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Abstract

In computational pathology, cancer classification is one
of the most widely studied tasks. There exist numerous tools
for cancer classification, which are mainly built based upon
convolutional neural networks or Transformers. These
tools, by and large, formulate cancer classification as a
categorical classification problem, which ignores the intrin-
sic relationship among cancer grades. Herein, we propose
an order learning vision transformer for cancer classifica-
tion that can not only learn the histopathological patterns
of individual cancer grades but also utilize the ordering re-
lationship among cancer grades. Built based upon vision
transformer, the proposed method simultaneously conducts
categorical classification per input sample and order classi-
fication for a pair of input and reference samples. Moreover,
it introduces a voting scheme to identify less confident sam-
ples and to improve the accuracy of the decision on such
samples. The proposed method is evaluated on two types of
cancer datasets including colorectal and gastric cancers.
Experimental results show that the proposed method out-
performs other classification models and can facilitate im-
proved cancer diagnosis in clinics.

1. Introduction

Cancer is one of the leading causes of death that af-

fects health worldwide [3]. Rapid and accurate diagnosis

of cancer is critical to initiating timely treatment and im-

proving patient outcomes. The current gold standard for

cancer diagnosis involves the microscopic examination of

tissue samples stained with hematoxylin and eosin (H&E)

by pathologists. However, these manual histopathological

evaluations are time-consuming, low-throughput, and prone

to inter- and intra-observer variability, and thus can limit the

efficiency and accuracy of cancer diagnosis. Therefore, an

automated, fast, and reliable methods are needed to improve

the quality of cancer diagnosis and patient care.

Computational pathology, which combines artificial in-

telligence (AI), whole-slide imaging (WSI), and clinical in-

formatics, is an emerging field of study that hold great po-

tential for transforming and improving the practice of cur-

rent pathology [2, 4, 8]. Many of these tools rely on deep

learning algorithms, especially convolutional neural net-

works (CNNs). CNNs have been successfully applied to

numerous applications including cancer diagnosis [43], tis-

sue segmentation [16], and synthetic tissue image genera-

tion [38]. Recently, Vision Transformer (ViT) has received

considerable attention for its excellent performance in com-

puter vision tasks such as object detection [5], semantic seg-

mentation [30], and scene understanding [40]. The appli-

cation of ViT has been also extended to pathological image

analysis such as histopathology image classification [10,34]

metastasis detection [4], and survival analysis [23].

For both CNN-based and ViT-based models, cancer di-

agnosis has been primarily studied as a categorical classifi-

cation problem. As a categorical classification problem, the

role of CNNs or ViT is to identify the unique and distinct

patterns of each cancer grade within a tissue image. In this

perspective, Cancer grades are considered to be independent

to each other. Although this approach has been successful,

it, by and large, ignores the intrinsic relationships among

cancer grades. It is generally accepted that the higher the

cancer grade, the more aggressive it is. This indicates that

there is an intrinsic ordering among cancer grades. [18], in

fact, pointed this out and proposed a CNN-based model that

conducts cancer grading as both categorical classification

and regression problems, which handles one tissue image

at a time. Moreover, the ordering relationship can be in-

corporated into cancer diagnosis via pairwise comparison

between tissue samples. Suppose that there are borderline

cases between two cancer grades such as high-grade cancer

and low-grade cancer, potentially leading to mis-diagnosis

in the clinics. For such cases, it will be easier or helpful

to make a comparison against some representative cases of

the two grades and tell whether is less or more aggressive

than the representative cases. This approach of learning the

ordering relationship is called order learning [20].

In this work, we propose an order learning ViT (Order-
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ViT) for cancer grading in pathology images. Order-ViT

conducts two classification tasks simultaneously: one for

categorical classification and the other for order classifica-

tion. For the categorical classification, it receives one tissue

sample and predicts its class label, i.e., learning and exploit-

ing specific histopathological patterns of cancer grades. As

for order classification, it takes an additional reference tis-

sue sample and predicts the ordering relationship between

the two sample via pairwise comparison. Order-ViT con-

tains a feature extractor, a categorical classifier, and an or-

der classifier. We employ both CNN and ViT to build a

feature extractor that extracts the high-dimensional feature

representation of a tissue sample. Subsequently, the cate-

gorical classifier assigns a cancer grade per tissue sample

and the order classifier receives the feature representations

of a pair of tissue samples and predicts the ordering rela-

tionship between them. The categorical classifier conducts

the primary classification. If and only if the result of the pri-

mary classification is uncertain, we invoke a voting scheme

that conducts a number of ordinal classifications and voting

to determine the final prediction.

Our contributions are summarized as follows:

• We propose an order learning ViT for cancer grading

in pathology images, which learns both the histopatho-

logical patterns and the ordering relationship among

cancer grades.

• We introduce a voting scheme that exploits the order-

ing relationship between tissue samples to further im-

prove the accuracy and reliability of cancer grading.

• We evaluate the proposed method on two types of can-

cer datasets and compared it with CNN- and ViT-based

models, outperforming other models regardless of the

datasets.

2. Related Work
2.1. Computational Pathology for Cancer Diagnosis

A wide range of approaches and methods in compu-

tational pathology have been applied to cancer diagno-

sis. Early works focused on extracting and utilizing hand-

crafted features that are associated with the presence and

aggressiveness of cancer. The hand-crafted features include

color intensity/histograms, morphological features, and tex-

ture features. Morphological features are to quantify the

shape, distribution, and density of histological objects such

as glands [29] and nuclei [14]. Texture features include

grey-level co-occurrence matrix [27], wavelet transform [6],

local binary pattern [25], and Gabor filters [24]. Later,

deep learning methods, in particular CNNs, have shown to

be effective in processing and analyzing pathology images.

Various kinds of CNN architectures such as AlexNet [17],

ResNet [9], EfficientNet [31], and MobileNet [11], which

were developed for computer vision tasks, have been suc-

cessfully applied to cancer diagnosis for colon cancer [26],

gastric cancer [39], and breast cancer. In addition to these,

a number of advanced models that are specific to pathol-

ogy image analysis have been proposed. For example, [33]

proposed a multi-scale CNN that extracts and utilizes bi-

nary patterns of feature maps across multiple scales for col-

orectal and prostate cancer classification. [19] adopted dual-

domain attention mechanism to strengthen feature represen-

tations and to focus on important areas, achieving improved

classification performance on colon and lung cancers. [42]

introduced attention high-order model that simultaneously

integrates the high-order statistics and attention mechanism

modules into a residual network for breast cancer classifi-

cation. Recently, Transformer has been adopted for several

computer vision tasks as well as pathology image classifi-

cation tasks, outperforming CNN-based models.

2.2. Vision Transformer (ViT)

Transformer was first introduced in the machine trans-

lation task in natural language processing. Vision Trans-

former (ViT), which is a variant of Transformer, was de-

veloped for the image classification task. ViT unfolds an

input image as a series of small patches, i.e., tokens, so that

Transformer layers can be utilized to incorporate the global

context of the input image and to conduct the image classi-

fication task. This approach has been successfully adopted

for various computer vision tasks, including image segmen-

tation [15], image generation [37], and change detection of

a pair of co-registered images [1]. It has been also widely

applied to pathology image analysis. For example, [13] em-

ployed ViT for prostate cancer grading in WSIs by extract-

ing and utilizing multiple image patches from WSIs. [41]

conducted tissue segmentation in colorectal cancer images

by adopting Swin Transformer for extracting the global con-

text of tumour-related regions and a cascaded upsampler for

detecting the tumor boundary. [35] proposed a hybrid ar-

chitecture of Swin transformer and CNN that is equipped

with contrastive learning to enhance feature extraction and

to conduct five downstream tasks such as patch retrieval,

patch classification, WSI classification, mitosis detection,

and colorectal adenocarcinoma gland segmentation. [21]

also exploited both CNN and ViT models to extract fea-

tures from pathological images and then combine them to

perform the classification of cervical cancer images.

2.3. Order Learning

Order learning is a learning paradigm that aims at learn-

ing the ordered relationship among class labels, which was

first introduced in age estimating [20]. Pairwise comparison

is one of the most common ways to learn the order or rank

relationship among samples. For instance, [20] employed a
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Figure 1. The overiview of the proposed Order-ViT during training. For the optimization of Order-ViT, we utilize a feature extractor,

a categorical classifier, and an order classifier. The categorical classifier conducts classification using the input image alone. The order

classifier compares the input image against the reference image.

pariwise comparator to compare two samples and to deter-

mine their ordering relationship. [36] developed RankNet

that learns a ranking function to predict the ranking poste-

rior of two samples. These methods generally utilize the

absolute rank of a sample. In order to learn the relative

rank that quantifies the degree of difference, [28] proposed

a regression-based order learning mechanism for age esti-

mation. Although it has been successfully applied to age

estimation, it has not been utilized for pathology image

analysis. To the best of our knowledge, this is the first at-

tempt to incorporate order learning into cancer diagnosis in

pathology images. Ordinal classification or regression ap-

proaches, which aim at directly predicting the class label of

a sample on an ordinal scale, have been adopted for pathol-

ogy image analysis; for example, [18] conducted both cat-

egorical classification and regression for prostate and col-

orectal cancer grading. However, the ordering relationships

among samples and class labels have not been explicitly uti-

lized for cancer diagnosis in pathology images.

3. Methods

3.1. Problem Formulation

Suppose that we are given N pathology images and their

ground truth labels {xi, yi}Ni=1 where xi ∈ R3 is the i-th
pathology image, yi ∈ C = {c1, c2, . . . , cNc} is the ground

truth class label for xi. c1, c2, . . . , cNc
represent cancer

grades, of which each owns a unique histopathology pat-

tern, and are also defined on an ordinal scale c1 = 1 <
c2 = 2 < . . . < cNc = Nc. Given {xi, yi}Ni=1, Order-ViT

maps the images into a high-dimensional embedding space

in which we conduct two classification tasks, i.e., categori-

cal classification and order classification. The objective of

our study is to learn Order-ViT that can leverage the or-

dering relationships among pathology images and conduct

cancer grading in an accurate and robust manner, which can

be formulated as follows:

min

N∑
i=1

L(ξ(xi), yi; θ) (1)

where L is the loss function and θ is a set of learnable pa-

rameters of Order-ViT ξ.

3.2. Order-ViT

Order-ViT ξ contains four major computational blocks:

1) a feature extractor ξfeat, a categorical classifier ξcat, an

order classifier ξord, and a voting block ξvot. Given an input

image x, the feature vector ξfeat extracts a feature vector

f , which is subsequently fed into the categorical classifier

ξcat for conducting categorical classification, i.e., directly

predicting the class label for the x. For order learning, a

reference image xref goes through ξfeat, generating a ref-

erence feature vector fref . f and fref are concatenated

together and fed into the order classifier ξord to predict the

order relationship between x and xref . The voting block

ξvot is invoked at inference only to identify hard/uncertain

images and to correct and stabilize the prediction.

3.2.1 Feature Extractor

The feature extractor ξfeat is built based upon a vision

transformer (ViT). Suppose that we are given an input im-

age x, ξfeat adopts Resnet50V2 [9] to extract the initial

feature vector e ∈ RW×H×Ne(W = H = 24, Ne = 1024)
and generates a set of token embeddings via a linear layer

{si|i = 1, 2, . . . , Ns}, si ∈ RNf where Ns is the length

of the token embeddings (Ns = 576) and Nf is the size

of each token embedding (Nf = 768). For classification,
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Figure 2. Generation of order class labels. The class label of an anchor image is compared against that of a reference image to determine

whether it is higher than �, equal to ≈, or lower than ≺ the reference image, corresponding to the order class label r1, r2, and r3,

respectively.

we incorporate a class token sCLS ∈ RNf into the to-

ken embeddings, producing Ho = [s0, s1, s2, .., sNs
], s0 =

sCLS . We also utilize positional embedding to add loca-

tion information for each token embedding in a way that

sin(i/100002j+1/Nf ) and cos(i/100002j/Nf ) are added to

every 2j-th and 2j+1-th dimensions of si, i = 0, 1, ..., Ns.

The resultant token embeddings are fed to the Trans-

former encoder, which is built based upon multi-head self-

attention (MHSA) layers, feed-forward neural network

(FFNN(·)) layers, and a layer normalization (LN ) layer,

to extract the output feature f as follows:

h′
l = MHSA(LN(hl−1)) + hl−1, l = 1, ..., Nl (2)

hl = FFNN(LN(hl)) + h′
l, l = 1, ..., Nl (3)

f = LN(h0
Nl
) (4)

where Bl is the number of Transformer encoders (Nl = 12)

and h0
Nl

is the output embedding corresponding to sCLS at

the Nl-th Transformer encoder. MHSA is composed of

multiple, parallel self-attentions (SAs) as follows:

MHSA(h) = Linear([SA1(h), ..., SANm
(h)]) (5)

SAi(h) = softmax(qkT /
√
D)v, i = 1, ..., Nm (6)

where q, k, v = Linear(h) ∈ RdNm are query, key,

value vectors, respectively, Linear is a linear layer, Nm

is the number of SAs, and D = Nf/Nm. FFNN contains

Linear −ReLU − Linear −ReLU − Linear.

3.2.2 Categorical Classifier

The categorical classifier ξcat contains Linear −
LeakyReLU − Linear − LeakyReLU − Linear.

Provided with a feature vector f , ξcat produces the poste-

rior probabilities for the class labels p̂ = {p̂c|c = 1, ..., Nc}
where p̂c denotes the probability that the input image

belongs to the c-th class label.

3.2.3 Order Classifier

Following [20], the order relationship between two samples

xi and xj can be determined by using their class labels yi
and yj as follows:

xi ≺ xj if yi − yj < 0

xi ≈ xj if yi − yj = 0

xi � xj if yi − yj > 0

(7)

where xi � xj , xi ≈ xj , and xi ≺ xj indicate that xi is

greater than, equal to, or less than xj with respect to the

class labels that are defined on an ordinal scale. In the con-

text of cancer grading, these are interpreted as the grade of

xi is higher than, equal to, or lower than that of xj . Given

the two feature vectors from xi and xj , the objective of

the order classifier ξord is to predict the order relationship

(�,≈,≺) between xi and xj that is defined as follows:

zi,j =

⎧⎪⎨
⎪⎩

r1, if yi < yj

r2, if yi = yj

r3, if yi > yj

(8)

where r1, r2, and r3 ∈ N are the ground truth order class

labels that correspond to �,≈, and ≺, respectively.

During training, each image in a batch is designated

as an anchor image xa and ξfeat is used to generate an

anchor feature vector fa. Then, a reference feature vec-

tor fref is selected from a feature memory bank M and

is concatenated with fa, producing the order feature vec-

tor ford = fa ⊕ fref . xiord receives ford and pro-

duces the posterior probabilities for the order class labels

ô = {ôi|i = 1, ..., No} where ôi denotes the probability

that the input image belongs to the i-th order class label.

The architecture of ξord is identical to that of ξcat except

the number of neurons in the last linear layer.
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Figure 3. Voting at inference. The feature vector of an anchor image is compared to a number of reference feature vectors in the feature

memory bank M to conduct voting. The voting results are summarized to produce posterior probabilities.

3.3. Two-stage Inference

During inference, we make the final decision or predic-

tion in two-stages. In the first stage, we make the predic-

tion per input image xa using the categorical classifier ξcat.
Specifically, we extract the feature vector fa for xa by us-

ing the feature extractor ξfeat. Then, fa is fed into ξcat to

conduct categorical classification. Using the output of ξcat,
we also calculate a confidence score u of the input image.

If the prediction is certain, i.e., the confidence score u > τ ,

then the prediction by ξcat becomes the final prediction. τ is

a threshold value. Otherwise, we invoke a voting block ξvot

in the second stage. ξvot utilizes the order classifier ξord us-

ing a feature memory bank M = {Mc|c = c1, c2, ..., cNc
}

where Mc is a set of feature vectors of class c. For each

feature vector fm ∈ Mc, we create the order feature vector

ford = fa ⊕ fm and fed it into the order classifier ξord,

producing the order relationship (�,≈,≺) between them.

We accumulate the order classification results for M and

determine the final prediction.

3.3.1 Confidence Score

We compute the confidence score u of the input image

by obtaining the posterior probabilities for the class labels

p̂ = {p̂i|i = 1, ..., Nc}, given by ξcat, identifying the high-

est probability p̂first and the second highest probability

p̂second, and calculating the difference between them, which

is designated as the confidence score u = p̂first − p̂second.

The larger the difference between the two probabilities is,

the more confident the decision is.

To determine whether we invoke the voting scheme ξvot

or not, we calculate the threshold value τ using the im-

ages in the validation set. From the validation set, we

collect the images that are mis-classified by ξcat, which

forms {xi|i = 1, ..., Nm} where Nm is the number of mis-

classified images in the validation set. For these images, we

compute the confidence scores {ui|i = 1, ..., Nm} as de-

scribed above and sort the images in decreasing order by the

confidence scores. Using each confidence score as a thresh-

old value τ∗, we obtain the images that are smaller than τ∗,

i.e., the images that the model is less confident. The num-

ber of such images is designated as Nw. Then, we select the

threshold value τ as the largest τ∗ that produces Nw

Nm
≤ 0.1.

3.3.2 Feature Memory Bank

The feature memory bank M = {Mc|c = c1, c2, ..., cNc
}

consists of a number of feature vectors per class label. To

construct M, we select Nr reference images per class label

from the training and validation sets that are representative

of each class. ξcat classifies each image in the training and

validation sets. If the result is correct and its highest prob-

ability is 0.9 or higher, then it is designated as a candidate

sample. Once we obtain all the candidate samples, we ran-

domly select Nr images per class label, extract their feature

vectors, and construct M. We set Nr to 10.

3.3.3 Voting

Given fa of an uncertain image, i.e., anchor image xa,

and M, ξvot uses ξord to conduct a pair-wise comparison

between xa and every reference image xref that is repre-

sented by the feature vector in M. The results of ξord, i.e.,

�,≈, and ≺ indicate that xa is ranked higher than, equal to,

and lower than xref , respectively. Suppose that the ground

truth class label of xref is c. We vote for the prediction

in three different manners: 1) if ξord produces �, we add

1/(Nc − c) for all labels higher than c, 2) if the result is ≺,

we add 1/(Nc − c) for all labels lower than c, and 3) if the

result is ≈, we add 1.0 to c. By normalizing the votes, we

construct the q = {qc|c = 1, ..., Nc} where qc represents

the probability that xa belongs to the c-th class label.

For xa, two posterior probabilities are available, includ-

ing p̂ by ξcat and q by ξcat. To make the final prediction,

we conduct a weighted sum of the two posterior probabili-
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ties and take the class label with the highest probability. The

weights (w1 and w2) are adaptively computed as follows:

w1 = 1− H(p̂)

H(q) +H(p̂)
, w2 = 1− H(q)

H(q) +H(p̂)
(9)

where H is an entropy. The less uncertain the probability

distribution is, the higher weight it gets. The final probabil-

ities qfinal are calculated as qfinal = p̂× w1 + q × w2.

3.4. Loss Function

The objective function for Order-ViT is given by

Ltotal = Lcat + λLord (10)

where Lcat and Lord denotes the loss function for category

classification and order classification, respectively, and λ
is a hyper-parameter to balance the effect of the two loss

functions (λ = 0.4). Both category classification and order

classification adopt cross-entropy loss.

4. Experiment

Table 1. Details of colorectal and gastric tissue datasets.

Tissue Type Class Training Validation TestI TestII

Colorectal Tissue BN 773 374 453 27,896

WD 1,866 264 192 8,394

MD 2,997 370 738 61,985

PD 1,391 234 205 11,896

Gastric Tissue BN 20,883 8,398 7,955 -

WD 14,251 2,239 1,795 -

MD 20,815 2,370 2,458 -

PD 27,689 2,374 3,579 -

4.1. Dataset

We employ two kinds of pathology image datasets, in-

cluding colorectal tissue dataset and gastric tissue dataset.

The details of the datasets are described in Table 1.

4.2. Colorectal Tissue Dataset

Two sets of colorectal tissue datasets were obtained from

[18]. The first data set was obtained from 6 colorectal tis-

sue microarrays (TMAs) (0.2465 μm × 0.2465 μm) and

3 WSIs (0.2518 μm × 0.2518 μm), at 40x magnification

using an Aperio digital slide scanner (Leica Biosystems).

This contains a training set, a validation set, and a test

set (CTestI ). The second dataset (CTestII ) was obtained

from 45 WSIs (0.2253 μm × 0.2253 μm) at 40× magnifica-

tion using a NanoZoomer digital slide scanner (Hamamatsu

Photonics K.K.). For both datasets, tissue image patches

(1024 × 1024 pixels) are annotated with benign (BN), well-

differentiated (WD), moderately- differentiated (MD), and

poorly-differentiated (PD).

4.3. Gastric Tissue Dataset

98 anonymized, gastric WSIs, digitized at 40× magnifi-

cation using an Aperio digital slide scanner (Leica Biosys-

tems) (0.2635 μm × 0.2635 μm), were obtained from a

local hospital. Upon pathologic review, 114,842 image

patches (1024 × 1024 pixels) were obtained and cate-

gorized into BN, tubular well-differentiated (TW) tumor,

tubular moderately-differentiated (TM), and tubular poorly-

differentiated (TP) tumor. These constitute a training set, a

validation set, and a test set (GTest).

4.4. Comparative Experiments

We compare Order-ViT with a number of CNN- and

Transformer-based models. Three types of CNN-based

models are employed: 1) three plain CNNs: ResNet50 [9],

DenseNet121 [12], and EfficientNetB0 [31], 2) a multi-

scale CNN: MSBP-Net [33] MSBP-Net, and 3) two multi-

task CNNs [18]: MMSE−CEo and MMAE−CEo . Three

Transformer-based models are utilized: 1) ViT [7], 2) Swin-

transformer [22], and 3) DeiT III [32].

4.5. Evaluation Metrics

Three evaluation metrics are adopted: 1) accuracy (Acc):

measures the ratio of correctly classified instances to the to-

tal number of instances, 2) macro F1-score (F1): a harmonic

mean of the average precision and average recall, and 3)

quadratic weighted kappa ((kw): quantifies the degree of

agreement between the prediction and ground truth labels.

4.6. Implementation Details

We implemented all models using the Pytorch platform

with two RTX 3090 GPUs. All the models adopted pre-

trained weights from ImageNet and were trained with 50

epochs using a batch size of 16, Adam optimizer (β1 :
0.9, β2 : 0.999, ε : 1.0e−8), and Cosine annealing warm

restarts scheduler (learning rate: 1.0e−4). All the tissue

images were resized to 384 x 384 pixels and 512 x 512

pixels Transformer-based and CNN-based models, respec-

tively. Several data augmentation techniques, including

Affine transformation, Gaussian blur, average blur, median

blur, Gaussian noise, dropout, linear contrast, horizontally

and vertically flipping, and random saturation, were applied

using Aleju library.

5. Result
5.1. Colorectal Cancer Classification

Table 2 shows the results of colorectal cancer clas-

sification (CTestI and CTestII ) by Order-ViT and other

competing models. On CTestI , Order-ViT achieved the

best Acc of 87.66% and kw of 0.942 and the second best

F1 of 0.834, outperforming all competitors except F1 by
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Table 2. Result of colorectal and gastric cancer classification.

Model
CTestI CTestII GTest

Acc(%) F1 kw Acc(%) F1 kw Acc(%) F1 kw
ResNet 86.65 0.825 0.935 68.24 0.684 0.818 84.04 0.775 0.926

DenseNet 85.77 0.820 0.930 70.03 0.671 0.843 83.44 0.772 0.928

EfficientNet 86.71 0.821 0.926 64.60 0.627 0.794 82.81 0.766 0.919

MSBP-Net 86.21 0.824 0.933 74.67 0.708 0.860 84.53 0.770 0.928

MMSE−CEo
87.28 0.838 0.940 75.95 0.710 0.846 84.34 0.771 0.925

MMAE−CEo
86.65 0.826 0.937 75.44 0.702 0.861 84.10 0.768 0.922

ViT 86.27 0.829 0.931 77.54 0.712 0.874 84.06 0.772 0.931
Swin 85.26 0.820 0.931 77.10 0.721 0.868 83.71 0.759 0.919

DeiT III 76.76 0.673 0.794 48.42 0.396 0.271 77.05 0.656 0.847

Order-ViT (Ours) 87.66 0.834 0.942 83.21 0.740 0.899 84.89 0.783 0.930

MMSE−CEo . Among the competitors, two multitask CNN

models (MMSE−CEo
and MMAE−CEo

) were superior

to others. Among Transformer-based models, ViT out-

performed two other Transformer-based models. DeiT III

was inferior to all models regardless of the evaluation met-

rics. On CTestII , Order-ViT outperformed all competi-

tors regardless of the evaluation metrics. Among other

competitors, two multitask CNN models (MMSE−CEo
and

MMAE−CEo
) and ViT were still the best performing mod-

els. We note that CTestII was obtained under different ac-

quisition settings from the training set. In a head-to-head

comparison between the two datasets, there was a consistent

performance drop for all models under consideration. How-

ever, Order-ViT showed the least performance drop in com-

parison to other models. For instance, 4.45% Acc, 0.094 F1,

and 0.043 kw were dropped by Order-ViT. 8.16 ∼ 28.34%

Acc, 0.099 ∼ 0.277 F1, and 0.057 ∼ 0.523 kw were dropped

by other models.

5.2. Gastric Cancer Classification

Table 2 describes the performance of Order-ViT and

other competitors on gastric cancer classification (GTest).

Order-ViT achieved the best Acc of 84.89% and F1 of 0.783

and second best kw of 0.930. Among other models, mixed

results were observed; MSBP-Net, ResNet, and ViT ob-

tained the best Acc of 84.04%, F1 of 0.775, and kw of 0.931,

respectively. DeiT III was still the worst model in all evalu-

ation metrics.

5.3. Ablation Study

We conducted a series of ablation experiments on Order-

ViT to investigate the effect and role of its computational

components and design choices.

Effect of computational blocks. First, we assessed the

effect of the computational blocks, including the order clas-

sifier ξord and/or the voting block ξvot, on Order-ViT. Ta-

ble 3 demonstrates the results of colorectal and gastric can-

cer classification without ξord and/or ξvot. Order-ViT with-

out ξvot experienced a consistent performance drop across

different datasets; 0.25% Acc, 0.005 F1, and 0.001 kw on

CTestI ; 0.44% Acc, 0.003 F1, and 0.002 kw on CTestII ;

0.31% Acc, 0.007 F1, and 0.001 kw on GTest. Eliminat-

ing both ξord and ξvot, the performance, in general, further

decreased except kw on GTest; 1.39% Acc, 0.005 F1, and

0.011 kw on CTestI , 5.67% Acc, 0.028 F1, and 0.025 kw
on CTestII , and 0.83% Acc and 0.011 F1 on GTest. More-

over, we assessed the effect of the weighted sum of the two

posterior probabilities from the categorical and order clas-

sifications (Σw). Replacing Σw by addition, there is a slight

performance drop regardless of the datasets and evaluation

metrics. These results demonstrate that the effectiveness of

the computational blocks in Order-ViT.

Effect of the number of reference images. Second, we

investigated the effect of the number of reference images

Nr in the voting block ξvot. We set Nr to 10, 30, 50, 70,

90, 100, and 200. As Nr changes, the classification perfor-

mance was more or less the same across different datasets.

This suggests that Order-ViT is not sensitive to the number

of references images for voting. By setting Nr to 10, we

can not only improve the accuracy and robustness of cancer

classification, but also reduce the computational complexity

during the inference.

5.4. Computational Complexity

Table 5 depicts the computational complexity of Order-

ViT and other competing models. Including Order-ViT,

Transformer-based models contain 2- to 18-fold more pa-

rameters than CNN-based models. Similar observations

were made for the number of floating-point operations

(FLOPs). The training time of the models varied regard-

less of the type of the models; however, CNN-based mod-

els, in general, demonstrated the shorter inference time than

Transformer-based models. Due to the hybrid architecture

of the feature extractor and voting mechanism, Order-ViT

showed the most FLOPs and the longest inference time

among the models under considerations.
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Table 3. Ablation study on Order-ViT for colorectal and gastric cancer classification.

ξcat ξord ξvot Σw CTestI CTestII GTest

Acc(%) F1 kw Acc(%) F1 kw Acc(%) F1 kw
� 86.27 0.829 0.931 77.54 0.712 0.874 84.06 0.772 0.931
� � 87.41 0.829 0.941 82.77 0.737 0.897 84.58 0.776 0.929

� � � 87.47 0.831 0.941 82.98 0.739 0.898 84.61 0.779 0.929

� � � � 87.66 0.834 0.942 83.21 0.740 0.899 84.89 0.783 0.930

Table 4. Effect of Nr on colorectal and gastric cancer classification.

Nr
CTestI CTestII GTest

Acc(%) F1 kw Acc(%) F1 kw Acc(%) F1 kw
10 87.66 0.834 0.942 83.21 0.740 0.899 84.89 0.783 0.930
30 87.47 0.831 0.940 83.20 0.740 0.899 84.87 0.782 0.929

50 87.47 0.831 0.940 83.20 0.740 0.899 84.85 0.782 0.929

70 87.59 0.832 0.941 83.20 0.740 0.899 84.88 0.782 0.929

90 87.59 0.832 0.941 83.20 0.740 0.899 84.85 0.782 0.929

100 87.53 0.832 0.941 83.19 0.739 0.899 84.88 0.782 0.929

200 87.53 0.832 0.941 83.19 0.739 0.899 84.88 0.782 0.929

Table 5. Computational complexity of Order-ViT and other com-

peting models.

Model FLOPs Params Training Inference

(M) (M) (ms/image) (ms/image)

ResNet 21587.17 24.69 18.13 3.09

DenseNet 15954.34 7.53 5.71 4.42

EfficientNet 152.22 4.81 3.31 3.12

MSBP-Net 44285.04 29.50 47.37 9.21

MMSE−CEo 141.14 4.84 27.44 4.28

MMAE−CEo 141.14 4.84 27.77 4.19

ViT 49505.12 86.37 27.01 7.84

Swin 44753.49 87.33 45.51 8.45

DeiT III 49608.92 86.17 25.84 6.27

Order-ViT 99046.44 87.29 27.95 9.76

5.5. Conclusions

In this work, we propose an efficient and effective cancer

classification method that can leverage the individual histo-

logical patterns of pathology images by categorical classi-

fication and the relationship among different pathology im-

ages by order learning. The experimental results demon-

strate that the proposed method can aid in improving the ac-

curacy and robustness of cancer classification in pathology

images. The future study will entail further development of

order learning approaches for pathology image analysis and

application of the proposed method to other types of organs

and diseases.
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