - 92.8 ± 0.30 92.9 ± 0.20 92.6 ± 0.21 92.8 ± 0.20 0.95 ± 0.01

Supervised 0.5% - 45.1 ± 2.27 42.0 ± 2.14 33.6 ± 3.30 37.3 ± 2.86 0.51 ± 0.01

Self-supervised 0.5% SimCLR [2] 60.4 ± 1.45 63.3 ± 1.90 58.5 ± 2.01 60.8 ± 1.20 0.61 ± 0.04

Semi-supervised 0.5%

Pseudo-Label [21] 55.7 ± 2.05 59.2 ± 2.23 54.5 ± 1.97 56.8 ± 1.55 0.58 ± 0.03

FixMatch [27] 73.2 ± 0.76 77.5 ± 0.50 73.7 ± 0.25 75.6 ± 0.37 0.84 ± 0.04

Dash [36] 71.0 ± 0.98 75.3 ± 0.78 70.2 ± 0.45 72.7 ± 0.50 0.82 ± 0.02

FlexMatch [42] 74.0 ± 0.80 78.1 ± 1.15 73.0 ± 0.90 75.5 ± 0.84 0.85 ± 0.03

Multimodal CLIP

- Zero-shot [25] 56.5 ± 0.00 57.4 ± 0.00 50.3 ± 0.00 53.7 ± 0.00 0.60 ± 0.00

0.5%

CoOp [45] 63.6 ± 0.25 63.9 ± 0.42 62.5 ± 0.35 63.0 ± 0.29 0.67 ± 0.02

CLIP-Adapter [6] 72.3 ± 1.02 77.2 ± 0.95 63.2 ± 0.56 69.4 ± 0.84 0.81 ± 0.02

Proposed 81.5 ± 0.78 79.4 ± 0.35 85.0 ± 0.80 82.1 ± 0.95 0.89 ± 0.02

Table 2. Quantitative results on the hold-out test set of MHIST.

Algorithm Data Usage Accuracy Recall Precision F1-score AUC

CLIP [25] Zero-shot 36.9 100.0 36.9 53.9 0.501

CLIP + RFC

1% 63.9 7.5 57.5 13.3 0.643

5% 66.8 42.8 56.6 48.7 0.732

10% 70.5 79.7 57.1 66.6 0.784

20% 70.7 86.1 56.8 68.4 0.788

50% 74.8 75.6 63.3 68.9 0.838

Table 3. Quantitative results on the hold-out test set of PCam.

Algorithm Data Usage Accuracy Recall Precision F1-score AUC

CLIP [25] Zero-shot 56.5 50.3 57.4 53.7 0.600

CLIP + RFC

0.1% 76.4 90.0 70.7 79.2 0.849

0.5% 81.5 85.0 79.4 82.1 0.894

1% 81.9 82.9 81.3 82.1 0.900

5% 82.9 77.1 87.2 81.8 0.918

10% 82.8 79.2 85.4 82.1 0.914

50% 81.4 71.0 89.6 79.3 0.918

4.3. A Closer Look at RFC

4.3.1 How Does RFC Improve CLIP?

In this subsection, we have a deeper look at RFC and study

how it improves CLIP. As shown in Table 3, RFC can bring

over 25% improvement in accuracy and 28.4% in F1-score

by only using 0.5% of data in PCam [30] compared to the

original CLIP. In Table 2, we get significant improvement

in accuracy and AUC on MHIST [34], while the perfor-

mance in F1-score and recall seems limited. We diagnose

that MHIST is a more challenging task and has an inter-rate

agreement issue, which may confuse the model during fine-

tuning.

4.3.2 Compare with CoOp [45]

CoOp [45] is the recent state-of-the-art fine-tuning method

for CLIP. Hence we mainly compare our proposed RFC

with it in both performance and computational complex-

ity. We summarize the results in Table 4. The training time

refers to the time period from the start point to the time

point when the validation set gets the best results. When we

range the data usage from 0.1% to 1%, we find that RFC can

get 5.5% improvement in accuracy while only introducing

1 minute of additional training time. However, CoOp [45]

has the overfitting issue and gets a lower score while using

53 minutes, which is almost 5 times compared to the time

used by RFC. The situation remains similar under the 10%

of data usage. We conclude that our proposed RFC can get

over 25% improvement on CLIP by only using 10 minutes

for the fine-tuning on a single GPU, which is promising for

digital pathology research.

Table 4. Performance and Complexity comparison on PCam.

Data Usage Algorithm Accuracy Training Time

Zero-shot CLIP [25] 56.5 -

0.1%
CLIP + CoOp [45] 64.3 7 min 6 sec

CLIP + RFC 76.4 10 min 29 sec

1%
CLIP + CoOp [45] 61.9 53 min 21 sec

CLIP + RFC 81.9 11 min 56 sec

10%
CLIP + CoOp [45] 59.9 2 h 23 min 45 sec

CLIP + RFC 82.8 27 min 18 sec

5. Discussion

In this work, we explore the generalization of Con-

trastive Language-Image Pre-training (CLIP) in pathology

image classification. We propose RFC to efficiently fine-

tune CLIP using a small dataset and light computing re-

sources. On the other hand, we use a contrastive loss in

the fine-tuning stage to preserve the model’s capacity. We

show that RFC has the potential to bridge the domain shift

between the pre-trained natural images and pathology im-

ages. However, we only evaluate our frameworks on two

small-scale datasets. In the future, we aim to test it over

more diverse pathology image tasks.
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