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Abstract

For many challenging medical imaging tasks involving
sequences, video-level labels alone are insufficient to train
accurate disease classification models and do not carry in-
formation about the locations of relevant features. Alter-
natively, localization-based models such as detectors offer
much stronger interpretability by indicating areas of sus-
picion, but require comprehensive frame-by-frame annota-
tions by experts. We propose a method to address the trade-
off between annotation burden and interpretability by per-
forming simultaneous detection and classification on medi-
cal video sequences while requiring very limited frame-level
supervision. Specifically, our approach aggregates individ-
ual predictions from a detection model into “tracklets” rep-
resenting temporally consistent regions of pathology along
the sequence. The tracklets are classified in a second stage
to arrive at an overall video-level prediction. Both the de-
tector and tracklet classifier are trained in a weakly semi-
supervised manner using a large amount of video-annotated
data alongside a limited set of frame annotations. We apply
the approach to several challenging medical imaging tasks,
namely localizing and predicting the presence or absence
of lung consolidation and pleural effusion in ultrasound
videos. We show that, with only a very small amount of ad-
ditional frame-annotated data, the method provides strong
model interpretability through localization and achieves
state-of-the-art detection and classification, outperforming
both direct video classifiers and comparable frame-based
detectors trained without the added temporal context.

1. Introduction

Lung ultrasound (LUS) is a medical imaging technique

deployed at the point-of-care to aid in evaluation of pul-

monary and infectious diseases. A critical observation of

LUS is the presence of consolidations (fluid-filled alveoli),

which are a known indicator of lung infection and pneumo-
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Figure 1. Illustration of frame-level and video-level annotated ul-

trasound video data and the trade-offs among model training strat-

egy, data labelling efforts, and interpretability

nia, including COVID-19. Similarly, presence of pleural ef-

fusions are associated with pneumonia as well as complica-

tions from heart or liver disease. Today, LUS interpretation

requires expert manual review of videos (typically compris-

ing 60 to 200 image frames) to identify pathological fea-

tures that may be very small (<1 cm in the case of consoli-

dations, <0.5 cm in the case of pleural effusions) and diffi-

cult to visualize. Expert interpretation requires considering

the location, size, and appearance of pathological areas in

each frame, and then aggregating the information across the

sequence to derive an overall, actionable assessment.

Deep learning methods have shown promise in providing

automated, video-based analysis of the presence or absence

of pathology [4, 10, 25, 28, 30, 38, 24]. For example, prior

studies have shown that CNN-LSTM networks can extract

spatial features and learn temporal dependence in LUS se-

quences for video-level classification [9, 1, 24]. A limita-

tion of direct video classifiers, however, is that they do not

indicate the locations of the pathology, which greatly lim-

its clinical interpretability. Visualization of activation maps

[35, 5] may likewise be limited, especially when features

are small or ambiguous. Finally, given the large dimension-
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ality of 2D+time ultrasound video data, direct classification

using video-level supervision alone [10] may be susceptible

to overfitting.

Rather than relying on direct video classification, a more

interpretable alternative is to aggregate individual frame-

level outputs (e.g., detections) to derive the overall video-

level prediction. Frame aggregation can be based on sim-

ple human-designed rules, such as max or mean pooling

across frames [32], or learned from data using models with

temporal design [34, 22, 14]. However, detector training

requires more comprehensive, frame-by-frame annotation

of videos, as shown in Fig. 1; such frame-level annota-

tions are extremely time-consuming and expensive to gen-

erate. Multiple works have been attempted to reduce the

number of frame-level annotations for detector training by

exploiting semi-supervised and weakly supervised methods

[19, 31, 16, 11, 36, 21, 7, 33, 27, 37]. In particular, Roy et
al. [23], trained a classifier to predict COVID-19 severity at

the frame level and provide coarse localizations; the frame

predictions were aggregated using uninorms [20], a learn-

able aggregation unit, for final video-level classification.

Lin et al. [18] proposed a method for lesion detection in

ultrasound videos by aggregating video-level lesion classi-

fication features and clip-level temporal features; however,

the classification is performed per-lesion rather than on the

video level.

In general, a major design trade-off is between the in-

terpretability of an ML model and the granularity of the

supervision used to train the model. For LUS, better in-

terpretability means more precise localization of pathology,

which in turn requires more fine-grained supervision (e.g.,

frame-level bounding box labels) and a higher annotation

burden. Ultimately, it is desirable to use minimal annotation

efforts while achieving sufficient model interpretability.

In this work, we tackle the trade-off of annotation burden

and model interpretability by proposing a method to per-

form simultaneous frame detection and video classification

while requiring a very limited amount of frame-annotated

data. Specifically, our approach aggregates individual pre-

dictions from a trained frame detector into “tracklets” (rep-

resenting temporally consistent regions of pathology along

the video sequence), which are then classified in a second

step to ultimately arrive at the overall video-level predic-

tion. Critically, both the frame detector and tracklet classi-

fier are trained in a weakly semi-supervised manner using

a large amount of “weak” video-annotated data alongside a

very limited amount of frame-annotated data.

Our experimental findings demonstrate that: (1) with

only a small amount of additional frame-annotated data, we

achieve state-of-the-art (SOTA) detection and classification

of lung consolidation and pleural effusion; (2) on the de-

tection task, our approach outperforms comparable frame-

based detectors trained without the added temporal context;

and (3) on the video classification task, our method outper-

forms direct video classifiers as well as the SOTA detector-

based methods[23], while still providing the interpretability

of detector-based methods. Finally, we note that the pro-

posed framework is modular and interchangeable; alterna-

tive detection, tracking, and classification methods may be

introduced to meet specific data and task requirements.

2. Methods
2.1. Overall framework

The overall framework (Fig. 2) comprises four main steps:

1. Frame detection (weakly semi-supervised): First, we

train any standard object detector (YOLOv5 in this

study) to generate predicted bounding boxes for each

frame (section 2.2). We apply a weakly semi-

supervised teacher-student mutual learning approach

[21] to train the detector on combined video-annotated

and very limited frame-annotated data.

2. Aggregating predictions along tracklets: Next, using

the method of [2], we aggregate predicted boxes into

tracklets representing temporally connected bounding

boxes. The tracklets are used to crop the original video

to generate tracklet clips (tracklet-cropped candidate

regions) (section 2.3).

3. Tracklet classification (weakly semi-supervised):
Third, we introduce a dedicated second-stage network

(a lightweight CNN+LSTM, denoted as trackletNet)
for binary classification of tracklet clips (section 2.4).

Notably, the trackletNet is trained on an enriched

dataset containing challenging examples drawn from

incorrect predictions made by the detector. Similarly

to the frame detector, the trackletNet is trained on

combined frame- and video-annotated data in a

weakly semi-supervised manner.

4. Video classification: The final video-level classifica-

tion is simply determined by the maximum predicted

confidence among tracklets; this is consistent with how

medical ultrasound videos are clinically interpreted.

2.2. Weakly semi-supervised frame detection

Given an input ultrasound video X ∈ R
H×W×T with

a frame size of (H,W ) and T frames, we train an initial

2D object detector in a weakly semi-supervised (WSS)

manner via a teacher-student training procedure designed

for temporal image sequences [21]. Specifically, a teacher

model was first trained with a small number of frame-

annotated videos Df = (xf
i , y

f
i )

Nf

i=1 comprising Nf frames

xf
i and corresponding frame labels yfi . For consolidation

detection, we used frame annotations from 99 LUS videos;
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Figure 2. Overall architecture of the proposed framework. To efficiently extract the spatial and temporal features about the underlying

pathology, we first use a 2D detector to predict the spatial features on each frame of a video and then connect the predicted spatial features

(as given by a bounding box) temporally via a tracking algorithm. After that, we use the temporally refined bounding boxes (tracklets) to

crop the original video to generate 3D candidate region(s) within each video. We train a dedicated second-stage network (a lightweight

CNN+LSTM model, denoted as trackletNet) to classify these 3D candidate regions, minimizing the disruption from the complex and

variable background which occupies a large fraction of the input volume. To train the trackletNet with fixed number of input frames,

we uniformly subsampled n slices from one tracklet-cropped region between random start and end slices. During inference, we use the

maximum prediction of all candidate region(s) from a video as the final prediction for video classification.

for pleural effusion detection, we used 80 frame-annotated

videos. A student model was then initialized with the same

network structure and weights as the teacher.

The teacher and student are jointly optimized by

introducing a much larger weakly annotated dataset

Dw = (xw
j,1:Tj

, zwj )
Nw

j=1
comprising Nw videos xw

j,1:Tj

and their corresponding video labels zwj . Tj is the

number of frames for a given video j. During the

teacher-student mutual learning process, frame-level

“pseudolabels” {ŷwj,1:Tj
}Nw
j=1, with predicted confidences

given by cwj,1:Tj
}Nw
j=1, are generated by the teacher and

used to train the student via backpropagation. Meanwhile,

the student’s weights are used to update the teacher via

exponential moving averaging [13]. Weak supervision is

provided at the video level, thus ensuring that the quality of

pseudolabels does not degrade during mutual learning. In

our experiments, 6677 weakly labeled videos were used for

consolidation, and 9836 weakly labeled videos were used

for pleural effusion.

The overall detector training loss is a combination of

the (fully supervised) frame-labeled loss λflabel
; (semi-

supervised) frame-level pseudolabel loss λfpseudo
; and

(weakly-supervised) video-level loss λvlabel
Lvlabel

:

Loss = λflabel
Lflabel

+ λfpseudo
Lfpseudo

+ λvlabel
Lvlabel

= λflabel

Nf∑
i=1

Ldetection

(
xf
i ,y

f
i

)

+λfpseudo

Nw∑
j=1

Tj∑
t=1

Ldetection(x
w
j,t, ŷ

w
j,t)

+λvlabel

Nw∑
i=1

LBCE

(
zwj ,

∑Tj

t=1 max
(
cwj,t

)
Tj

)
,

(1)

where λ indicates the weights for the three loss terms

and Ldetection represents any detector loss (such as IoU).

max
(
cwj,t

)
is the maximum confidence from all the pre-

dicted bounding boxes on video j and frame t.

2.3. Aggregating predictions along tracklets

To arrive at representations of temporally consistent re-

gions of pathology along the video sequence, we generated

“tracklets” from each video in Df and Dw by applying ob-

ject tracking directly on bounding box predictions from the

trained teacher model. In our experiment, we used a simple
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and efficient SORT tracker [2] as the tracking algorithm, al-

though other techniques may be used [3, 26, 29, 39]. We

kept all the tracklets generated from videos in Df , since re-

liable tracklet-level labels can be derived from the existing

frame labels. On the other hand, true labels for tracklets

generated from Dw are not known (since they could have

come from true or false positive detections). Thus, from

Dw, only tracklets with sufficient prediction confidences

were used subsequently to train the tracklet classifier. The

details about prediction confidence filtering is described be-

low.

2.3.1 Filtering tracklets via prediction confidence

Since many standard object detectors (including

YOLOv5) produce a large number of low confidence

boxes, it is critical to exclude tracklets created from

unreliable detections. Given that frame labels were not

available for videos in Dw, and thus the true labels for these

tracklets are not known, we relied on detection confidences

to select tracklets for inclusion in training. Specifically, we

introduce two parameters for tracklet selection: τpos defines

the minimum confidence for inclusion of tracklets obtained

from positively-labeled videos; τneg defines the minimum

confidence for inclusion of tracklets from negative-labeled

videos. The tracklet-level confidence is assigned equal

to max
(
cwj,t

)
, that is, the maximum confidence of all

bounding boxes that form the tracklet.

For positive videos, a low τpos creates many false posi-

tive tracklets containing no pathology while a high τpos can-

not provide sufficient candidate regions for classification on

positive videos. On the other hand, for negative videos, we

can simply use a low value for τneg, since predicted track-

lets from a negative video are certainly false positives. τpos

was empirically chosen from Df by comparing the filtered

tracklets with frame-level annotations
{
yf
i

}Nf

i=1
. For our

experiment, we selected τpos = 0.6 and τneg = 0.01 (see Ta-

ble 6 for ablation results demonstrating the effect of τpos on

tracklet data distributions) to allow a balanced distribution

of true positive, false positive, and false negative tracklets

to be sampled for training the trackletNet classifier.

2.3.2 Tracklet cropping and rescaling

Detection bounding boxes within each tracklet are repre-

sented as
{
ŷf

i,1:T̂i

}Nf

i=1
and

{
ŷw
j,1:Tj

}Nw

j=1
, where T̂i and T̂j

are the number of frames of a tracklet generated from Df

and Dw, respectively. ŷ includes the coordinates of bound-

ing boxes represented as box center coordinates ŷx, ŷy , box

width ŷw, and height ŷh.

Figure 3. From left to right, the images show an easy positive case

(I), a borderline positive case (II), and a negative case (III). The

green and white boxes represent the to-be-cropped regions from

the predicted and ground truth bounding box, respectively. The

orange and white crosshair marks the center of the predicted and

ground truth bounding box, respectively.

To allow sufficient spatial context around each track-

let, detection boxes are squared to
{
ŷ′
i,1:T̂i

f
}Nf

i=1
and{

ŷ′
j,1:T̂j

w
}Nw

j=1
, that is,

ŷ′
w = ŷ′

h = max (ŷw, ŷh) + ε (2)

where ε is a margin added around each detection box

within the tracklet. Tracklet images were then resized to

xresize × xresize, resulting in rescaled tracklets of dimen-

sion xresize × xresize × T̂i.

2.3.3 Tracklet label assignment

The class labels for each frame of a rescaled tracklet

were determined according to whether the tracklet origi-

nated from Df or Dw:

Tracklets from Df : Given a frame-level bounding box

label yw
i,t = (yw

x,i,t,y
w
y,i,t,y

w
w,i,t,y

w
h,i,t) and predicted box

ŷw
j,t = (ŷw

x,j,t, ŷ
w
y,j,t, ŷ

w
w,j,t, ŷ

w
h,j,t), we assign a positive

class label to the predicted box if the center of the predicted

and ground-truth boxes (shown in Fig. 3) reside within each

other’s extents, that is,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ŷw
xi,t

− ŷw
wi,t

2 ≤ yw
xi,t

≤ ŷw
xi,t

+
ŷw

wi,t

2 ,

ŷw
yi,t

− ŷw
hi,t

2 ≤ yw
yi,t

≤ ŷw
yi,t

+
ŷw

hi,t

2 ,

yw
xi,t

− yw
wi,t

2 ≤ ŷw
xi,t

≤ yw
xi,t

+
yw
wi,t

2 ,

yw
yi,t

− yw
hi,t

2 ≤ ŷw
yi,t

≤ yw
yi,t

+
yw
hi,t

2

(3)

Tracklets from Dw: As there are no ground truth bound-

ing box labels available, we simply assign all predicted

boxes with detection confidences above τpos (if originating

from positive videos) and τneg (if originating from negative

videos) to the video-level class label.

Finally, the overall tracklet-level label is determined

from the assigned frame-level box classes. Specifically,
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Dataset Consolidation Pleural effusion

Negative Positive Negative Positive

Train 9427 9012 9373 9062

Val 476 321 159 175

Test 1030 581 138 158
Table 1. Train, validation, and test distributions for trackletNet

classifier.

a tracklet is considered positive if it contains at least one

positive box (implying high likelihood of pathology along

at least a portion of the tracklet). Fig. 3 shows several

examples of label assignments for detection boxes within

rescaled tracklets.

2.4. Tracklet and video classification

Similarly to the frame detector, the trackletNet is trained

using the combined frame-annotated (Df ) and video-

annotated (Dw) data in a weakly semi-supervised manner.

Using the methods described in section 2.3 above, a total of

20,847 rescaled tracklets were generated from the consoli-

dation dataset, and 19,065 tracklets were generated from the

pleural effusion dataset, with approximately equal balance

of negative and positive tracklets. Notably, these tracklets

represent an enriched dataset containing a high proportion

of challenging examples drawn from incorrect (false pos-

itive and false negative) predictions made by the detector

(e.g., Fig. 3). Furthermore, unlike the individual 2D frames

used to train the detector, the rescaled tracklets are spatially

localized around suspect pathological regions and contain

temporal context.

Table 1 summarizes the distribution of training, valida-

tion, and test samples used for our experiments. During

training, we applied spatial and temporal augmentation on

the rescaled tracklets (described in section 2.5).

As a form of temporal augmentation (and to allow train-

ing in batches), we uniformly sampled n frames from each

rescaled tracklet using randomized start and end slices; sim-

ilar to [6], we used n = 5. As described above, the result-

ing subsampled tracklets are assigned a positive label if they

contain at least one positively labeled prediction box.

During inference, we determined the overall video-level

class prediction as the maximum prediction confidence

across all the tracklets in a video. As a further improvement,

during inference, we removed all tracklets from videos pre-

dicted as negative.

2.5. Implementation details

2.5.1 Frame detection

We adopted the Pytorch Ultralytics implementation of

YOLO-v5 [15] as the backbone detector due to its accuracy

and computational efficiency, although other SOTA detec-

tors can be used in our framework. Teacher model is trained

for 10 epochs (burn-in epochs) with frame-level labeled

videos alone, then teacher and student models are mutual

learning from the weakly labeled videos for 150 epochs.

The teacher model checkpoint with the minimum Lvlabel
on

the validation set is used as the final detector. For weakly

semi-supervised training, λflabel
= 1, λfpseudo

= λvlabel
=

0.5. SORT tracker runs with a minimum length of 5, hit of

3, and IOU of 0.5. ε = 20 is used for the tracklet-cropped

regions. We trained the fine-scaled classifier for 500 itera-

tions using binary cross entropy loss and Adam’s optimizer

with a learning rate of 1e-5. The checkpoint with minimum

validation loss is selected for the final test set evaluation.

2.5.2 Tracklet generation and classification

For all experiments, rescaled tracklets were generated

using ε equal to 0.1 of the max (ŷw, ŷh) and xresize =
148 to accommodate augmentation for an input size of

128 × 128. For tracklets inferenced on videos from Dw,

we used τpos = 0.6 and τneg = 0.01. For subsampling, n
was set to 5.

The trackletNet classifier consisted of a convolutional

and temporal feature extraction network (CNN+LSTM).

We adopted a lightweight encoder with 5 convolutional

blocks each comprising a 3 × 3 convolutional layer, batch

normalization, Leaky ReLU and 2D max pooling. A global

average pooling layer was applied as the last layer with

256 dimensions. The LSTM takes the CNN representations

(5× 256) and aggregates along the temporal dimension.

We trained the trackletNet with spatial augmentations in-

cluding rotation (−10◦, 10◦), scaling (0.9,1.1), shearing (-

10,10), translation (0.1,0.3), center cropping, and random

horizontal flipping, as well as temporal augmentations in-

cluding randomized reversal of the frame order and random-

ized start/end positions for subsampling. During inference,

tracklets are uniformly sampled to n=5 cropped frames.

3. Experiments and results

3.1. Dataset

An extensive retrospective, multi-center clinical dataset

of 7712 lung ultrasound videos was used in this work. The

data were acquired from 420 patients with suspicion of lung

consolidation or other related pathology (e.g., pneumonia,

pleural effusion) from 8 U.S. clinical sites between 2017

and 2020. The videos were acquired each at least 3 seconds

in length and contain at least 60 frames.

To train the models and assess model performance,

6677/9863 training videos (357/393 subjects), 337/273 val-

idation videos (23/10 subjects), and 599/233 test videos

(40/16 subjects) were annotated only for the presence or

absence of lung consolidation/pleural effusion at the video
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level. Among training videos, 99/80 videos (13/6 subjects)

were additionally frame-level labeled for lung consolida-

tion/pleural effusion bounding boxes. All the test set videos

were frame-level labeled to evaluate detection performance

as the secondary evaluation metric. The data were parti-

tioned at the subject level. Annotation was carried out by a

multi-center team of expert physicians with medical train-

ing in lung ultrasound. Each video was annotated by two ex-

perts and adjudicated by a third expert when a disagreement

between the first two annotators occurred. Frame-level an-

notations were annotated by a single expert.

3.2. Comparison experiments

We first compared our detector-based classification

method with a classic temporal frame-level classification

model – CNN (with EfficientNet or MobileNet backbone)

+ LSTM network [1] and a baseline detector-based classi-

fication method (where the maximum confidence from de-

tection/tracking is used for video-level classification). We

also compared our method with a SOTA video classifica-

tion method with frame-level supervision [23]. These meth-

ods were selected considering the LUS application, simi-

lar data/label requirements, and code availability for imple-

mentation.

We ran these experiments on two lung pathologies: con-

solidation and pleural effusion. The summary of video clas-

sification test results with and without added frame-level

supervision for the consolidation/pleural effusion datasets,

are summarized in Table 2. The results showed consistent

trends on these experiments on different lung pathologies,

with our method achieving both the highest AUC and AP

on the test set, indicating its superior performance to SOTA

classification method as well as the detector-based classifi-

cation methods.

The proposed framework not only improves classifica-

tion accuracy by a large margin but also clearly locates the

pathological regions in the video (with an AP of 0.381) not

available from direct video classification methods. Some

example videos which were correctly classified by our

approach but failed by existing direct video classifier or

detector-based classifier are shown in Fig. 4.

To test the performance drop of our method, we further

reduced the frame-annotated data from 99 videos to only 14

videos with no other changes. We observe that, even with

an extremely limited amount of frame-level labeled data

(only 3 subjects/14 videos, as shown in the last two rows

of Table 2), the proposed method continues to exhibit su-

perior classification performance compared to the baseline

and SOTA methods, despite a slight reduction in average

precision (AP).

3.3. Ablation experiments

A series of ablation studies were performed (summarized

in Table 3 and below).

3.3.1 Contributions of weak supervision, temporal ag-
gregation, and tracklet classification

To evaluate the contribution of reducing region of inter-

est, we removed the detection part, and directly used the

whole image as input to train and evaluate the trackletNet

(Table 2, row 3). To further understand the impact of frame-

level labels, we trained the detector with frame-level labels

alone. The results (Table 3, row 1) show that the model

trained with frame-level labels alone could not detect or

classify well (low AP and AUC), indicating the effective-

ness of our WSS detector training method.

To understand the impact of the second-stage tracklet-

Net classification, we used the maximum confidence of all

predictions (a simple rule-based aggregation method) for

video-level classification (Table 3, rows 2 and 3). To un-

derstand the impact of temporal consistency, we remove the

SORT tracking step and directly derive video-level classifi-

cation from the detection outputs without further temporal

filtering. Both results show worse detection and classifica-

tion performances.

We then evaluated the contribution from the temporal ag-

gregation performed by the trackletNet. First, we assessed

performance only using a single frame (the center frame)

of each tracklet, thus removing the temporal context intro-

duced by the full tracklet (Table 3, row 4). Second, we

tested a trackletNet variant without temporal design by us-

ing fully connected layer instead of LSTM on the feature

embeddings (Table 3, row 5). Both experiments show that

the temporal aggregation from LSTM is required to achieve

the best classification performance. For completeness, de-

tection results without tracklet-based filtering of detections

are also shown (Table 3, rows 7-9).

3.3.2 Model variance using different data splits

In addition to the ablation studies shown in Table 3, we

also investigated model variance by running repeated ex-

periments on independent test data. In Table 4, we present

results for models trained using 153 frame-annotated videos

sampled from a different group of patients compared to the

99 videos used for the experiments in Table 2. We observe

consistent trends on the independent test dataset.

3.3.3 Tracklet-level aggregation methods

Additionally, we compared different methods for deriv-

ing the overall video-level classification from tracklet pre-

dictions (Table 5). Consistent with how medical images are
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WSS: weakly semi-supervised; FS: fully-supervised; TR: tracking; FLT: filtering detection results based on tracklet

predictions; FLL: frame-level labeled; VLL: video-level labeled;

*: frame-level bounding box label was used to create the frame-level class label; **: experiments performed on

consolidation dataset only

Approach
Frame

detector

Video/tracklet

classifier

# of FLL

videos

# of VLL

videos

Detection

(Test AP50)
Classification

(Test AUC)

Direct N.A. EfficientNet+LSTM 0 6677 / 9836 N.A. 0.748 / 0.809

video N.A. MobileNet+LSTM 0 6677 / 9836 N.A. 0.870 / 0.910

classifier N.A. CNN+LSTM(video) 0 6677 / 9836 N.A. 0.909 / 0.894

Detector- STN Uninorms 99∗/80∗ 6677 / 9836 N.A. 0.886 / 0.916

based WSS Yolo+TR MaxConf 99/80 6677 / 9836 0.345 / 0.334 0.880 / 0.893

video WSS Yolo+TR+FLT CNN+LSTM(tracklet) 99/80 6677 / 9836 0.381 / 0.365 0.936 / 0.938
classifier WSS Yolo+TR MaxConf 14∗∗ 6677 0.318 0.905

WSS Yolo+TR+FLT CNN+LSTM(tracklet) 14∗∗ 6677 0.369 0.927
Table 2. Experimental comparisons for consolidation and pleural effusion frame detection and video classification.

WSS: weakly semi-supervised; FS: fully-supervised; TR: tracking; FLT: filtering detection results based on tracklet

predictions; FLL: frame-level labeled; VLL: video-level labeled

Frame detector Video/tracklet classifier
# of FLL

videos

# of VLL

videos

Detection

(Test AP50)

Classification

(Test AUC)

FS Yolo Max conf 99 0 0.257 0.845

WSS Yolo Max conf 99 6677 0.329 0.882

WSS Yolo+TR Max conf 99 6677 0.345 0.880

WSS Yolo+TR CNN+LSTM (Single frame) 99 6677 0.345 0.905

WSS Yolo+TR CNN+Dense (Subsampled tracklet) 99 6677 0.345 0.921

WSS Yolo+TR CNN+LSTM (Subsampled tracklet) 99 6677 0.345 0.936

WSS Yolo+TR+FLT CNN+LSTM (Single frame) 99 6677 0.371 0.905

WSS Yolo+TR+FLT CNN+Dense (Subsampled tracklet) 99 6677 0.366 0.921

WSS Yolo+TR+FLT CNN+LSTM (Subsampled tracklet) 99 6677 0.381 0.936
Table 3. Ablation experiments for consolidation detection and video classification.

Figure 4. Examples of video frames correctly classified by trackletNet (here labeled as FSCNet with tracklet prediction confidences shown

in green) but misclassified by the initial frame-level detector (orange boxes with frame-level detection confidences also shown). Ground-

truth boxes are labeled in white.
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WSS: weakly semi-supervised; FS: fully supervised; TR: tracking; FLT: filtering detection results based on tracklet

predictions; FLL: frame-level labeled; VLL: video-level labeled;

Frame detector
Video/tracklet

classifier

# of FLL

videos

# of VLL

videos

Detection

(Test AP50)
Classification

(Test AUC)

WSS Yolo Max conf 153 6677 0.360 0.903

WSS Yolo+TR Max conf 153 6677 0.418 0.897

WSS Yolo+TR CNN+LSTM (Subsampled tracklet) 153 6677 0.418 0.918

WSS Yolo+TR+FLT CNN+LSTM (Subsampled tracklet) 153 6677 0.458 0.918
Table 4. Repeated experiments for consolidation detection and video classification on an independent data split. The 153 frame-annotated

videos were sampled from a different group of patients compared to the 99 frame-annotated videos used for the experiments in Table 2.

Detection

Method

Classification

Method

Tracklet Pred.

Agg. Method
Test AUC

WSS Yolo

+TR+FLT

CNN

+LSTM

(Subsampled

(tracklet)

Mean

Sum

Max(Proposed)

0.918

0.928

0.936

Table 5. Comparison of methods for deriving overall video-level

class from tracklet predictions (experiments performed on the con-

solidation dataset).

τpos

Avg. # of FP

Tracklets

per Pos. Video

Avg. # of TP

Tracklets

per Pos. Video

%FN

Videos

Test

AUC

0.2 0.438 1.500 0.0125 0.926

0.4 0.188 1.550 0.0125 0.930

0.6 0.138 1.410 0.0750 0.936

0.8 0.025 1.138 0.2000 0.930

0.9 0.013 0.750 0.4750 0.917

Table 6. Summary of statistics of predicted tracklets on frame-

level labeled data and video classification test results as a function

of different minimum tracklet confidence thresholds. Choice of

τpos = 0.6 leads to the highest accuracy and AUC on the consoli-

dation dataset comprising 99 frame-level labeled videos.

often are clinically interpreted, we find that simply using the

maximum predicted confidence among all tracklets results

in the strongest video-level classification performance.

3.3.4 Model variance using different τpos

To evaluate the performance variation on using different

τpos, we generated train, validation, and test data set for the

trackletNet using different τposs and calculated their cor-

responding video classification performance on the test set.

The summary of video classification test results for different

τpos is available in Table 6. The results reveal slight fluc-

tuations in video-level performance concerning the choice

of τpos. This suggests that our method’s performance is

not solely reliant on selecting an optimal hyperparameter,

demonstrating its robustness.

4. Conclusions

This work introduced a method for simultaneous detec-

tion and classification on medical video sequences with

very limited frame-level annotation burden. Specifically,

our method aggregates individual predictions from a de-

tection model into temporally consistent ”tracklet” regions,

which are classified in a second stage. Despite the mini-

mal added frame supervision, empirical results on two LUS

pathology prediction tasks demonstrate that our method

leads to improved video classification compared to existing

SOTA models, while also improving the localization perfor-

mance of the initial detector.

One limitation of the current approach is the need for two

separately trained models (frame detector and tracklet clas-

sifier), which increases complexity and limits end-to-end

training. Future work will investigate intrinsic feature ex-

traction methods that would not require a separately trained

second-stage network (e.g., [8, 12]). Such methods may al-

low temporal information to be directly introduced into the

detection step, thereby improving localization at the initial

stage. Alternative spatiotemporal aggregation techniques

(e.g., based on self-attention [22]) will also be explored.

Another limitation is the need to empirically select

hyper-parameters such as τpos to filter for reliable tracklet

candidates. Future work will investigate methods for adap-

tive tracklet selection, analogous to the pseudo-label filter-

ing problem that occurs at the frame level when training the

detector with weak or semi-supervision [17, 16, 19, 31].

Finally, future studies will evaluate the generalizability

of the method on other diverse medical imaging datasets.
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