This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Mirror U-Net: Marrying Multimodal Fission with Multi-task Learning
for Semantic Segmentation in Medical Imaging

L37dravko Marinov* 'Simon Reif*

256David Kersting|

47Jens Kleesiek” !Rainer Stiefelhagen*

Mnstitute for Anthropomatics and Robotics (IAR), Karlsruhe Institute of Technology, 2German Cancer Consortium (DKTK)
SHIDSS4Health - Helmholtz Information and Data Science School for Health
Institute for AI in Medicine (IKIM), University Hospital Essen, ®Department of Nuclear Medicine, University Hospital Essen

6West German Cancer Center, ' Cancer Research Center Cologne Essen (CCCE), University Medicine Essen

*firstname.lastname@kit.edu

ffirstname.lastname@uk—-essen.de

Abstract

Positron Emission Tomography (PET) and Computed To-
mography (CT) are routinely used together to detect tumors.
PET/CT segmentation models can automate tumor delin-
eation, however, current multimodal models do not fully ex-
ploit the complementary information in each modality, as
they either concatenate PET and CT data or fuse them at
the decision level. To combat this, we propose Mirror U-
Net, which replaces traditional fusion methods with multi-
modal fission by factorizing the multimodal representation
into modality-specific decoder branches and an auxiliary
multimodal decoder. At these branches, Mirror U-Net as-
signs a task tailored to each modality to reinforce unimodal
features while preserving multimodal features in the shared
representation. In contrast to previous methods that use ei-
ther fission or multi-task learning, Mirror U-Net combines
both paradigms in a unified framework. We explore various
task combinations and examine which parameters to share
in the model. We evaluate Mirror U-Net on the AutoPET
PET/CT and on the multimodal MSD BrainTumor datasets,
demonstrating its effectiveness in multimodal segmenta-
tion and achieving state-of-the-art performance on both
datasets. Code: https://github.com/Zrrr1997/
autoPET _challenge _mirrorUNet

1. Introduction

PET/CT scans are commonly used for cancer diagnosis
and therapy to estimate tumor characteristics, such as size,
location, and changes over time [46]. PET data can high-
light areas with a high metabolic activity, which is typical
for tumors [3], by administering a radioactive tracer like
Fluorodeoxyglucose (FDG). To provide detailed anatomi-
cal information and aid in accurate tumor localization, CT
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Figure 1. Mirror U-Net combines multimodal fission [26] and
multi-task learning. We obtain a shared representation for both
modalities and feed it into modality-specific decoders, each opti-
mized for a tailored task to learn useful features from its modal-
ity. Tasks 1 and 2 use modality-specific features via the skip con-
nections but are also conditioned by the other modality via the
shared representation, hence focusing on the conditional entropy
between the modalities. Task 3, on the other hand, only processes
the shared representation, focusing on the mutual information.

scans are typically used in conjunction with PET scans [40].

Deep learning models can automatically segment lesions
in PET/CT scans, providing radiologists with metabolic tu-
mor volume (MTV) and shape information as biomarkers
to monitor disease progression [10, 18]. However, high
metabolic activity in PET is not specific to tumors and can
be found in organs and regions with inflammation or infec-
tion [5]. Additionally, while CT scans provide anatomical
information, they are not sufficient for visualizing lesions
on their own [40]. These factors make tumor segmentation
from PET/CT data challenging, especially due to the lim-
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ited availability of voxel-wise labeled PET/CT datasets. As
a result, current multimodal PET/CT segmentation models
have yet to demonstrate reliability for clinical use.

Recently, the AutoPET MICCAI 2022 Challenge [10]
released a large-scale labeled PET/CT database of 1014
studies involving 900 patients. However, the top-
performing methods in the final leaderboard rely on either
early fusion [36, 47, 4, 51, 13] and/or late fusion ensembles
[49, 39, 13], which do not fully leverage the complementary
information in the PET and CT modalities.

We propose Mirror U-Net, a unified framework that
combines multimodal fission [26] and multi-task learning.
Rather than fusing modality features, Mirror U-Net fac-
torizes multimodal features into modality-specific decoder
branches and an auxiliary multimodal decoder, allowing us
to disentangle modality-specific features, such as metabolic
and anatomical cues in PET/CT, from multimodal fea-
tures. Using an encoder-decoder U-Net model [37] for each
modality, we obtain modality-specific features and share
layers between them to produce the multimodal represen-
tation, as shown in Figure 1. To emphasize the dichotomy
between modalities and their shared features, we extend
multimodal fission with multi-task learning, investigating
four combinations of tasks tailored to unimodal or multi-
modal features. In our qualitative experiments, we demon-
strate how Mirror U-Net utilizes the complementary infor-
mation from each modality. Our approach surpasses tradi-
tional fusion schemes, as well as fission-only or multi-task-
only methods, achieving state-of-the-art performance on
two benchmarks, AutoPET [10] and MSD BrainTumor [2].

Our contributions are summarized as follows:

1. A novel unification of multimodal fission and multi-
task learning for multimodal medical segmentation.

2. Mirror U-Net - a simple yet powerful multimodal fis-
sion architecture that achieves state-of-the-art perfor-
mance on AutoPET [10] and MSD BrainTumor [2],
demonstrating great potential for deploying PET/CT
segmentation models in clinical practice.

3. We conduct extensive experiments to determine which
tasks to assign to the decoder branches and which lay-
ers to share to obtain the multimodal representation.

2. Related Work
2.1. Multimodal Fusion

Combining multiple imaging modalities for automatic
segmentation has advanced significantly, particularly in
PET/CT [45, 6,9, 10, 12], CT/MRI [50, 19, 20], and multi-
contrast MRI [32, 18, 21]. Multimodal approaches often
use early fusion, where modalities are concatenated into a
single input [18, 21, 6, 36, 47, 4, 51, 28, 13], or late fu-
sion, where predictions from unimodal models are com-

bined [49, 39, 43]. However, late fusion may not exploit
the mutual information in cross-modal representations, and
early fusion may not highlight the contribution of each
modality to the task [30]. Fu ef al. [9] use a PET U-Net
model [37] to guide a CT model in a cascade framework,
while Xue et al. [45] segment liver lesions by combining
predictions from low- and high-level feature maps in sepa-
rate PET/CT decoders. Early fusion is shown to outperform
late and middle fusion for brain tumor segmentation from
MRI/PET/CT data [1 1]. Other approaches translate CT into
MRI images via GANs with cycle- and shape-consistency
[50], organ attention [19], or using a cross-modality prior
[20] to generate more data. In contrast to fusion approaches,
Mirror U-Net disentangles unimodal and multimodal fea-
tures using modality-specific decoders and a multimodal
decoder, allowing us to define tasks for each decoder to ex-
plicitly focus on the modality’s strengths, such as anatomi-
cal knowledge from CT and metabolic activity in PET.

2.2. Multimodal Fission

Multimodal fission decomposes data into multimodal
and unimodal information that captures the unique struc-
ture and semantics of each modality [26, 41, 16]. This
separation can be achieved through disentangled represen-
tation learning [41, 16] or explicit separation of unimodal
and multimodal pathways in the model [23, 15, 29]. In
our work, we adopt the latter using our Mirror U-Net ar-
chitecture. Joze et al. [22] introduce a Multi-Modal Trans-
fer Module as an independent multimodal pathway, while
in [38], multimodal and unimodal paths are coordinated by
squeeze and excitation operations. Valindria et al. [42] use
a similar architecture to Mirror U-Net but alternate training
iterations between CT and MRI volumes for segmentation
and do not employ multi-task learning. Mirror U-Net dif-
fers from existing fission approaches in that we combine it
for the first time with multi-task learning to control the type
of features learned in the modality-specific layers.

Hickson et al. [14] provide a summary of existing fission
methods, noting that all previous methods either use a joint
encoder before the fission into individual decoders [27, 44,
I, 31] or share skip connections [25]. In contrast, Mirror
U-Net disentangles modalities by using modality-specific
encoders and skip connections, both of which are essential
to separate unimodal and multimodal features.

2.3. Multi-Task Learning

Multi-task learning has been widely used in medical im-
age segmentation to exploit the correlation between dif-
ferent tasks [1, 7, 31] or to regularize the segmentation
[34, 44, 27]. For instance, Meng et al. [31] train a sur-
vival prediction network on feature maps extracted from a
PET/CT U-Net [37] and outperform the single-task model.
Other approaches utilize image reconstruction as an auxil-
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iary task to guide and regularize the segmentation [44, 27].
Some methods employ the classification of tumor presence
as an additional task to reduce false positives [ 13] or prevent
the network from learning irrelevant features [34]. How-
ever, these multi-task methods are all limited to traditional
multimodal fusion. In contrast, Mirror U-Net combines
multimodal fission with multi-task learning, which has not
been explored before. We show in our experiments that this
combination outperforms multi-task fusion methods on two
challenging datasets, despite using a simple architecture.

3. Method

Mirror U-Net utilizes two 3D U-Net models [37, 8] with
shared bottleneck weights, resembling two U-Nets sepa-
rated by a horizontal mirror. The first model processes CT
data while the second model processes PET data, allowing
the skip connections to the decoder branches to reinforce
modality-specific features, while shared layers learn mul-
timodal features. Liang et al. [26] note that this approach
expresses the conditional entropy of unimodal representa-
tions, indicating the additional information that each modal-
ity contributes to the task, whereas the shared representation
expresses the mutual information. We explore 4 task com-
binations (v1) — (v4), visualized in Figure 2, to showcase
how various tasks leverage the disentangled information.

3.1. Task Combinations

We prioritize tumor segmentation as the primary task in
our experiments and consider other tasks as auxiliary. We
use a combination of Dice [33] and cross-entropy loss, de-
noted by Lpicece(y, §), where y and § denote the ground-
truth mask and model prediction, respectively. We use E(-)
and D(-) to denote the encoder and decoder branches of
Mirror U-Net, with z representing the input PET/CT data.
CT and PET branches and data are distinguished by sub-
scripts C' and P, respectively, as summarized in Table 1.
We explore four task combinations, labeled as (v1) — (v4),
presented in Equations 1 — 4, and depicted in Figure 2.

Notation Description
(W,H,D) € N° Width, height, and depth of the input volume.
5| » e RWxHxDx2 PET/CT input volume.
,_% ze € RWXHXDX1 | CT part of x.
axp € RWXHXDx1 | PET part of 2.
g | y € RWXIXDxT Ground-truth segmentation mask.
£ g e RWxHxDx1 Predicted segmentation mask.
O | Lpicecr(y, 1) Dice Cross-Entropy Loss [17].
Ec(-)and Ep(-) CT- and PET-specific encoder.
D¢ (+) and Dp(-) CT- and PET-specific decoder.
< | DPere(-) Bottleneck decoder.
B T() Binary tumor classifier.
=|Lc{1.8} Indices of shared layers.
0 €1[0.1,0.5] Fusion weight for ablation study (v4).
ce{0,1} Binary label — tumor / no tumor.
@ Channel concatenation.

Table 1. Notation used in our equations.

Version 1 (v1). We explore the concept of transference
[26], where knowledge from a source modality is trans-
ferred to a noisy target modality to adapt it for a primary
task. Specifically, we transfer high-resolution anatomical
knowledge from CT to its low-resolution PET counterpart
via the multimodal representation. To achieve this, we train
the CT branch for reconstruction via an Ls loss, while train-
ing the PET branch for segmentation using Equation 1.

As lesions are often absent in CT and its high resolution
is underutilized, a self-supervised task is better suited for
the CT branch than segmentation. To prevent copying the
CT input ¢ through skip connections, we use a transforma-
tion ®(x ), which can be Gaussian noise G (x¢) or shuffled
voxel patches S(z¢) in the CT scan. The self-supervised
Lo loss and segmentation loss Lpicecg are balanced using
hyperparameters Arec, Aeg € [0, 1] in Equation 1. By en-
coding high-resolution anatomical information in the bot-
tleneck via the CT reconstruction, we enhance the primary
segmentation performance for low-resolution PET scans.

EVl(x/y) =Arec - ||xC - DC(EC((I)(CCC)))HQ—i_

1
+Aseg * Lpicece (Y, Dp(Ep(zp))) M

Version 2 (v2). To decouple modality-specific and mul-
timodal features, we propose an additional bottleneck de-
coder, Dprr.(+), which is trained to reconstruct PET data,
as shown in Equation 2. The reason we choose to re-
construct PET data is to condition the multimodal fea-
tures to remain sensitive to regions with high metabolic
uptake, a characteristic commonly associated with tumors
[3]. Our experiments show that such PET reconstruction
provides spatial attention that guides the primary segmenta-
tion task toward active regions (see Figure 7). In contrast to
modality-specific branches, which utilize skip connections,
we omit them in the bottleneck to facilitate the decoupling
of modality-specific and modality-shared information, dif-
fering from previous fission methods [25]. Unlike (v1), we
do not apply any transformations ®(-) to = p since PET data
cannot be copied via skip connections as there are none.

Lva(x,y) = Lvi(z,y)+

2
e - ||[zp — Dprr(Ec(zc) ® Ep(zp))||2 @

Version 3 (v3). Building on the (v2) model, we intro-
duce a binary tumor classifier, 7'(+), to determine whether
a tumor is present in the volume. In AutoPET [10], 513 of
1014 volumes are of tumor-free patients. Previous methods
trained on AutoPET [10] have shown that training on all
cases leads to conservative predictions for tumor-positive
cases, resulting in under-segmentation [ 13, 28]. In contrast,
training solely on positive cases fails to utilize the entire
dataset and can lead to a high False-Positive-Volume (FPV)
in healthy cases [13, 4, 47]. To address these challenges,
we propose a bottleneck classifier to regularize the network
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Figure 2. We explore 4 combinations of tasks (v1) — (v4) by assigning different tasks to each decoder branch in Mirror U-Net. In (v1) we
train the CT branch for CT reconstruction and assign the primary segmentation task to the PET branch. In (v2), we extend (v1) by adding
a bottleneck decoder that reconstructs PET data and in (v3) we also add a classifier, which predicts whether the patient is healthy or not. In
(v4), we train both the CT and PET branches for segmentation and fuse their predictions via a weighted sum of logits as an ablation study.

Segmentation Segmentation

to predict empty masks in healthy cases and identify low-
uptake tumors in positive cases. We extend the (v2) model
with a classification task, as described in Equation 3, where
Aetass € [0, 1] and ¢ € {0, 1} indicates tumor presence.

EV3<xa y) = £V2<x7y)+

3
e - Locs (e, T(Ec(ae)@Ep(p)) O

Ablation (v4). In our final version, we jointly train the
modality-specific branches on segmentation by combining
their logits through a weighted sum, as shown in Equation
4. This is a challenging task for the CT branch as lesions
are often not visually prominent in CT. To address this, we
introduce a parameter 6 € [0.1,0.5] to balance the CT- and
PET-branch logits. A lower 0 indicates a weaker reliance
on CT data. We also explore the possibility of learning 6 by
the model, rather than manually tuning it. We refer to (v4)
as an ablation since it is a single-task multimodal fission.

Lva(z,y) = Lpicece (Y, J)
§=(1-0) Dp(Ep(zp))+0-Dc(Ec(zc)))

3.2. Weight Sharing

While shared weights between the two U-Net models
[37] facilitate learning a multimodal representation, the lit-
erature on the optimal location to share parameters within
multimodal fission models is mostly confined to small abla-
tion studies [206, 4 1]. To address this gap, we investigate dif-
ferent locations to share parameters between the branches
(see Figure 3) and identify the optimal location based on
empirical results. We index the layers of Mirror U-Net from
1 to 8 and denote the shared layers as L. We examine shar-
ing layers before the bottleneck in the encoder branches
where features are closer to the input modality, as well as
sharing after the bottleneck in the decoders where features
are more task-specific. We investigate how different shared
layers impact the performance across the four versions (v1)

“)

— (v4), to determine if there is a consistent weight-sharing
scheme that is optimal for all versions, and to evaluate the
sensitivity of each version to changes in hyperparameters.

3.3. Generalization to Brain Tumor Segmentation

To demonstrate the generalizability of Mirror U-Net to
other tasks and imaging modalities, we evaluate it on the
MSD BrainTumor dataset [2]. It consists of 750 volumes of
multimodal Magnetic Resonance Imaging (MRI) data, in-
cluding (T1), post-contrast T1-weighted (T1Gd), (T2), and
Fluid Attenuated Inversion Recovery (FLAIR) modalities.
Similar to the complementary physiological and anatomi-
cal information in PET/CT data, we use the complementary
FLAIR and T1Gd modalities, which are representative of
the tumor edema (the accumulation of fluid around a tumor)
and the tumor core (its central part), respectively. Together,
the edema and core form the entire tumor. We use Mirror U-
Net (v2) instead of (v3) as each volume of the dataset con-
tains a tumor, and classification is not feasible. We replace
the PET/CT branches with TIGd/FLAIR and set the tasks
for TIGd and FLAIR to tumor core and edema segmen-
tation, respectively. We also set the shared task to whole
tumor segmentation. However, to obtain the final whole-
tumor segmentation, we unite the predictions for core and
edema from the T1Gd and FLAIR branches, since the whole
tumor output from the bottleneck is used only as a regular-
ization. We opt for segmentation tasks on all branches since
unlike CT, FLAIR has a strong signal for edema segmenta-
tion. However, for consistency, we train a model (v2)-rec
to reconstruct FLAIR and T1Gd in the FLAIR and shared
branch, respectively, and segment all three tumor classes
in the T1Gd branch, to demonstrate that Mirror U-Net can
generalize well with the default tasks in Figure 2.

3.4. Implementation Details

AutoPET. In order to ensure a fair comparison between
models, we use the same (811 training + 203 testing) sam-
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Figure 3. Different locations in the model to share the parameters between the modality-specific branches. Shared layers are colored

orange. The set of layer indices L C {1...8} are aligned with the layers via horizontal dashed lines. Best viewed in color.

ples of AutoPET [10] for all models. We utilize Standard-
ized Uptake Values (SUV) of PET scans to reduce inter-
patient variation. CT and PET volumes have a voxel size
of 2.0mmx2.0mmx3.0mm and the values are clipped to
[-100, 250] and [0, 15] for CT and PET respectively. All
values are then scaled to [0, 1]. We employ a sliding win-
dow inference model by randomly sampling patches of size
[96, 96, 96] with a p = % probability of containing a tu-
mor. We train using Adam [24] with a learning rate of 1073,
weight decay of 1076, and batch size of 4 for 400 epochs.
For Equations 1-3, we set Aree = 1074, Ajeg = 0.5, Aclass =
10~3. Encoder and decoder layers have a kernel size of 3
and stride of 2. Unless otherwise stated, the same data pre-
processing is used for comparison to other methods.

MSD BrainTumor. We use the same (484 training + 266
testing) samples all models. We train Mirror U-Net using
whole MRI volumes with a patch size of [224, 224, 144],
with a voxel size of 1.0mmx 1.0mmx 1.0mm and normalize
the intensity for each modality using z-score normalization.
We use the same optimization and model hyperparameters
as in our AutoPET [10] experiments.

4. Experiments and Results
4.1. Task Combinations and Weight Sharing

Quantitative Results. Table 2 presents the results on
AutoPET [10] for all Mirror U-Net versions (vl)—(v4) and
all weight-sharing variants L. We observe three tendencies:

(1) Self-Supervision. Firstly, regularizing the recon-
struction by adding noise or voxel shuffling in (v1)-(v3)

Comprasion of the self-supervision methods for Mirror U-Net (v1)-(v3)

661 Self-Supervision
_L12 ‘
= L2 + Noise
6al= L2 + Shuffling —

Dice score
>
2

@
3

@
3

(v1) (v2) (v3)

Figure 4. Comparison between the self-supervision methods used
in Mirror U-Net (v1)—(v3). Each box aggregates results from all
weight-sharing combinations L.

leads to a consistent improvement regardless of the shared
layers L, where voxel shuffling achieves the best results.
Figure 4 also confirms this tendency and shuffling shows
the lowest sensitivity to changes in shared layers L, indi-
cated by the lower variance in the box plot, making it not
only the best performing but also the most robust method.

(2) Weight Sharing. Secondly, sharing only the bottle-
neck layer (L = {5}) results in the best results for all multi-
task settings. Figure 5 shows that the performance behaves
similarly for all (v1) — (v4) when varying shared layers L.
Sharing shallower, deeper, or multiple layers decreases the
performance significantly. The reason for this may be that
shallow layers are more modality-specific and deep layers
are more task-specific. Sharing such layers does not allow
the network to specialize on either the modality or task.

(3) Adding Tasks. Thirdly, Figure 5 and Table 2 show
that each Mirror U-Net version consistently outperforms
the last (v4) < (vl) < (v2) < (v3), with the exception of
one (v4) outlier. The multi-task settings (v1) — (v3) share
a similar design and build on top of each other by adding
new tasks. Hence, incrementally adding meaningful tasks
to Mirror U-Net leads to a consistent improvement, regard-
less of the shared layers L.

Ablation (v4) Results. The results in Table 2 show that
the optimal fusion parameter 6 strongly varies for different
shared layers. We also train models by setting 6 as a learn-
able parameter to avoid manual tuning. However, the best
scores are achieved with a fixed threshold. Figure 6 shows
that sharing layers near the bottleneck (L = {5}) leads to

Comparison between Mirror U-Net versions (v1)-(v4)
—e— Ablation (v4)
v1)

77 N - 2
65 / ? - (v3)

Dice score

=03} ={a} L={5} L={6} L={7} L={d56}  L={34567}

Figure 5. Comparison between all Mirror U-Net versions. The
x-axis represents the different weight-sharing schemes. The dots
represent the best-performing models for each pair of multi-task
settings and weight-sharing scheme, i.e., bold numbers in Table 2.
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Shared Layers L
Mliﬁ:rr;ifet Parameters | L= {3} | L={d} | L={5} | L={6} | L={7} | L={4,5.6} | L= {3,4,5,6,7)}
%) 5739 | 6288 | 6192 | 6191 | 6206 62.08 58.06
1) L24noise | 5976 | 6283 | 6234 | 6221 | 62.65 62.36 60.86
L2+ shuffling | 6275 | 6397 | 6457 | 6380 | 63.09 63.01 62.72
L2 5842 | 6334 | 6215 | 6174 | 6224 62.49 59.00
v2) L2+noise | 5996 | 6400 | 62.62 | 6221 | 62.85 63.01 61.44
L2+ shuffling | 63.5 | 64.28 | 6550 | 64.08 | 63.69 63.29 63.33
2 59.02 | 6336 | 6278 | 6225 | 6301 63.22 60.01
v3) L2+noise | 6023 | 6433 | 63.01 | 6280 | 6322 63.30 60.51
L2+ shuffting | 6333 | 6455 | 6591 | 6444 | 64.00 63.43 63.34
F=01 5961 | 6378 | 63.65 | 6323 | 60.58 61.79 60.81
0=02 5865 | 6266 | 6424 | 6335 | 62.30 63.99 56.79
. 0-03 6167 | 6376 | 6422 | 6226 | 61.89 61.33 5821
0 =04 5895 | 6293 | 5843 | 63.64 | 56.15 60.69 59.40
0=05 5986 | 6184 | 61.00 | 6248 | 6038 60.51 57.79
Leamable 6 | 6089 | 60.94 | 6081 | 5848 | 36.52 59.63 47.42

Table 2. Comparison between all Mirror U-Net versions (v1) — (v4) for all weight-sharing variants L. The best Dice score in each box is in
bold. The best Dice score for each Mirror U-Net version (v1) — (v4) is underlined.

Metric Baselines Mirror U-Net (Ours)

CT PET EF MF  LF-Logit LF-U LF-n | (vl) (v2) (v3)  Ablation (v4)
Dice T | 26.00 60.99 54.89 55.53 57.41 59.89  21.60 | 64.57 65.50 65.91 64.24
FPV | | 15.64 538 498 4.77 4.88 3.95 1.67 | 293 283 1.55 2.93
ENV | | 4415 215 3.13 3.02 2.88 301 99.74 | 1.66 094 0.76 1.99

Table 3. Comparison to the baselines with the same U-Net backbone as Mirror U-Net. EF: Early, MF: Middle, LF: Late Fusion.

both a higher average performance and a lower sensitivity
to changes in 6. Sharing more than one layer leads to a
sharp performance loss. This observation is consistent with
the findings in Figure 5, which further confirms that sharing
only the bottleneck improves not only the performance but
also the robustness to parameter changes.

Qualitative Results. Figure 7 presents the qualitative re-
sults for each branch of Mirror U-Net (v1) — (v4) and gives
insight into what each branch has learned.

Versions (v1) — (v3). As voxel shuffling is the best self-
supervision strategy we only include one example for Gaus-
sian noise supervision in (vl)-noise. In the (v1)-noise row,
we observe that the CT branch successfully reduces a sig-
nificant portion of the noise, but struggles with black voxels
within the body. On the other hand, in the (v1)-shuffle row,
Mirror U-Net restores some edges from the shuffled vox-
els, which requires the model to remember the structures
present within the CT. This leads to a better representa-
tion and segmentation results. Moreover, in the (v2)-shuffle
model, we reconstruct the PET data from the bottleneck,
which is much coarser due to the lack of skip connections.
Despite this, the reconstruction includes the regions with
the highest metabolic activity, resulting in significantly bet-
ter segmentation. Finally, in (v3)-shuffle, we add a clas-
sification head and the PET reconstruction contains only
three regions: the brain, bladder, and the spatial location
of the lesions, resulting in much finer boundaries compared
to (v2)-shuffle. This refinement leads to a more accurate
spatial attention encoded in the bottleneck, as evidenced by
the well-delineated lesions in the final segmentation.

Ablation (v4). Since lesion boundaries can be hard to

discern in CT scans, the CT branch in (v4) produces a seg-
mentation mask that covers a large portion of the body.
However, this mask excludes organs with high metabolic
activity, such as the brain, liver, heart, and urinary bladder.
On the other hand, the PET branch captures regions with
high metabolic activity, including the brain and bladder.
Combining the logits from the final layers of each branch
results in a fused prediction that better matches the ground-
truth mask. These results suggest that the CT branch is
not well-suited for segmentation, however, Mirror U-Net’s
simple architecture allows the CT branch to provide spatial
guidance for the PET branch by highlighting regions that
are likely to contain lesions and filtering unlikely regions,
such as the brain and bladder.

Overall, our qualitative results demonstrate that Mirror
U-Net utilizes the complementary nature of CT and PET
images and successfully transfers knowledge via the shared

Influence of 8 on Mirror U-Net Ablation (v4)
2

56
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Figure 6. Influence of the fusion parameter € on the different
weight-sharing schemes for the Decision Fusion setting. Each box
aggregates results for 6 € [0.1,0.5].
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Figure 7. Qualitative results from our multi-task experiments. The last column refers to either the #-combination of the CT and PET
branches from (v4) or to the output of the bottleneck decoder D g7y, in (v2), (v3). The final segmentation for each version is in a red box.

features to improve the primary segmentation task.

4.2. Comparisons to Other Approaches

Comparison to Baselines. We compare Mirror U-Net to
several baselines — traditional early (EF), middle (MF), and
late fusion (LF), as well as a unimodal U-Net [37] trained
solely on either CT or PET data. We compare to three late
fusion variants: sum of logits (LF-Logits), and predictions’
union (LF-U) or intersection (LF-N). We use the Dice score
and the average false positive (FPV) and false negative vol-
umes (FNV) as evaluation metrics, which measure the av-
erage volume of over- (FPV) and under-segmented (FPN)
regions in mm?>. The results, presented in Table 3, show
that the unimodal CT model has poor performance, as le-
sions are hardly visible in CT scans, which limits its poten-
tial as a standalone modality. The unimodal PET model, on
the other hand, outperforms all traditional fusion strategies,
highlighting the limitations of traditional fusion in effec-
tively combining PET and CT features without extensive
fine-tuning. However, the PET model has a higher FPV
since it is challenging to distinguish lesions from highly ac-
tive organs based solely on PET data. The union late fusion
achieves the highest Dice score among the fusion baselines,
whereas the intersection late fusion has the lowest FPV due
to the limited agreement between PET and CT predictions.

All variants of Mirror U-Net consistently outperform the
baseline methods on all metrics.

Comparison to Related Work. Our main contribution
is the combination of multimodal fission and multi-task
learning. Therefore, we compare Mirror U-Net to related
methods that utilize only fission, only multi-task learning,
or neither approach. For the neither category, we com-
pare Mirror U-Net to nnUNet [17], a standard benchmark
for medical segmentation. Additionally, we include Black-
bean [47], the winner of the AutoPET 2022 challenge, to
demonstrate state-of-the-art performance on AutoPET [10].

In the multi-task-only category, we compare to related
approaches using multi-task learning and multimodal fu-
sion. SF-Net [27] utilizes a decoder branch to reconstruct
an image fusion of Tlc and T2 MRI while preserving the
structures of both modalities via an L2 and SSIM loss [48].
Andrearczyk et al. [1] and DeepMTS [31] utilize feature
maps from a U-Net model [37] to train a classifier for sur-
vival prediction. Weninger et al. [44] utilize reconstruction
and tumor classification (enhancing or non-enhancing) to
regularize an early fusion U-Net model [37]. Lastly, we
conduct an ablation study where we only use either CT or
PET-only data in all branches in (v1)-(v3) to show that the
presence of both modalities is necessary for Mirror U-Net.

For the fission-only category We compare to the single-
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Method Dice 1 | FPV | | ENV | Tasks Multimodal Fission | Multi-task
nnUNet [17] 62.75 2.83 1.59 Seg

Blackbean [47] 63.15 2.55 1.76 Seg

SF-Net [27] 61.21 3.44 2.95 Seg + Rec N
Andrearczyk et al. [1] 61.45 2.98 1.89 Seg + Class N
DeepMTS [31] 61.91 322 2.76 Seg + Class v’
Weninger et al. [44] 61.22 3.98 2.82 Seg + Rec + Class N
CT-only Mirror U-Net (v3) 12.37 28.24 50.02 | Seg+ Rec + Class N
PET-only Mirror U-Net (v3) 56.14 4.81 3.02 Seg + Rec + Class v’
Mirror U-Net (v4) 64.24 2.93 1.99 Seg N

Valindria et al. [42] 39.84 7.89 17.00 Seg v’

(Ours) Mirror U-Net (v3) 65.91 1.55 0.76 Seg + Rec + Class v’ v’

Table 4. Comparison to related fission-only and multi-task only methods and to the current state-of-the-art on the AutoPET dataset [10, 47].

task model of Valindria ef al. [42] which uses a similar ar-
chitecture to Mirror U-Net, but alternates between modal-
ities during each iteration and uses both branches for seg-
mentation. We also consider Mirror U-Net (v4) as a fission-
only method as it only has one segmentation task.

We train and evaluate all models on the same 80/20 train-
ing/validation split and use the same data preprocessing as
Mirror U-Net, except for nnUNet [17] and Blackbean [47],
which require specific preprocessing steps. The results in
Table 4 show that Mirror U-Net consistently outperforms all
other models, demonstrating state-of-the-art performance
on AutoPET [10]. This underscores the power of combin-
ing multimodal fission with multi-task learning, highlight-
ing the efficacy of our proposed method.

4.3. Generalizing to Brain Tumor Segmentation

We compare Mirror U-Net (v2) to nnUNet [17], Seg-
ResNet [35], which is the winner of the Brain Tumor Seg-
mentation BraTS 2018 challenge, and to Mirror U-Net (v1)
and (v2)-rec as ablations. Our findings, shown in Table 5,
demonstrate that Mirror U-Net outperforms all other meth-
ods on all 3 tumor classes. Notably, we observe a signifi-
cant performance drop when the bottleneck task is omitted
in Mirror U-Net (v1l). Using the default tasks in (v2)-rec
achieves the second-best results for tumor core and edema
segmentation. However, unlike CT, both FLAIR and T1Gd
modalities have a strong signal, making segmentation tasks
more suitable than the default reconstruction.

In Figure 8, we show that the bottleneck layer has
learned a coarse segmentation mask of the whole tumor,
with some over-segmentation. However, this coarse seg-
mentation mask provides valuable spatial guidance for the
edema and core segmentation tasks, resulting in a much
finer final segmentation of the whole tumor. These qual-

R EA R

FLAIR TiGd Edema
Figure 8. Qualitative results for Mirror U-Net (v2) on brain tumor
segmentation. The final whole tumor prediction is in a red box and
is obtained by the union of the edema and tumor core predictions.

Tumor Core Bottleneck Whole Tumor

itative results, combined with our quantitative findings in
Table 5, suggest that Mirror U-Net has the potential to gen-
eralize well to other imaging modalities and tasks beyond
the specific PET/CT segmentation task studied in this work.

Dice 1
Method Whole Tumor | Edema | Tumor Core
Mirror U-Net (v1) 88.37 7191 82.22
Mirror U-Net (v2)-rec 91.12 77.12 84.56
nnUNet [17] 89.10 76.35 84.05
SegResNet [35] 91.29 77.01 84.22
(Ours) Mirror U-Net (v2) 92.52 78.12 85.84

Table 5. Comparison to other methods on MSD BrainTumor [2].

5. Conclusion and Discussion

In summary, we propose Mirror U-Net, which combines
multimodal fission and multi-task learning for the first time.
Our model outperforms traditional fusion methods as well
as fission-only and multi-task-only approaches on the Au-
toPET 2022 Challenge and shows state-of-the-art perfor-
mance, which demonstrates the power of combining fission
with multi-task learning. Our results indicate that sharing
only the bottleneck layer is optimal while sharing shallower
or deeper layers leads to a performance drop. We also
demonstrate the generalizability of Mirror U-Net to brain
tumor segmentation from multimodal MRI scans. Our qual-
itative experiments reveal that selecting appropriate tasks
improves performance as the shared representation learns
a spatial guidance that boosts the primary segmentation
task. Our model’s robustness to hyperparameter changes
and high performance is a promising step toward deploying
PET/CT segmentation models in clinical practice.
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