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Abstract

Coronary calcium scoring (CCS) can be quantified on
non-gated or gated computed tomography (CT) for screen-
ing cardiovascular disease (CVD). And non-gated CT is
used for routine coronary artery calcium (CAC) screening
due to its affordability. However, artifacts of non-gated CT
imaging, pose a significant challenge for automatic scoring.
To combat the scoring bias caused by artifacts, we develop
a novel semantic-prompt scoring siamese (SPSS) network
for automatic CCS of non-gated CT. In SPSS, we establish
a sharing network with regression supervised learning and
semantic supervised learning. We train the SPSS by mix-
ing non-gated CT without CAC mask and gated CT with
CAC mask. In regression supervised learning, the network
is trained to predict the CCS of non-gated CT. To combat
the influence of motion artifacts, we introduce semantic su-
pervised learning. We utilize gated CT to train the network
to learn more accurate CAC semantic features. By integrat-
ing regression supervised learning and semantic supervised
learning, the semantic information can prompt the regres-
sion supervised learning to accurately predict the CCS of
non-gated CT. By conducting extensive experiments on pub-
licly available dataset, we prove that the SPSS can alleviate
the potential scoring bias introduced by pixel-wise artifact
labels. Moreover, our experimental results show that the
SPSS establishes state-of-the-art performance.

*Co-corresponding author.
†Co-corresponding author. This work was supported in part by Gen-

eral Program of National Natural Science Foundation of China (Grant No.

82272086).

1. Introduction

Cardiovascular disease (CVD) remains the leading cause

of death worldwide, posing a significant health burden

[20, 31]. Early detection and treatment of individuals at

high risk for CVD is crucial for effective prevention and

management. Among various risk factors, coronary artery

calcium (CAC) has emerged as a strong and independent

predictor of cardiovascular events, including myocardial in-

farction [4, 18].

Quantification of CAC, i.e. coronary calcium scoring

(CCS), involves quantifying the amount of calcified plaque

in the coronary arteries using computed tomography (CT)

scans [7, 8]. The evaluation is typically performed on ded-

icated non-contrast-enhanced cardiac CT scans. Calcified

plaques are identified based on their density and size, and a

score is assigned using established scoring algorithms such

as the Agatston score [1]. The score takes into account the

area, density, and location of the calcified lesions, provid-

ing an indication of the overall burden of coronary artery

calcification. Higher CAC scores are associated with an in-

creased risk of cardiovascular events, including myocardial

infarction and stroke [12].

Clinically, gated CT can accurately capture static im-

ages of the heart during specific cardiac cycles, ensur-

ing high image quality and reduced motion artifacts [17].

It is considered the gold standard for CCS, as shown in

Figure 1 (a). However, gated CT often requires signif-

icant resources, which may not be operationally feasible

at small centers. These include capital intensive CT ma-

chines and specialized monitoring (e.g. electrocardiogram

gating and potential administration of beta-blockers). While
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Figure 1. Examples of CAC on gated CT and non-gated CT im-

ages. Arrows indicate CAC with motion artifacts. Colors red,

green, blue and yellow represent left main artery, left circumflex,

left anterior descending and right coronary artery respectively.

the CCS has been traditionally measured on specialized

electrocardiography-gated cardiac CT, it can also be mea-

sured on standard CT scan of the chest performed without

electrocardiography (e.g. non-gated CT) [8, 26, 11]. Com-

pare with gated CT, the non-gated CT without increasing

the patient’s radiation dose or economic burden [23, 22, 27].

Therefore, the quantification of CAC on non-gated chest CT

becomes the first choice for routine screening.

Several semi-automatic or automatic methods have been

introduced for CCS on non-gated CT, threshold-based

methods [1, 9] and to the better performing deep learning

approaches [15, 28, 25, 5, 3]. The threshold-based methods

involve manually identifying potential regions and applying

thresholding and connected component labeling to segment

calcified lesions on non-gated CT. However, using a thresh-

old alone may lead to inaccurate CAC estimation and pa-

tient risk categorization. Deep learning methods first label

the CAC regions on non-gated CT scans, then use convo-

lutional neural networks for feature extraction, and predict

the CAC region and CCS through a decoder or regression

model. These methods improve the accuracy and efficiency

of assessing CAC, contributing to early diagnosis and treat-

ment of coronary artery disease. However, these methods

rely on non-gated CT with CAC mask. Due to the lack of

electrocardiogram synchronization on non-gated CT scans,

it is difficult to accurately label the true CAC region without

motion artifacts, as shown in Figure 1 (b). Obviously, these

methods are difficult to combat the scoring bias caused by

artifacts, which will lead to poor scoring bias. Therefore,

how to reduce the scoring bias between non-gated CT and

the gold standard (gated CT) has become an urgent problem

that needs to be addressed.

In clinical practice, gated CT is often regarded as the

gold standard due to its high-quality imaging without mo-

tion artifacts. Leveraging the semantic calcium informa-

tion from gated CT to prompt deep learning models to learn

more accurate calcification features on non-gated CT be-

comes a potential feasible method. In this work, we devel-

oped a new semantic-prompt scoring siamese (SPSS) net-

work for CCS of non-gated CT. In SPSS, we build a shared

network with regression supervised learning and semantic

supervised learning. To train the SPSS network, we uti-

lize a combination of non-gated CT without CAC masks

and gated CT with CAC masks. The SPSS is trained us-

ing regression supervised learning to predict the CCS of

the non-gated CT. To combat the influence of motion ar-

tifacts, gated CT scans are used to train the network to learn

more accurate semantic features related to CAC, left main

artery (LM), left circumflex (LCX), left anterior descend-

ing (LAD) and right coronary artery (RCA). The integration

of regression supervised learning and semantic supervised

learning allows the network to accurately predict the CCS

of the non-gated CT by the prompt of semantic information,

thus freeing from the plague of pixel-wise artifact labels.

We conduct experiments on a public Coronary Calcium

and chest CT dataset to demonstrate the effectiveness of our

proposed approach in different situations. Our contributions

can be summarised as follow:

• We develop a novel semantic-prompt scoring siamese

(SPSS) network for CCS of non-gated CT. We cleverly

utilize the semantic calcium information from gated

CT to combat scoring bias on non-gated CT.

• This is the first time that semantic supervised learn-

ing and regression supervised learning have been com-

bined on non-gated CT without CAC mask.

• By conducting extensive experiments on publicly

available dataset, we demonstrate the superiority of

our SPSS compared to its counterparts and establish

a state-of-the-art performance.

2. Related Work

Threshold-based methods. CAC is commonly defined

as two or more connected voxels above 130 Hounsfield

Units (HU) on gated CT [1, 19]. Threshold-based methods

are semi-automatic image segmentation methods. These

methods include identifying candidate regions, followed by
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Figure 2. The architecture of our SPSS with semantic supervised learning and regression supervised learning. The black arrows indicate

the data flow of 3D gated CT, and the red arrows indicate the data flow of 3D non-gated CT.

thresholding and connected component labeling. Subse-

quently, when lesions are identified, region growing is used

to fully segment the calcified lesions. Finally, after all CAC

lesions have been segmented, CAC is quantified using the

Agatston score. For example, Wang et al. [29] transferred

the collected scans from the CT equipment to a worksta-

tion (AW 15.0, General Electric, Boston, MA, USA) to de-

termine the CCS using the dedicated postprocessing soft-

ware “Smartscore”. Thijmen et al. [9] utilized a region-

growing algorithm for CAC segmentation by starting from

seed points and iteratively merging neighboring pixels with

pixel values greater than or equal to 130 HU. Their study

demonstrated the effectiveness of the region-growing algo-

rithm in accurately delineating CAC regions.

However, a threshold of 130 HU is not necessarily suit-

able for non-gated CT due to differences in equipment and

imaging parameters. The use of a threshold lack robustness

against noise and artifacts and may lead to under- or over-

estimation of the amount of CAC on non-gated CT, leading

to incorrect cardiovascular categorization of patients.

Semantic supervised learning. Most recently proposed

methods employ semantic supervised learning for auto-

matic CCS on non-gated CT [24, 15, 28, 25, 6, 5, 3]. Gi-

anmarcoIn et al. [24] trained a convolutional neural net-

work (CNN) model using annotated CAC mask as ground

truth and achieved promising results in accurately delineat-

ing CAC boundaries. In similar, Wang et al. [15] proposed a

cascaded CNN architecture for CAC segmentation on non-

gated CT, where the first stage learned semantic features

from CT images to classify CAC presence and the second

stage refined the segmentation boundaries. Their approach

demonstrated improved accuracy and robustness compared

to traditional segmentation methods. To more accurately

identify per-artery, Bernhard et al. [6] exploited dual de-

coders to identify CAC and per-artery separately. Further,

Eng et al. [5] utilized 2D SE-ResNeXt with an encoder and

a decoder to segment CAC in per-artery and then quantified

the predicted CAC lesions.

These approaches follow a workflow similar to current

clinical calcium scoring: CAC is first identified and then

quantified. Therefore, this is currently the most widely

used method. However, semantic supervised methods rely

on non-gated CT with CAC mask, accurately labeling the

true CAC region without motion artifacts is challenging in

the absence of electrocardiogram synchronization. Conse-

quently, these methods may struggle to address scoring bias

caused by motion artifacts, resulting in suboptimal quantifi-

cation accuracy.

Regression supervised learning. Regression super-

vised learning refers to directly predicting the calcification

score rather than the CAC regions on non-gated CT, and

performing regression supervised learning according to the

real CCS from gated CT. Direct quantification has proven

to be useful for atrial and ventricle volume quantification

[10, 32, 30]. Furthermore, attempts are being made to use

it for CCS [2, 3]. Carlos et al. [2] used a 3D regression

ConvNet for direct CCS in downsampled CT volumes also

cropped around the heart. Bob et al. [3] exploited two Con-

vNet to align the fields of view and regress the CCS directly.

Although ConvNet cannot provide accurate CAC re-

gions, it avoids the time-consuming CAC segmentation pro-

cess and achieves similar performance compared to state-

of-the-art methods. Furthermore, ConvNet does not require

manual annotation of CAC regions on non-gated CT, mak-

ing it suitable for addressing the interference of motion ar-

tifacts commonly present on non-gated CT.
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3. Method

3.1. Problem Formulation

Given a non-gated CT training cohort Xng =
{(xngi

, yi)}ni=1 and a gated CT training cohort Xg =
{(xgi ,mi,Mi, yi)}ni=1, we adopt a double (xng, y) and a

quadruple (xg,m,M, y) to stand for CAC data, including

non-gated CT image xng , gated CT image xg , binary CAC

mask m, per-artery calcium mask M and coronary calcium

scoring y.

Based on the gated CT training cohort with supervised

information of the mask and coronary calcium score, and

the non-gated CT training cohort without supervised infor-

mation of the mask, we utilize regression supervised learn-

ing and semantic supervised learning to train SPSS network

fθ(x) parameterized by weights θ. The output of SPSS net-

work includes a binary CAC map m̃ and a per-artery cal-

cium map M̃ , with the same size as the input. For fθ(xng)
and fθ(xg), the parameters θ are shared in xng and xg , as

shown in Figure 2.

3.2. Pre-processing

In the pre-processing stage, we use a publicly available

dataset [13] with heart annotations to train a heart localiza-

tion network. This step was necessary as CT scans could

differ, for example, in size, resolution, area captured, or

field of view (FOV), depending on the cohort, scanner used,

and site acquiring the scan. The model used for training

was a standard 3D UNet [21] with four downsampling steps

running for 200 epochs. After obtaining the heart position

predicted by the model, we extended the predicted heart

bounding box by 16 mm in the axial plane to ensure that

the entire heart region is included. Next, according to the

heart bounding box, all CT images are cropped to obtain a

small FOV image.

3.3. Siamese Network

In SPSS, we build a shared network with semantic su-

pervised learning and regression supervised learning for 3D

gated and non-gated CT. As shown in Figure 2, we first ap-

ply an encoder-decoder structure as the backbone. Then, a

small atrous convolutional block was used to capture CAC

features that tend to be more local and detailed. and output

the background and CAC feature map m̃ = [m̃b, m̃c]. Fur-

ther, we use a larger atrous convolution block to capture the

global features of CAC to distinguish per-artery, and output

per-arterial feature map M̃ = [M̃1, M̃2, M̃3, M̃4]. Next, we

use two softmax functions and the Agaston algorithm [1] to

generate per-arterial CCS ỹ = [ỹ1, ỹ2, ỹ3, ỹ4]. After gen-

erating predicted ỹ, we further utilize semantic supervised

learning and regression supervised learning to train the net-

work. The k-th arterial ỹk is defined as follows:

ỹk = Sum(σ(m̃)c · σ(M̃)k ·W ) · s, (1)

where s is the pixel spacing within and between slices, sym-

bol σ denotes the softmax function. The weighted intensity

W is based on the maximum radio-density in HU of a 3D

lesion in the following manner: 1 = [130, 200), 2 = [200,

300), 3 = [300, 400), and 4 = [400,+∞).

3.4. Semantic Supervised Learning

Semantic supervised learning mainly includes a pixel-

level binary classification task (CAC and background) and

per-artery classification task (LM, LCX, LAD and RCA).

To reduce the effects of background pixels on the loss func-

tion, Dice loss LDice and local-sampled loss Lls are em-

ployed to train binary classification task. The Lls is defined

as follows:

Lls = − 1

N

N∑
i=1

[mi · log(m̃i)+ �i · (1−mi) · log(1− m̃i)],

(2)

where N denotes the pixel number, m and m̃ are the binary

ground truth and predicted CAC, respectively. �i denotes

the sampling indicator function. We define that pixel i is

sampled if �i = 1, otherwise �i = 0. For the per-artery

classification task, we only consider the loss of the CAC

area. The loss function is defined as follows:

Lf = − 1

Nm>0

Nm>0∑
i:m>0

K∑
k=1

Mik · log(M̃ik), (3)

where M and M̃ are the per-artery calcium ground truth

and predicted per-artery calcium map, and K is the number

of coronary arteries. The total loss of semantic supervised

learning is defined as follows:

Lssl =

{ LDice + αLls + βLf , xg

0, xng
, (4)

where α and β denote the weights of Lls and Lf , respec-

tively. The default values of α and β both are 0.1. It is

worth noting that when the training image is non-gated CT,

Lssl = 0.

3.5. Regression Supervised Learning

Using regression learning to predict CCS does not re-

quire labeling of CAC regions on non-gated CT. The loss

function for regression supervised learning is defined as fol-

lows:

Lrsl =
1

K

K∑
k=1

|yk − ỹk|, (5)

where y is the reference CCS. In addition, due to the lack

of CAC reference mask on non-gated CT, it is difficult for
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Figure 3. Convergence curves of SPSS for different loss functions on the COCA dataset. The Lce denotes the cross-entropy loss.

Table 1. Mean error (ME) and standard deviation (SD)for per-arterial CCS on COCA test set.

Image types Methods Per-arterial ME ± SD
LM LCX LAD RCA Total

Gated CT

ConvNet -12.81 ± 23.10 -18.10 ± 32.71 -13.30 ± 28.27 -15.15 ± 24.12 -19.36 ± 29.45

SE-ResNeXt -3.10 ± / -1.99 ± / -4.57 ± / -2.37 ± / -2.86 ± /

SPSS w/o SSL 8.16 ± 20.19 1.09 ± 13.28 -14.38 ± 27.87 1.00 ± 12.12 -4.13 ± 15.28

SPSS -2.62 ± 9.21 0.54 ± 4.62 -0.11 ± 5.18 4.49 ± 10.34 2.31 ± 8.90

Non-gated CT

ConvNet -6.28 ±23.47 14.77 ± 76.79 4.39 ± 43.05 9.90 ± 52.55 23.50 ± 68.42

SE-ResNeXt / / / / /

SPSS w/o SSL 6.67 ± 45.38 1.48 ± 27.12 -25.39 ± 64.89 -10.03 ± 54.35 -26.54 ± 62.64

SPSS -0.25 ± 20.44 -2.02 ± 21.10 -12.30 ± 68.01 -1.99 ± 33.40 -15.83 ± 44.57

regression supervised learning to learn the semantic infor-

mation of CAC. Therefore, we leverage semantic learning

of gated CT to prompt regression learning. The total loss is

defined as follows:

L = Lssl + λLrsl, (6)

where λ denotes the weights of Lrsl. To ensure the stability

of the segmentation network, the default value of λ is 0.001.

4. Experiments
4.1. Implementation Details

Dataset. The public Coronary Calcium and chest CT’s

(COCA) dataset [5] from Stanford Hospital is employed in

this study, which contains 447 gated CT exams in 447 pa-

tients and 212 non-gated CT exams in 212 patients. Patients

who underwent non-gated CT also underwent paired gated

CT exams as a reference standard for CCS. We split the

patients in the COCA dataset as a training set with 507 pa-

tients (149 non-gated CT and 358 gated CT), and a test set

with 152 patients (63 non-gated CT and 89 gated CT).

Methods. We experiment with four comparable methods

to demonstrate the gains of our SPSS, including semantic

supervised method SE-ResNeXt (Eng et al. [5]), regression

supervised method ConvNet (Bob et al. [3]), SPSS with-

out semantic supervised learning (SPSS w/o SSL) and our

SPSS. The result of ConvNet is trained from scratch, and

the result of SE-ResNeXt is obtained from the original pa-

per (Eng et al. trained SE-ResNeXt by manually annotating

the CAC mask on non-gated CT, but these CAC masks are

not publicly available).

Evaluation metrics. Automatically predicted CCS were

compared with reference CCS. Evaluations were performed

on the hold-out test sets which were not used during method

development. Mean error (ME) was computed to evaluate

the bias between predicted and reference CCS. In addition,

the agreement between predicted and reference CVD ranks

was determined using Cohen’s Kappa statistic (Kappa) [14].

Optimizer. Our SPSS model is trained from scratch us-

ing the SGD optimizer. Specifically, the learning rate is de-

cay scheduled by cosine annealing [16] setting 2e-3 as an

initial value and 1e-3 from 5th epochs. We set the batch
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Figure 4. Histogram of CVD rank classification agreement for the four methods on gated CT and non-gated CT.

Figure 5. Examples of CAC segmentation and CCS prediction. Columns 1 to 4 are different patients, the first row is the reference image and

CCS, the second row is the result of SPSS w/o SSL, and the third row is the result of our SPSS. LM, LCX, LAD and RCA are represented

in red, green, blue and yellow, respectively.

size as a multiple of 2 for all tasks, i.e., 4 (2 GPUs with

2 input images per GPU). The parameters of networks are

optimized in 200 epochs with a weight decay of 3e-5 and a

momentum of 0.8.

4.2. Results and Analysis

Semantic learning efficiency analysis. Since the pro-

portion of CAC in the image is very small, we must ana-

lyze the training efficiency of semantic supervised learning.

We replace Lls with standard cross entropy Lce in Lssl to

observe the impact of the number of negative samples on

training efficiency. As shown in Figure 3, the loss and mean

absolute scoring bias of Lssl w/Lce stagnate between the

5th and 25th epoch. This is caused by a large number of

negative samples participating in gradient feedback and the

contribution of positive samples being weakened. On the

contrary, Lssl w/Lls can reduce the loss faster and reach

the minimum by locally sampling the negative samples in
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Figure 6. Bland-Altman plots showing agreement between predicted and reference per subject CCS in the non-gated CT test set. The limits

of agreement are ±1.96 SD, the positive bias in ConvNet is mainly caused by overestimations of the higher CCS.

Figure 7. Confusion matrix of the three models on the non-gated CT test set. Ground truth scores are on the y-axis and model predictions

are on the x-axis of each matrix.

the feature map. Therefore, Lssl w/Lls can optimize the

mean absolute scoring bias to close to 50. These phenom-

ena prove that Lls can accelerate the convergence ability of

the model and reduce scoring bias.

Scoring bias and consistency analysis. According to

the CAC regions predicted by SPSS, we further calculate

the CCS of per-artery by Agatston score [1]. The ME for

per-arterial CCS are listed in Table 1 and Kappa for patient

CVD ranks are listed in Figure 4.

Compared with SPSS w/o SSL, our SPSS achieves com-

petitive ME and superior Kappa on both gated CT and non-

gated CT. Regarding ME, our SPSS constructs the best ME

(bold font) for LM, LCX, LAD and total calcium of gated

CT. Biases were -2.62, 0.54, -0.11 and 2.31 for LM, LCX,

LAD and total calcium, respectively. Qualitatively, CVD

ranks (I–V, for CCS of 0, 1–10, 11–100, 101–400, >400,

respectively) were evaluated using Cohen’s Kappa statistic,

our SPSS achieves the best agreement in gated CT (Kappa

= 92.4%). It can be seen that the introduction of gated CT

for training can enrich the information on CAC and improve

the ability of the model to identify the CAC. For non-gated

CT, our SPSS constructs the best ME for LM, LAD, RCA

and total calcium compared to SPSS w/o SSL. Biases were

-0.25, -12.30,-1.99 and -15.83 for LM, LAD, RCA and total

CAC, respectively. In the CVD ranks, our SPSS achieved

the best Kappa of 85.2%. Additionally, we observed that the

standard deviation of non-gated CT was generally higher

compared to that of gated CT. The reason is that CAC re-

gions are more difficult to identify on non-gated CT, which

is due to the lower image quality and motion artifact inter-

ference of non-gated CT.

It is necessary to discuss such results from two aspects,

including artifact countermeasures and CAC segmentation

of per-arterial. As shown in Figure 5, since the non-gated

CT dataset does not provide the real CAC mask, we only

need to make a quantitative comparison with the reference

CCS. For SPSS w/o SSL, since semantic supervised learn-

ing of gated CT does not participate in training, it is diffi-

cult for the model to identify CAC. Especially when there

are many calcification artifacts in the image, SPSS w/o SSL

tends to segment aortic calcification or miss-segment CAC,

which will lead to significant errors in scoring bias. On

the contrary, by introducing semantic supervised learning of

gated CT to participate in training, SPSS can better identify

the CAC of non-gated CT, thereby reducing the scoring bias

caused by artifacts. Therefore, the total CCS of SPSS can

be closer to the reference CCS. Further, Figure 6 shows that

our SPSS has a better 95% confidence interval ([-122.34,

90.67]). Benefiting from the smaller scoring bias, our SPSS

can more accurately classify CVD ranks II, III, and IV of
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non-gated CT, as shown in Figure 7. Furthermore, Table 1

and Figure 5 demonstrate that our SPSS can provide more

accurate CCS for per-artery. While this is not required for

CVD ranks, it may be interesting for clinical research. At

last, we can conclude that semantic supervised learning of

gated CT can prompt regression supervised learning to learn

CAC semantic information of non-gated CT, thereby reduc-

ing potential scoring bias.

Comparison with other methods. Table 1 shows

a comparison with other state-of-the-art calcium scoring

methods by ConvNet and SE-ResNeXt using the same

datasets. The proposed method achieves state-of-the-art

performance compared to these methods. ConvNet directly

performs regression learning on the per-arterial CCS, which

can determine the CCS faster. Nevertheless, performance

was slightly poor when total calcium was determined. As

shown in Figure 4 and Figure 6, ConvNet tends to overes-

timate CCS, making CVD rank I and II wrongly divided

into III and IV. This difference in performance may be a

consequence of the increased complexity of the per-artery

scoring task. In addition, compared to SE-ResNeXt, since

semantic supervised learning of gated CT does not partic-

ipate in training, the Kappa of SPSS w/o SSL is low. In-

stead, by introducing semantic supervised learning of gated

CT for training, the Kappa of our SPSS on non-gated CT is

1.6% more than SE-ResNeXt. This illustrates the semantic

supervised learning of gated CT and the regression super-

vised learning of non-gated CT can better identify CAC and

combat the plague of pixel-level artifact labels.

5. Conclusions

We have developed a novel Semantic-Prompt Scoring

Siamese (SPSS) network for the coronary calcium scoring

(CCS) of non-gated CT scans. In SPSS, we construct a

shared network using regression supervised learning and se-

mantic supervised learning. To train the SPSS network, we

combine non-gated CT scans without calcium masks and

gated CT scans with calcium masks. The SPSS network is

trained using regression supervised learning to predict the

CCS of the non-gated CT scans. To mitigate the impact

of motion artifacts, gated CT scans are utilized to train the

network to learn more accurate semantic features related to

per-artery. The integration of regression supervised learning

and semantic supervised learning enables the network to ac-

curately predict the CCS of the non-gated CT scans based

on the semantic information, thereby eliminating the need

for pixel-wise artifact labels. By evaluating a public dataset,

our SPSS establishes a state-of-the-art performance.
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