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Abstract

Positron Emission Tomography (PET) and Computed To-
mography (CT) are routinely used together to detect tumors.
PET/CT segmentation models can automate tumor delin-
eation, however, current multimodal models do not fully ex-
ploit the complementary information in each modality, as
they either concatenate PET and CT data or fuse them at
the decision level. To combat this, we propose Mirror U-
Net, which replaces traditional fusion methods with multi-
modal fission by factorizing the multimodal representation
into modality-specific decoder branches and an auxiliary
multimodal decoder. At these branches, Mirror U-Net as-
signs a task tailored to each modality to reinforce unimodal
features while preserving multimodal features in the shared
representation. In contrast to previous methods that use ei-
ther fission or multi-task learning, Mirror U-Net combines
both paradigms in a unified framework. We explore various
task combinations and examine which parameters to share
in the model. We evaluate Mirror U-Net on the AutoPET
PET/CT and on the multimodal MSD BrainTumor datasets,
demonstrating its effectiveness in multimodal segmenta-
tion and achieving state-of-the-art performance on both
datasets. Code: https://github.com/Zrrr1997/
autoPET_challenge_mirrorUNet

1. Introduction
PET/CT scans are commonly used for cancer diagnosis

and therapy to estimate tumor characteristics, such as size,

location, and changes over time [46]. PET data can high-

light areas with a high metabolic activity, which is typical

for tumors [3], by administering a radioactive tracer like

Fluorodeoxyglucose (FDG). To provide detailed anatomi-

cal information and aid in accurate tumor localization, CT

Encoder
Layer

Skip
Connection

Task 1

Task 2

Task 3
Modality A

Modality B

Decoder 
Layer

Shared
Representation

Conditional
Entropy

Mutual
Information

CT

PET

Figure 1. Mirror U-Net combines multimodal fission [26] and

multi-task learning. We obtain a shared representation for both

modalities and feed it into modality-specific decoders, each opti-

mized for a tailored task to learn useful features from its modal-

ity. Tasks 1 and 2 use modality-specific features via the skip con-

nections but are also conditioned by the other modality via the

shared representation, hence focusing on the conditional entropy

between the modalities. Task 3, on the other hand, only processes

the shared representation, focusing on the mutual information.

scans are typically used in conjunction with PET scans [40].

Deep learning models can automatically segment lesions

in PET/CT scans, providing radiologists with metabolic tu-

mor volume (MTV) and shape information as biomarkers

to monitor disease progression [10, 18]. However, high

metabolic activity in PET is not specific to tumors and can

be found in organs and regions with inflammation or infec-

tion [5]. Additionally, while CT scans provide anatomical

information, they are not sufficient for visualizing lesions

on their own [40]. These factors make tumor segmentation

from PET/CT data challenging, especially due to the lim-
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ited availability of voxel-wise labeled PET/CT datasets. As

a result, current multimodal PET/CT segmentation models

have yet to demonstrate reliability for clinical use.

Recently, the AutoPET MICCAI 2022 Challenge [10]

released a large-scale labeled PET/CT database of 1014

studies involving 900 patients. However, the top-

performing methods in the final leaderboard rely on either

early fusion [36, 47, 4, 51, 13] and/or late fusion ensembles

[49, 39, 13], which do not fully leverage the complementary

information in the PET and CT modalities.

We propose Mirror U-Net, a unified framework that

combines multimodal fission [26] and multi-task learning.

Rather than fusing modality features, Mirror U-Net fac-

torizes multimodal features into modality-specific decoder

branches and an auxiliary multimodal decoder, allowing us

to disentangle modality-specific features, such as metabolic

and anatomical cues in PET/CT, from multimodal fea-

tures. Using an encoder-decoder U-Net model [37] for each

modality, we obtain modality-specific features and share

layers between them to produce the multimodal represen-

tation, as shown in Figure 1. To emphasize the dichotomy

between modalities and their shared features, we extend

multimodal fission with multi-task learning, investigating

four combinations of tasks tailored to unimodal or multi-

modal features. In our qualitative experiments, we demon-

strate how Mirror U-Net utilizes the complementary infor-

mation from each modality. Our approach surpasses tradi-

tional fusion schemes, as well as fission-only or multi-task-

only methods, achieving state-of-the-art performance on

two benchmarks, AutoPET [10] and MSD BrainTumor [2].

Our contributions are summarized as follows:

1. A novel unification of multimodal fission and multi-

task learning for multimodal medical segmentation.

2. Mirror U-Net - a simple yet powerful multimodal fis-

sion architecture that achieves state-of-the-art perfor-

mance on AutoPET [10] and MSD BrainTumor [2],

demonstrating great potential for deploying PET/CT

segmentation models in clinical practice.

3. We conduct extensive experiments to determine which

tasks to assign to the decoder branches and which lay-

ers to share to obtain the multimodal representation.

2. Related Work
2.1. Multimodal Fusion

Combining multiple imaging modalities for automatic

segmentation has advanced significantly, particularly in

PET/CT [45, 6, 9, 10, 12], CT/MRI [50, 19, 20], and multi-

contrast MRI [32, 18, 21]. Multimodal approaches often

use early fusion, where modalities are concatenated into a

single input [18, 21, 6, 36, 47, 4, 51, 28, 13], or late fu-

sion, where predictions from unimodal models are com-

bined [49, 39, 43]. However, late fusion may not exploit

the mutual information in cross-modal representations, and

early fusion may not highlight the contribution of each

modality to the task [30]. Fu et al. [9] use a PET U-Net

model [37] to guide a CT model in a cascade framework,

while Xue et al. [45] segment liver lesions by combining

predictions from low- and high-level feature maps in sepa-

rate PET/CT decoders. Early fusion is shown to outperform

late and middle fusion for brain tumor segmentation from

MRI/PET/CT data [11]. Other approaches translate CT into

MRI images via GANs with cycle- and shape-consistency

[50], organ attention [19], or using a cross-modality prior

[20] to generate more data. In contrast to fusion approaches,

Mirror U-Net disentangles unimodal and multimodal fea-

tures using modality-specific decoders and a multimodal

decoder, allowing us to define tasks for each decoder to ex-

plicitly focus on the modality’s strengths, such as anatomi-

cal knowledge from CT and metabolic activity in PET.

2.2. Multimodal Fission

Multimodal fission decomposes data into multimodal

and unimodal information that captures the unique struc-

ture and semantics of each modality [26, 41, 16]. This

separation can be achieved through disentangled represen-

tation learning [41, 16] or explicit separation of unimodal

and multimodal pathways in the model [23, 15, 29]. In

our work, we adopt the latter using our Mirror U-Net ar-

chitecture. Joze et al. [22] introduce a Multi-Modal Trans-

fer Module as an independent multimodal pathway, while

in [38], multimodal and unimodal paths are coordinated by

squeeze and excitation operations. Valindria et al. [42] use

a similar architecture to Mirror U-Net but alternate training

iterations between CT and MRI volumes for segmentation

and do not employ multi-task learning. Mirror U-Net dif-

fers from existing fission approaches in that we combine it

for the first time with multi-task learning to control the type

of features learned in the modality-specific layers.

Hickson et al. [14] provide a summary of existing fission

methods, noting that all previous methods either use a joint

encoder before the fission into individual decoders [27, 44,

1, 31] or share skip connections [25]. In contrast, Mirror

U-Net disentangles modalities by using modality-specific

encoders and skip connections, both of which are essential

to separate unimodal and multimodal features.

2.3. Multi-Task Learning

Multi-task learning has been widely used in medical im-

age segmentation to exploit the correlation between dif-

ferent tasks [1, 7, 31] or to regularize the segmentation

[34, 44, 27]. For instance, Meng et al. [31] train a sur-

vival prediction network on feature maps extracted from a

PET/CT U-Net [37] and outperform the single-task model.

Other approaches utilize image reconstruction as an auxil-
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iary task to guide and regularize the segmentation [44, 27].

Some methods employ the classification of tumor presence

as an additional task to reduce false positives [13] or prevent

the network from learning irrelevant features [34]. How-

ever, these multi-task methods are all limited to traditional

multimodal fusion. In contrast, Mirror U-Net combines

multimodal fission with multi-task learning, which has not

been explored before. We show in our experiments that this

combination outperforms multi-task fusion methods on two

challenging datasets, despite using a simple architecture.

3. Method

Mirror U-Net utilizes two 3D U-Net models [37, 8] with

shared bottleneck weights, resembling two U-Nets sepa-

rated by a horizontal mirror. The first model processes CT

data while the second model processes PET data, allowing

the skip connections to the decoder branches to reinforce

modality-specific features, while shared layers learn mul-

timodal features. Liang et al. [26] note that this approach

expresses the conditional entropy of unimodal representa-

tions, indicating the additional information that each modal-

ity contributes to the task, whereas the shared representation

expresses the mutual information. We explore 4 task com-

binations (v1) – (v4), visualized in Figure 2, to showcase

how various tasks leverage the disentangled information.

3.1. Task Combinations

We prioritize tumor segmentation as the primary task in

our experiments and consider other tasks as auxiliary. We

use a combination of Dice [33] and cross-entropy loss, de-

noted by LDiceCE(y, ŷ), where y and ŷ denote the ground-

truth mask and model prediction, respectively. We use E(·)
and D(·) to denote the encoder and decoder branches of

Mirror U-Net, with x representing the input PET/CT data.

CT and PET branches and data are distinguished by sub-

scripts C and P , respectively, as summarized in Table 1.

We explore four task combinations, labeled as (v1) – (v4),
presented in Equations 1 – 4, and depicted in Figure 2.

Notation Description

In
p
u
t

(W,H,D) ∈ N
3 Width, height, and depth of the input volume.

x ∈ R
W×H×D×2 PET/CT input volume.

xC ∈ R
W×H×D×1 CT part of x.

xP ∈ R
W×H×D×1 PET part of x.

O
u
tp

u
t y ∈ R

W×H×D×1 Ground-truth segmentation mask.

ŷ ∈ R
W×H×D×1 Predicted segmentation mask.

LDiceCE(y, ŷ) Dice Cross-Entropy Loss [17].

M
o
d
el

EC(·) and EP (·) CT- and PET-specific encoder.

DC(·) and DP (·) CT- and PET-specific decoder.

DBTL(·) Bottleneck decoder.

T (·) Binary tumor classifier.

L ⊂ {1...8} Indices of shared layers.

θ ∈ [0.1, 0.5] Fusion weight for ablation study (v4).
c ∈ {0, 1} Binary label – tumor / no tumor.

⊕ Channel concatenation.

Table 1. Notation used in our equations.

Version 1 (v1). We explore the concept of transference

[26], where knowledge from a source modality is trans-

ferred to a noisy target modality to adapt it for a primary

task. Specifically, we transfer high-resolution anatomical

knowledge from CT to its low-resolution PET counterpart

via the multimodal representation. To achieve this, we train

the CT branch for reconstruction via an L2 loss, while train-

ing the PET branch for segmentation using Equation 1.

As lesions are often absent in CT and its high resolution

is underutilized, a self-supervised task is better suited for

the CT branch than segmentation. To prevent copying the

CT input xC through skip connections, we use a transforma-

tion Φ(xC), which can be Gaussian noise G(xC) or shuffled

voxel patches S(xC) in the CT scan. The self-supervised

L2 loss and segmentation loss LDiceCE are balanced using

hyperparameters λrec, λseg ∈ [0, 1] in Equation 1. By en-

coding high-resolution anatomical information in the bot-

tleneck via the CT reconstruction, we enhance the primary

segmentation performance for low-resolution PET scans.

LV1(x, y) =λrec · ||xC −DC(EC(Φ(xC)))||2+
+λseg · LDiceCE(y,DP (EP (xP )))

(1)

Version 2 (v2). To decouple modality-specific and mul-

timodal features, we propose an additional bottleneck de-

coder, DBTL(·), which is trained to reconstruct PET data,

as shown in Equation 2. The reason we choose to re-

construct PET data is to condition the multimodal fea-

tures to remain sensitive to regions with high metabolic

uptake, a characteristic commonly associated with tumors

[3]. Our experiments show that such PET reconstruction

provides spatial attention that guides the primary segmenta-

tion task toward active regions (see Figure 7). In contrast to

modality-specific branches, which utilize skip connections,

we omit them in the bottleneck to facilitate the decoupling

of modality-specific and modality-shared information, dif-

fering from previous fission methods [25]. Unlike (v1), we

do not apply any transformations Φ(·) to xP since PET data

cannot be copied via skip connections as there are none.

LV2(x, y) = LV1(x, y)+

+λrec · ||xP −DBTL(EC(xC)⊕ EP (xP ))||2
(2)

Version 3 (v3). Building on the (v2) model, we intro-

duce a binary tumor classifier, T (·), to determine whether

a tumor is present in the volume. In AutoPET [10], 513 of

1014 volumes are of tumor-free patients. Previous methods

trained on AutoPET [10] have shown that training on all

cases leads to conservative predictions for tumor-positive

cases, resulting in under-segmentation [13, 28]. In contrast,

training solely on positive cases fails to utilize the entire

dataset and can lead to a high False-Positive-Volume (FPV)

in healthy cases [13, 4, 47]. To address these challenges,

we propose a bottleneck classifier to regularize the network

2285



CT

PET

CT Task

Shared
Tasks

PET Task

Version 1 (v1) Ablation (v4)Version 2 (v2) Version 3 (v3)

C
T 

Ta
sk

PE
T 

Ta
sk

Sh
ar

ed
Ta

sk
s

CT Reconstruction CT Reconstruction CT Reconstruction Segmentation

Segmentation Segmentation Segmentation Segmentation

PET Reconstruction PET Reconstruction

Tumor/
No Tumor

Binary Classification
+

+- -
: CT   encoder / decoder

: PET encoder / decoder

: Bottleneck decoder

Figure 2. We explore 4 combinations of tasks (v1) – (v4) by assigning different tasks to each decoder branch in Mirror U-Net. In (v1) we

train the CT branch for CT reconstruction and assign the primary segmentation task to the PET branch. In (v2), we extend (v1) by adding

a bottleneck decoder that reconstructs PET data and in (v3) we also add a classifier, which predicts whether the patient is healthy or not. In

(v4), we train both the CT and PET branches for segmentation and fuse their predictions via a weighted sum of logits as an ablation study.

to predict empty masks in healthy cases and identify low-

uptake tumors in positive cases. We extend the (v2) model

with a classification task, as described in Equation 3, where

λclass ∈ [0, 1] and c ∈ {0, 1} indicates tumor presence.

LV3(x, y) = LV2(x, y)+

+λclass · LBCE(c, T (EC(xC)⊕EP (xP )))
(3)

Ablation (v4). In our final version, we jointly train the

modality-specific branches on segmentation by combining

their logits through a weighted sum, as shown in Equation

4. This is a challenging task for the CT branch as lesions

are often not visually prominent in CT. To address this, we

introduce a parameter θ ∈ [0.1, 0.5] to balance the CT- and

PET-branch logits. A lower θ indicates a weaker reliance

on CT data. We also explore the possibility of learning θ by

the model, rather than manually tuning it. We refer to (v4)
as an ablation since it is a single-task multimodal fission.

LV4(x, y) = LDiceCE(y, ŷ)

ŷ = (1− θ) ·DP (EP (xP )) + θ ·DC(EC(xC)))
(4)

3.2. Weight Sharing

While shared weights between the two U-Net models

[37] facilitate learning a multimodal representation, the lit-

erature on the optimal location to share parameters within

multimodal fission models is mostly confined to small abla-

tion studies [26, 41]. To address this gap, we investigate dif-

ferent locations to share parameters between the branches

(see Figure 3) and identify the optimal location based on

empirical results. We index the layers of Mirror U-Net from

1 to 8 and denote the shared layers as L. We examine shar-

ing layers before the bottleneck in the encoder branches

where features are closer to the input modality, as well as

sharing after the bottleneck in the decoders where features

are more task-specific. We investigate how different shared

layers impact the performance across the four versions (v1)

– (v4), to determine if there is a consistent weight-sharing

scheme that is optimal for all versions, and to evaluate the

sensitivity of each version to changes in hyperparameters.

3.3. Generalization to Brain Tumor Segmentation

To demonstrate the generalizability of Mirror U-Net to

other tasks and imaging modalities, we evaluate it on the

MSD BrainTumor dataset [2]. It consists of 750 volumes of

multimodal Magnetic Resonance Imaging (MRI) data, in-

cluding (T1), post-contrast T1-weighted (T1Gd), (T2), and

Fluid Attenuated Inversion Recovery (FLAIR) modalities.

Similar to the complementary physiological and anatomi-

cal information in PET/CT data, we use the complementary

FLAIR and T1Gd modalities, which are representative of

the tumor edema (the accumulation of fluid around a tumor)

and the tumor core (its central part), respectively. Together,

the edema and core form the entire tumor. We use Mirror U-

Net (v2) instead of (v3) as each volume of the dataset con-

tains a tumor, and classification is not feasible. We replace

the PET/CT branches with T1Gd/FLAIR and set the tasks

for T1Gd and FLAIR to tumor core and edema segmen-

tation, respectively. We also set the shared task to whole

tumor segmentation. However, to obtain the final whole-

tumor segmentation, we unite the predictions for core and

edema from the T1Gd and FLAIR branches, since the whole

tumor output from the bottleneck is used only as a regular-

ization. We opt for segmentation tasks on all branches since

unlike CT, FLAIR has a strong signal for edema segmenta-

tion. However, for consistency, we train a model (v2)-rec
to reconstruct FLAIR and T1Gd in the FLAIR and shared

branch, respectively, and segment all three tumor classes

in the T1Gd branch, to demonstrate that Mirror U-Net can

generalize well with the default tasks in Figure 2.

3.4. Implementation Details

AutoPET. In order to ensure a fair comparison between

models, we use the same (811 training + 203 testing) sam-
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Figure 3. Different locations in the model to share the parameters between the modality-specific branches. Shared layers are colored

orange. The set of layer indices L ⊂ {1...8} are aligned with the layers via horizontal dashed lines. Best viewed in color.

ples of AutoPET [10] for all models. We utilize Standard-

ized Uptake Values (SUV) of PET scans to reduce inter-

patient variation. CT and PET volumes have a voxel size

of 2.0mm×2.0mm×3.0mm and the values are clipped to

[-100, 250] and [0, 15] for CT and PET respectively. All

values are then scaled to [0, 1]. We employ a sliding win-

dow inference model by randomly sampling patches of size

[96, 96, 96] with a p = 2
3 probability of containing a tu-

mor. We train using Adam [24] with a learning rate of 10−3,

weight decay of 10−6, and batch size of 4 for 400 epochs.

For Equations 1-3, we set λrec = 10−4, λseg = 0.5, λclass =
10−3. Encoder and decoder layers have a kernel size of 3

and stride of 2. Unless otherwise stated, the same data pre-

processing is used for comparison to other methods.

MSD BrainTumor. We use the same (484 training + 266

testing) samples all models. We train Mirror U-Net using

whole MRI volumes with a patch size of [224, 224, 144],

with a voxel size of 1.0mm×1.0mm×1.0mm and normalize

the intensity for each modality using z-score normalization.

We use the same optimization and model hyperparameters

as in our AutoPET [10] experiments.

4. Experiments and Results
4.1. Task Combinations and Weight Sharing

Quantitative Results. Table 2 presents the results on

AutoPET [10] for all Mirror U-Net versions (v1)–(v4) and

all weight-sharing variants L. We observe three tendencies:

(1) Self-Supervision. Firstly, regularizing the recon-

struction by adding noise or voxel shuffling in (v1)–(v3)

Figure 4. Comparison between the self-supervision methods used

in Mirror U-Net (v1)–(v3). Each box aggregates results from all

weight-sharing combinations L.

leads to a consistent improvement regardless of the shared

layers L, where voxel shuffling achieves the best results.

Figure 4 also confirms this tendency and shuffling shows

the lowest sensitivity to changes in shared layers L, indi-

cated by the lower variance in the box plot, making it not

only the best performing but also the most robust method.

(2) Weight Sharing. Secondly, sharing only the bottle-

neck layer (L = {5}) results in the best results for all multi-

task settings. Figure 5 shows that the performance behaves

similarly for all (v1) – (v4) when varying shared layers L.

Sharing shallower, deeper, or multiple layers decreases the

performance significantly. The reason for this may be that

shallow layers are more modality-specific and deep layers

are more task-specific. Sharing such layers does not allow

the network to specialize on either the modality or task.

(3) Adding Tasks. Thirdly, Figure 5 and Table 2 show

that each Mirror U-Net version consistently outperforms

the last (v4) < (v1) < (v2) < (v3), with the exception of

one (v4) outlier. The multi-task settings (v1) – (v3) share

a similar design and build on top of each other by adding

new tasks. Hence, incrementally adding meaningful tasks

to Mirror U-Net leads to a consistent improvement, regard-

less of the shared layers L.

Ablation (v4) Results. The results in Table 2 show that

the optimal fusion parameter θ strongly varies for different

shared layers. We also train models by setting θ as a learn-

able parameter to avoid manual tuning. However, the best

scores are achieved with a fixed threshold. Figure 6 shows

that sharing layers near the bottleneck (L = {5}) leads to

Figure 5. Comparison between all Mirror U-Net versions. The

x-axis represents the different weight-sharing schemes. The dots

represent the best-performing models for each pair of multi-task

settings and weight-sharing scheme, i.e., bold numbers in Table 2.
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Shared Layers L
Mirror U-Net

Version
Parameters L = {3} L = {4} L = {5} L = {6} L = {7} L = {4, 5, 6} L = {3, 4, 5, 6, 7}

(v1)
L2 57.39 62.88 61.92 61.91 62.06 62.08 58.06

L2 + noise 59.76 62.83 62.34 62.21 62.65 62.36 60.86

L2 + shuffling 62.75 63.97 64.57 63.80 63.09 63.01 62.72

(v2)
L2 58.42 63.34 62.15 61.74 62.24 62.49 59.00

L2 + noise 59.96 64.00 62.62 62.21 62.85 63.01 61.44

L2 + shuffling 63.15 64.28 65.50 64.08 63.69 63.29 63.33

(v3)
L2 59.12 63.36 62.78 62.25 63.01 63.22 60.01

L2 + noise 60.23 64.33 63.01 62.89 63.22 63.30 60.51

L2 + shuffling 63.33 64.55 65.91 64.44 64.00 63.43 63.34

(v4)

θ = 0.1 59.61 63.78 63.65 63.23 60.58 61.79 60.81
θ = 0.2 58.65 62.66 64.24 63.35 62.30 63.99 56.79

θ = 0.3 61.67 63.76 64.22 62.26 61.89 61.33 58.21

θ = 0.4 58.95 62.93 58.43 63.64 56.15 60.69 59.40

θ = 0.5 59.86 61.84 61.00 62.48 60.38 60.51 57.79

Learnable θ 60.89 60.94 60.81 58.48 56.52 59.63 47.42

Table 2. Comparison between all Mirror U-Net versions (v1) – (v4) for all weight-sharing variants L. The best Dice score in each box is in

bold. The best Dice score for each Mirror U-Net version (v1) – (v4) is underlined.

Metric Baselines Mirror U-Net (Ours)

CT PET EF MF LF-Logit LF-∪ LF-∩ (v1) (v2) (v3) Ablation (v4)
Dice ↑ 26.00 60.99 54.89 55.53 57.41 59.89 21.60 64.57 65.50 65.91 64.24

FPV ↓ 15.64 5.38 4.98 4.77 4.88 3.95 1.67 2.93 2.83 1.55 2.93

FNV ↓ 44.15 2.15 3.13 3.02 2.88 3.01 99.74 1.66 0.94 0.76 1.99

Table 3. Comparison to the baselines with the same U-Net backbone as Mirror U-Net. EF: Early, MF: Middle, LF: Late Fusion.

both a higher average performance and a lower sensitivity

to changes in θ. Sharing more than one layer leads to a

sharp performance loss. This observation is consistent with

the findings in Figure 5, which further confirms that sharing

only the bottleneck improves not only the performance but

also the robustness to parameter changes.

Qualitative Results. Figure 7 presents the qualitative re-

sults for each branch of Mirror U-Net (v1) – (v4) and gives

insight into what each branch has learned.

Versions (v1) – (v3). As voxel shuffling is the best self-

supervision strategy we only include one example for Gaus-

sian noise supervision in (v1)-noise. In the (v1)-noise row,

we observe that the CT branch successfully reduces a sig-

nificant portion of the noise, but struggles with black voxels

within the body. On the other hand, in the (v1)-shuffle row,

Mirror U-Net restores some edges from the shuffled vox-

els, which requires the model to remember the structures

present within the CT. This leads to a better representa-

tion and segmentation results. Moreover, in the (v2)-shuffle
model, we reconstruct the PET data from the bottleneck,

which is much coarser due to the lack of skip connections.

Despite this, the reconstruction includes the regions with

the highest metabolic activity, resulting in significantly bet-

ter segmentation. Finally, in (v3)-shuffle, we add a clas-

sification head and the PET reconstruction contains only

three regions: the brain, bladder, and the spatial location

of the lesions, resulting in much finer boundaries compared

to (v2)-shuffle. This refinement leads to a more accurate

spatial attention encoded in the bottleneck, as evidenced by

the well-delineated lesions in the final segmentation.

Ablation (v4). Since lesion boundaries can be hard to

discern in CT scans, the CT branch in (v4) produces a seg-

mentation mask that covers a large portion of the body.

However, this mask excludes organs with high metabolic

activity, such as the brain, liver, heart, and urinary bladder.

On the other hand, the PET branch captures regions with

high metabolic activity, including the brain and bladder.

Combining the logits from the final layers of each branch

results in a fused prediction that better matches the ground-

truth mask. These results suggest that the CT branch is

not well-suited for segmentation, however, Mirror U-Net’s

simple architecture allows the CT branch to provide spatial

guidance for the PET branch by highlighting regions that

are likely to contain lesions and filtering unlikely regions,

such as the brain and bladder.

Overall, our qualitative results demonstrate that Mirror

U-Net utilizes the complementary nature of CT and PET

images and successfully transfers knowledge via the shared

Figure 6. Influence of the fusion parameter θ on the different

weight-sharing schemes for the Decision Fusion setting. Each box

aggregates results for θ ∈ [0.1, 0.5].
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Figure 7. Qualitative results from our multi-task experiments. The last column refers to either the θ-combination of the CT and PET

branches from (v4) or to the output of the bottleneck decoder DBTL in (v2), (v3). The final segmentation for each version is in a red box.

features to improve the primary segmentation task.

4.2. Comparisons to Other Approaches

Comparison to Baselines. We compare Mirror U-Net to

several baselines – traditional early (EF), middle (MF), and

late fusion (LF), as well as a unimodal U-Net [37] trained

solely on either CT or PET data. We compare to three late

fusion variants: sum of logits (LF-Logits), and predictions’

union (LF-∪) or intersection (LF-∩). We use the Dice score

and the average false positive (FPV) and false negative vol-

umes (FNV) as evaluation metrics, which measure the av-

erage volume of over- (FPV) and under-segmented (FPN)

regions in mm3. The results, presented in Table 3, show

that the unimodal CT model has poor performance, as le-

sions are hardly visible in CT scans, which limits its poten-

tial as a standalone modality. The unimodal PET model, on

the other hand, outperforms all traditional fusion strategies,

highlighting the limitations of traditional fusion in effec-

tively combining PET and CT features without extensive

fine-tuning. However, the PET model has a higher FPV

since it is challenging to distinguish lesions from highly ac-

tive organs based solely on PET data. The union late fusion

achieves the highest Dice score among the fusion baselines,

whereas the intersection late fusion has the lowest FPV due

to the limited agreement between PET and CT predictions.

All variants of Mirror U-Net consistently outperform the

baseline methods on all metrics.

Comparison to Related Work. Our main contribution

is the combination of multimodal fission and multi-task

learning. Therefore, we compare Mirror U-Net to related

methods that utilize only fission, only multi-task learning,

or neither approach. For the neither category, we com-

pare Mirror U-Net to nnUNet [17], a standard benchmark

for medical segmentation. Additionally, we include Black-

bean [47], the winner of the AutoPET 2022 challenge, to

demonstrate state-of-the-art performance on AutoPET [10].

In the multi-task-only category, we compare to related

approaches using multi-task learning and multimodal fu-
sion. SF-Net [27] utilizes a decoder branch to reconstruct

an image fusion of T1c and T2 MRI while preserving the

structures of both modalities via an L2 and SSIM loss [48].

Andrearczyk et al. [1] and DeepMTS [31] utilize feature

maps from a U-Net model [37] to train a classifier for sur-

vival prediction. Weninger et al. [44] utilize reconstruction

and tumor classification (enhancing or non-enhancing) to

regularize an early fusion U-Net model [37]. Lastly, we

conduct an ablation study where we only use either CT or

PET-only data in all branches in (v1)-(v3) to show that the

presence of both modalities is necessary for Mirror U-Net.

For the fission-only category We compare to the single-
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Method Dice ↑ FPV ↓ FNV ↓ Tasks Multimodal Fission Multi-task

nnUNet [17] 62.75 2.83 1.59 Seg

Blackbean [47] 63.15 2.55 1.76 Seg

SF-Net [27] 61.21 3.44 2.95 Seg + Rec

Andrearczyk et al. [1] 61.45 2.98 1.89 Seg + Class

DeepMTS [31] 61.91 3.22 2.76 Seg + Class

Weninger et al. [44] 61.22 3.98 2.82 Seg + Rec + Class

CT-only Mirror U-Net (v3) 12.37 28.24 50.02 Seg + Rec + Class

PET-only Mirror U-Net (v3) 56.14 4.81 3.02 Seg + Rec + Class

Mirror U-Net (v4) 64.24 2.93 1.99 Seg

Valindria et al. [42] 39.84 7.89 17.00 Seg

(Ours) Mirror U-Net (v3) 65.91 1.55 0.76 Seg + Rec + Class

Table 4. Comparison to related fission-only and multi-task only methods and to the current state-of-the-art on the AutoPET dataset [10, 47].

task model of Valindria et al. [42] which uses a similar ar-

chitecture to Mirror U-Net, but alternates between modal-

ities during each iteration and uses both branches for seg-

mentation. We also consider Mirror U-Net (v4) as a fission-

only method as it only has one segmentation task.

We train and evaluate all models on the same 80/20 train-

ing/validation split and use the same data preprocessing as

Mirror U-Net, except for nnUNet [17] and Blackbean [47],

which require specific preprocessing steps. The results in

Table 4 show that Mirror U-Net consistently outperforms all

other models, demonstrating state-of-the-art performance

on AutoPET [10]. This underscores the power of combin-

ing multimodal fission with multi-task learning, highlight-

ing the efficacy of our proposed method.

4.3. Generalizing to Brain Tumor Segmentation

We compare Mirror U-Net (v2) to nnUNet [17], Seg-

ResNet [35], which is the winner of the Brain Tumor Seg-

mentation BraTS 2018 challenge, and to Mirror U-Net (v1)
and (v2)-rec as ablations. Our findings, shown in Table 5,

demonstrate that Mirror U-Net outperforms all other meth-

ods on all 3 tumor classes. Notably, we observe a signifi-

cant performance drop when the bottleneck task is omitted

in Mirror U-Net (v1). Using the default tasks in (v2)-rec
achieves the second-best results for tumor core and edema

segmentation. However, unlike CT, both FLAIR and T1Gd

modalities have a strong signal, making segmentation tasks

more suitable than the default reconstruction.

In Figure 8, we show that the bottleneck layer has

learned a coarse segmentation mask of the whole tumor,

with some over-segmentation. However, this coarse seg-

mentation mask provides valuable spatial guidance for the

edema and core segmentation tasks, resulting in a much

finer final segmentation of the whole tumor. These qual-

Figure 8. Qualitative results for Mirror U-Net (v2) on brain tumor

segmentation. The final whole tumor prediction is in a red box and

is obtained by the union of the edema and tumor core predictions.

itative results, combined with our quantitative findings in

Table 5, suggest that Mirror U-Net has the potential to gen-

eralize well to other imaging modalities and tasks beyond

the specific PET/CT segmentation task studied in this work.

Dice ↑
Method Whole Tumor Edema Tumor Core

Mirror U-Net (v1) 88.37 71.91 82.22

Mirror U-Net (v2)-rec 91.12 77.12 84.56

nnUNet [17] 89.10 76.35 84.05

SegResNet [35] 91.29 77.01 84.22

(Ours) Mirror U-Net (v2) 92.52 78.12 85.84
Table 5. Comparison to other methods on MSD BrainTumor [2].

5. Conclusion and Discussion

In summary, we propose Mirror U-Net, which combines

multimodal fission and multi-task learning for the first time.

Our model outperforms traditional fusion methods as well

as fission-only and multi-task-only approaches on the Au-

toPET 2022 Challenge and shows state-of-the-art perfor-

mance, which demonstrates the power of combining fission

with multi-task learning. Our results indicate that sharing

only the bottleneck layer is optimal while sharing shallower

or deeper layers leads to a performance drop. We also

demonstrate the generalizability of Mirror U-Net to brain

tumor segmentation from multimodal MRI scans. Our qual-

itative experiments reveal that selecting appropriate tasks

improves performance as the shared representation learns

a spatial guidance that boosts the primary segmentation

task. Our model’s robustness to hyperparameter changes

and high performance is a promising step toward deploying

PET/CT segmentation models in clinical practice.
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and by the Federal Ministry of Education and Research.

2290



References
[1] Vincent Andrearczyk, Pierre Fontaine, Valentin Oreiller,

Joel Castelli, Mario Jreige, John O Prior, and Adrien De-

peursinge. Multi-task deep segmentation and radiomics for

automatic prognosis in head and neck cancer. In Interna-
tional Workshop on PRedictive Intelligence In MEdicine,

pages 147–156. Springer, 2021. 2, 7, 8

[2] Michela Antonelli, Annika Reinke, Spyridon Bakas, Key-

van Farahani, Annette Kopp-Schneider, Bennett A Landman,

Geert Litjens, Bjoern Menze, Olaf Ronneberger, Ronald M

Summers, et al. The medical segmentation decathlon. Nature
communications, 13(1):4128, 2022. 2, 4, 8

[3] Simona Ben-Haim and Peter Ell. 18f-fdg pet and pet/ct in the

evaluation of cancer treatment response. Journal of Nuclear
Medicine, 50(1):88–99, 2009. 1, 3

[4] Simone Bendazzoli and Mehdi Astaraki. Priornet: lesion

segmentation in pet-ct including prior tumor appearance in-

formation. arXiv preprint arXiv:2210.02203, 2022. 2, 3

[5] Lei Bi, Jinman Kim, Dagan Feng, and Michael Fulham.

Multi-stage thresholded region classification for whole-body

pet-ct lymphoma studies. In International Conference on
Medical Image Computing and Computer-Assisted Interven-
tion, pages 569–576. Springer, 2014. 1

[6] Emmanuelle Bourigault, Daniel R McGowan, Abolfazl

Mehranian, and Bartłomiej W Papież. Multimodal pet/ct tu-
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