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Abstract

Spatial transcriptomics is an emerging technology that
aligns histopathology images with spatially resolved gene
expression profiling. It holds the potential for understand-
ing many diseases but faces significant bottlenecks such as
specialized equipment and domain expertise. In this work,
we present SEPAL, a new model for predicting genetic pro-
files from visual tissue appearance. Our method exploits
the biological biases of the problem by directly supervis-
ing relative differences with respect to mean expression,
and leverages local visual context at every coordinate to
make predictions using a graph neural network. This ap-
proach closes the gap between complete locality and com-
plete globality in current methods. In addition, we propose
a novel benchmark that aims to better define the task by
following current best practices in transcriptomics and re-
stricting the prediction variables to only those with clear
spatial patterns. Our extensive evaluation in two different
human breast cancer datasets indicates that SEPAL outper-
forms previous state-of-the-art methods and other mecha-
nisms of including spatial context.

1. Introduction

Histopathology is the study of diseases in tissues through

microscopic sample examination. Among the different

staining methods, Hematoxylin and Eosin (H&E) is the

most common one and is currently considered the gold stan-

dard for diagnosing a wide range of diseases [27, 25, 22].

More recently, this approach has been complemented with

molecular biomarkers, such as mRNA expression profiling,

offering high specificity and the ability to directly predict

prognosis and determine treatments [26, 4]. Interestingly,

these two data types prove complementary: while H&E

imaging lacks the specificity of transcriptomics, gene pro-

filing lacks the physiological insights derived from mor-

phology. By aligning dense spatial mRNA profiling with

*These authors contributed equally to this work

H&E histopathological images, Spatial Transcriptomics

technologies (ST) provide comprehensive insights into the

spatial organization of gene expression within tissues [3].

The advent of direct gene expression assessment on tis-

sue harbors the potential for an unprecedented understand-

ing of the mechanistic causes behind many diseases. How-

ever, obtaining these datasets in real clinical practice en-

counters major bottlenecks, primarily stemming from the

need for specialized equipment, domain expertise, and con-

siderable time requirements [32]. To overcome these bur-

dens and leverage the fact that H&E images are ubiquitous

in medical settings, the computer vision community has re-

cently delved into predicting gene expression from tissue

images. Although various works demonstrate promising re-

sults [21, 19, 2, 10, 30, 31], existing methods are still far

from clinical deployment.

Upon closer examination of the problem, it becomes ev-

ident that changes in gene expression are typically associ-

ated with alterations in tissue appearance. However, it is

important to note that this correlation does not necessarily

apply to all genes. For example, constitutive genes that ex-

hibit constant expression within the spatial context [6] are

unsuitable for prediction based solely on visual informa-

tion. Hence, methods should focus on genes with a veri-

fiable dependence on tissue appearance for the task to be

well defined. Another challenge lies in the scarcity of data.

The current publicly available datasets encompass 2 − 70
Whole Slide Images (WSI) with 5, 000− 15, 000 genes for

a set of 300− 3500 coordinates, depending on the technol-

ogy [3]. Consequently, generating such high-dimensional

predictions with such limited samples is intrinsically dif-

ficult. Finally, as the technology is still in development,

ground-truth data is sparse and noisy; specifically, pepper

noise is observed in the expression maps [32].

Current approaches present a dichotomy between com-

plete globality, which uses the WSI to jointly predict an

expression map for all the coordinates at once (WSI-based

methods [21, 19, 2], Fig.1.A), and complete locality, which

only uses visual information available at each coordinate to

predict gene expression (patch-based methods [10, 30, 31],

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. Different approaches for predicting gene expression from tissue images. The inputs of each model type are enclosed by a black

frame. (A) Global methods analyze a whole slide image and make a prediction about the tissue expression in every spot at once. (B) Local
methods process the image by patches and predict the expression of each individual patch, one at a time. (C) SEPAL uses graphs that

contain information from multiple patches to represent spatial information and predict gene expression for the central node of each graph.

Fig.1.B). While complete globality leverages spatial infor-

mation and long-range interactions, it suffers from severe

data scarcity, making models prone to overfitting. In con-

trast, complete locality benefits from abundant data for deep

learning training but disregards spatial relations, resulting in

suboptimal performance.

To overcome these challenges, we propose a new prob-

lem formulation, benchmark, and state-of-the-art method

for Spatial Expression Prediction by Analysing Local

graphs (SEPAL). Our problem formulation strategically ex-

ploits the biological nature of the problem; our benchmark

uses a robust bioinformatic pipeline to overcome acquisi-

tion issues; and our model bridges the gap between locality

and globality by performing local spatial analysis.

In terms of problem formulation, we leverage a domain-

specific advantage: the expression of a gene is expected to

be within a specific range of values, and the variations in-

side that range are the ones with physiological significance.

Rather than solely focusing on the absolute value of gene

expression, we exploit this knowledge by bounding the pre-

diction space within a defined box and using its center as

an inductive bias. By estimating this bias from the training

data, we can focus on learning relative differences instead

of absolute values. Specifically, we supervise expression

changes with respect to the mean expression of each gene

in the training dataset. This novel approach differs from

previous works since they directly predict the absolute gene

expression.

We build our benchmark by first incorporating standard

bioinformatic processing normalizations (TPM [1]), which

were previously lacking. Then, we apply a modified ver-

sion of an adaptive median filter [5] to manage the pepper

noise. And finally, to ensure the selection of relevant pre-

diction genes, we filter by Moran’s I [18] value, a statistic

designed to identify significant spatial patterns over a graph.

By leveraging Moran’s I, we ensure our focus remains on

genes that depend on tissue appearance.

Lastly, we introduce a novel approach that harnesses the

power of local spatial analysis. Our strategy starts with a

completely local learning stage and then integrates informa-

tion from local neighborhoods surrounding each patch with

the help of a graph neural network (GNN, see Fig.1.C). Our

key hypothesis is that gene expression is predominantly in-

fluenced by nearby visual characteristics rather than long-

range interactions. SEPAL benefits from the advantages of

local-based and global-based training (spatial relations and

enough data) without succumbing to their respective limi-

tations. We conduct extensive experimentation on two dif-

ferent human breast cancer datasets obtained with different

technologies and report favorable results relative to existing

techniques.

Our contributions can be summarized as follows:

• We propose a paradigm shift to supervise gene expres-

sion changes relative to the mean rather than absolute
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values.

• We propose a benchmark that follows current best

practices in transcriptomics, deals with pepper noise,

and restricts prediction genes to only those with clear

spatial patterns.

• We develop a new state-of-the-art method that applies

local spatial analysis via graph neural networks.

To promote further research on ST, our project’s bench-

mark and source code is publicly available at https:
//github.com/BCV-Uniandes/SEPAL.

2. Related Work
Multiple approaches have been proposed to tackle the

gene expression prediction task, with works focusing on

different aspects of the visual data. State-of-the-art meth-

ods can be divided into two paradigms: global (WSI-based)

and local (patch-based) focused.

2.1. Global Methods

Global methods predict the gene expression of all the

spots of a WSI at once, meaning that their input corresponds

to the complete data from a high-resolution histopathology

image. The most notable work of this family of methods is

HisToGene [19], which receives a WSI and divides it into

patches that are represented through image and positional

embeddings fed to a Vision Transformer (ViT) architecture

[7].

The mechanism in HisToGene enables the model to con-

sider spatial associations between spots [19]. Nonetheless,

this method demands many WSIs, posing a challenge as

WSIs are often scarce in most datasets. Additionally, pro-

cessing the entire WSI incurs in a high computational cost.

Therefore, we propose a more efficient spatial analysis at a

smaller scale. Instead of using an entire sample as a sin-

gle data element, we adopt a patch-based strategy, enabling

us to execute predictions one patch at a time. This gran-

ular approach not only conserves computational resources

but also mitigates the overfitting risks associated with using

large WSIs.

2.2. Local Methods

Unlike global methods, local methods estimate the gene

expression one spot at a time by dividing the WSI into in-

dividual patches. Some examples of this approach include

STNet [10], EGN [30], and EGGN [31]. The focal point of

local methods is the visual information in the patch of inter-

est, and they do not take into consideration characteristics

such as the vicinity of the patch or long-range interactions.

For instance, STNet [10], which is one of the most popu-

lar methods, formulates the task as a multivariate regression

problem, and its architecture consists of a finetuned CNN

(DenseNet-121 [11]) whose final layer is replaced with a

linear layer that predicts the expression of 250 genes. A

characteristic strategy of STNet is that during inference, it

predicts the gene expression for 8 different symmetries of

that image (4 rotation angles and their respective reflec-

tions) and returns the mean result as the final estimation.

This model generalizes well across datasets and has high

performance when predicting the spatial variation in the ex-

pression of well-known cancer biomarkers [10].

Other examples of this approach include EGN [30] and

its upgraded version, EGGN [31]. The core of these meth-

ods is exemplar guidance learning [30], a tool that they

apply to base their predictions on the expressions of the

patches that are most visually similar to the patch of in-

terest. These reference patches are known as the exemplars

and correspond to the nearest neighbors of a given patch in

the latent space of an image encoder. The difference be-

tween these two models lies in the main processing of the

input, where EGN uses the exemplars to guide a ViT [7],

while EGGN uses the exemplars to build visual similarity

graphs that are fed to a GraphSAGE-based backbone [9].

The key hypothesis of EGN and EGGN is that simi-

lar images have similar gene expression patterns, no mat-

ter their location within a tissue. Nevertheless, depending

on the scale of the patches, this assumption could neglect

their local context. For instance, if each patch contains

a single cell, several similar patches with different physi-

ological contexts might differ in their transcriptomic pro-

file. Thus, for our approach we choose to guide our model

with spatially close patches rather than with visually similar

patches. When we consider the surroundings of a specific

patch, we take into account its location within the tissue and

the possible differences in its biological profile. As a result,

we tackle the potential limitation that the scale of the input

could impose.

3. SEPAL
3.1. Problem Formulation

Given an input image patch X ∈ R
[H,W,3], and k spatial

neighbors Z ∈ R
[k,H,W,3], we want to train an estimator

Fθ(·) that predicts the difference between the gene expres-

sion y of patch X and the mean expressions in the training

set ȳtrain. Consequently, we aim to optimize a set of param-

eters θ∗ such that:

Fθ∗(X,Z) ≈ Δy = y − ȳtrain (1)

Where, Δy ∈ R
[ng,1] is the difference between ȳtrain ∈

R
[ng,1] and the real gene expression y ∈ R

[ng,1] of the

patch. This paradigm shift of predicting Δy instead of y,

has the purpose of allowing our method to focus directly on

the nuances in the data since we are centering the dynamic

range of the prediction space around zero.
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3.2. Architecture Overview

SEPAL is comprised of two stages: local learning and

spatial learning, which are shown in Fig.2. While local

learning follows the classic approach of finetuning and im-

age encoder, the spatial learning of SEPAL relies on repre-

senting the input patch and its neighbors as a graph, where

the central node corresponds to the image for which we

want to predict the gene expression. With this represen-

tation, our model has access to the visual features in the

current location and in its surroundings.

Prior to the construction of the graphs, in the first stage

of our proposal (Fig.2.A), we train a feature extractor I(·)
to process an input image patch X and return a low-

dimensional embedding Iemb ∈ R
[demb,1]. Besides, this mod-

ule also outputs a local prediction Δŷi ∈ R
[ng,1] obtained

by applying a linear layer L(·) to Iemb as follows:

I(X) = Iemb (2)

L(Iemb) = Δŷi ≈ y − ȳtrain (3)

Consequently, the preliminary prediction Δŷi is com-

pletely based on X and is later refined in the spatial learning

stage. After training I(·), we fix it and use it to obtain the

visual features of all the patches in the dataset. We integrate

these embeddings, together with a transformer-like posi-

tional encoding, to construct a local neighborhood graph

G(X) for each patch (Fig.2.B).

Lastly, in the spatial learning stage (Fig.2.C), input

graphs are processed by a GNN Module to obtain a spatial

correction vector ŝ ∈ R
[ng,1] which is then added to Δŷi to

obtain Δŷ. This spatially aware prediction is summed with

the bias ȳtrain to present the final gene expression estimation

ŷ for the input patch:

Δŷ = ŝ+Δŷi (4)

ŷ = Δŷ + ȳtrain (5)

3.3. Graph construction

The process of building the graphs is shown in Fig.2.B

and aims to follow the spatial connectivity of the WSI.

Therefore, for a patch of interest X , we first select the k
neighbors within an m−hop vicinity of X . For example,

in Fig.2B m = 1 and k = 6 because of the hexagonal co-

ordinate geometry. We join the patch and its neighbors in

a single set P = {X,Z} ∈ R
[k+1,H,W,3] and compute the

visual embedding matrix Mi ∈ R
[demb,k+1] using our frozen

image encoder I(·). Additionally, to enrich the spatial in-

formation beyond the topology of our graphs, we calculate

a positional embedding Epos ∈ R
[demb,1] for each patch in P

using the 2D transformer-like positional encoder from [29].

The inputs of that encoder are the relative coordinates of

each neighbor w.r.t. the center patch. This computation

gives us a positional matrix Mp ∈ R
[demb,k+1] that is added

with Mi to give the final graph features M . Summarizing,

we define graphs as:

G(X) = G(P,E,M) (6)

M = Mi +Mp (7)

Where E is a binary and undirected set of edges defined

by dataset geometry.

3.4. Spatial Learning Module

Once a graph G(X) is fed to the spatial learning

module, it is passed through a series of h Graph Con-

volutional Operators (GNNi(·)) with a sequence C =
{demb, c1, c2, . . . , ch−1, ng} of hidden channels following

the recursive expression:

g0 = G(X) (8)

gi+1 = σ (GNNi(gi)) (9)

ŝ = Pooling(gh) (10)

Where gi is the representation of G(X) at layer i ∈
{0, 1, 2, . . . , h}, σ(·) is an activation function, and the

Pooling(·) operator represents a global graph pooling op-

erator. The correction vector ŝ represents the contribution

of local spatial information to the final prediction.

4. Experiments
4.1. Datasets

We evaluate our performance in two breast cancer

datasets produced with different technologies: (1) the 10x

Genomics breast cancer spatial transcriptomic dataset [Sec-

tion 1, Section 2] (referred to as Visium because of the ex-

perimental protocol), and (2) the human breast cancer in

situ capturing transcriptomics dataset [24, 23] (referred to

as STNet dataset because of the first deep learning method

that used this data). The Visium dataset contains two slide

images from a breast tissue sample with invasive ductal car-

cinoma from one patient, each with 3798 and 3987 spots

of ≈ 55μm detected under the tissue. On the other hand,

STNet dataset consists of 68 slide images of H&E-stained

tissue from 23 patients with breast cancer and their cor-

responding spatial transcriptomics data. Specifically, the

number of spots of size ≈ 150μm varies between 256 and

712 in each replication, so the complete dataset contains

30, 612 gene expression data points with their respective

spatially associated image patch. For both datasets, we take

reshaped patches to a [224, 224, 3] dimension as input for

SEPAL.

4.2. Benchmark

To design a robust benchmark, we focus on three main

characteristics: (1) a bioinformatic pipeline or par with cur-

rent best practices in transcriptomic analysis, (2) a pepper
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Figure 2. (A)First stage of our proposal. Pretraining of the Image Encoder I(·) and a linear layer L(·) to output the Image Embedding

(Iemb) of a patch X , along with a preliminar prediction Δŷi of the difference between the expression in the patch and the mean expression

in the train dataset. (B) The Graph Construction process begins with an image patch of interest and its spatial neighbors to build the graph

representation based on the patch embeddings returned by the frozen I(·) and the positional encoding of each neighbor. (C) Architecture

of the spatial learning module, which receives as input a Spatial Graph of the patch neighborhood and applies a GNN to predict the spatial

correction ŝ that further improves the Δŷi to get the Δŷ associated to the center patch of the graph and obtain the final gene expression

prediction ŷ.

noise filter to improve data quality and allow better model

training, and (3) a selection strategy to ensure that all genes

have spatial patterns.

In terms of the processing pipeline, we first filter out

both genes and samples with total counts outside a defined

range (See Supplementary Table 1 for detailed values in

each dataset). Then, we discard genes based on their spar-

sity. Here, we ensure that the remaining variables are ex-

pressed in at least εT percent of the total dataset and εWSI

percent of each WSI. Following the filtering, we perform

TPM [28] gene normalization and a log2(x + 1) transfor-

mation.

To address pepper noise, we applied a modified version

of the adaptive median filter [12]. Shortly, for each zero

value in a gene map, we replace it with the median of a

growing circular region around the interest patch up to the
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7th unique radial distance. If no value is obtained at the

end of this process, we assign the median of nonzero en-

tries of the WSI. The results of this procedure can be appre-

ciated for a particularly noisy gene map in Figure 3. It is

worth noting that the percentage of imputed values is 5.3%
and 26.0% for the Visium and STNet datasets, respectively,

as we have already filtered genes based on their sparsity

(εT , εWSI ).

Once the bioinformatic pipeline and the denoising pro-

cedure are complete, we select the final prediction variables

with the help of Moran’s I [18]. This statistic is a spatial

autocorrelation measure and can detect if a given gene has

a pattern over spatial graphs. The closer its value to one,

the more autocorrelated the variable is. For our benchmark,

we compute Moran’s I for every gene and WSI and average

across the slide dimension. We select the top ng = 256
genes with the highest general Moran’s I value as our fi-

nal prediction variables (See supplementary Figures 4-7).

Finally, if batch effects are observed in UMAP [17] embed-

dings (Supplementary Figures 1-3) of the data (only seen in

the STNet dataset), they are corrected with ComBat [13].

Summarizing, the processed Visium and STNet datasets

have a total of 7,777 and 29,820 samples, respectively,

along with a set of 256 prediction genes. As the Visium

dataset only contains two WSIs, we use one for training

(3795 samples) and the other one as the validation/test set

(3982 samples). For the STNet dataset, from the 23 pa-

tients, we randomly choose 15 for training (20,734 sam-

ples), 4 for validation (3,397 samples), and 4 for testing

(5,689 samples).

4.3. Evaluation Metrics

We use three standard metrics in multivariate regres-

sion problems: global standard errors (MSE, MAE), Pear-

son Correlation Coefficients (PCC-Gene, PCC-Patch), and

linear regression determination coefficients (R2-Gene, R2-

Patch). Both PCC and R2 have gene and patch variants

since they address two aspects of the problem. The gene

type metrics aim to quantify how good expression maps

are in general, while the patch type metrics evaluate how

good multiple gene predictions are for a specific patch. For

instance, to compute PCC-Gene, we obtain PCC values

for each one of the ng gene maps and then average over

the gene dimension. Conversely, computing PCC-Patch in-

volves calculating PCC values for each patch and the aver-

age over that dimension. Importantly, the imputed values

are ignored for metric computation, and consequently, per-

formance measurements are based exclusively on real data.

4.4. State-of-the-art Methods

We compare SEPAL to four of the most popular meth-

ods in this task, including three local options (STNet, EGN,

EGGN), as well as one global method (HisToGene). For a

Figure 3. Example of the pepper denoising for a specific gene map

in the Visium dataset.

fair comparison, we choose the best performance between

50 different training protocols. If the method allows batch

size as a hyperparameter (STNet, EGN), we test combina-

tions with an empirical Bayes approach by selecting learn-

ing rates in the logarithmic range [10−2, 10−6] and batch

sizes from the list [32, 64, 128, 256, 320]. If the method

only accepts the learning rate, we perform a logarithmic

grid search within the range [10−2, 10−6]. Both the best

epoch during training and the best model of the sweep are

selected based on the validation MSE. The only exception

to this protocol (due to computational cost) is the STNet

method in the STNet dataset, for which we report the best

between the original hyperparameters and the best Visium

hyperparameters.

4.5. Architecture Optimization

We extensively experiment with our spatial module, aim-

ing to select the most effective architecture to integrate lo-

cal information. For this purpose, we: (1) optionally intro-

duce pre-processing and post-processing stages via multi-

layer perceptrons of varying sizes, (2) allow the positional

encoding to be added or concatenated during the graph con-

struction, (3) change the number of hops m from one to

three, (4) try six different convolutional operators, and (5)

vary the hidden dimensions h of our graph convolutional

network going from one to four layers. Furthermore, we

train all architecture variations with 12 different settings

of learning rate and batch size. For a detailed explanation

of every tunned hyperparameter, we refer the reader to the

Supplementary Material (Sec. 2).

4.6. Implementation Details

After comprehensive experimentation (Supplementary

Material Sec. 3), we choose ViT-B-16 [7] as our im-

age encoder. We use ELU as our activation function, and

SAGPooling [16] as our pooling function. We train in

the denoised version of the dataset but only use real data

for metric computation during inference. We implement

SEPAL using Pytorch [20] and Pytorch geometric [8] for

graph operators. All experiments run on a single NVIDIA
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Quadro RTX 8000 GPU.

5. Results
Table 1 presents the final hyperparameter configurations

of SEPAL for the Visium and the STNet datasets.

Hyperparameters STNet Dataset Visium

Number of hops 1 3

Embeddings aggregation Sum Concat

Graph operator GraphConv[14] GCNConv[15]

Preprocessing Stage - demb, 512

Graph hidden channels demb, 256 512, 256, 128

Postprocessing Stage - 128, 256

Learning rate 10−4 10−5

Batch size 256 256

Table 1. Hyperparameters with the best performance for both

datasets.

5.1. Main Results

Local Global Hybrid

Method STNet [10] EGN [30] EGGN [31] HisToGene [19] SEPAL SEPAL*

V
is

iu
m

MAE 0.654 0.659 0.645 0.665 0.630 0.636

MSE 0.762 0.772 0.736 0.784 0.708 0.717

PCC-Gene 0.300 0.314 0.313 0.199 0.383 0.353

R2-Gene 0.053 0.038 0.070 0.024 0.106 0.091

PCC-Patch 0.924 0.922 0.926 0.921 0.928 0.927

R2-Patch 0.843 0.841 0.846 0.839 0.853 0.851

S
T

N
et

d
at

as
et

MAE 0.560 0.520 0.550 0.529 0.519 0.527

MSE 0.537 0.480 0.549 0.493 0.478 0.489

PCC-Gene 0.030 0.064 0.011 -0.007 -0.004 0.002

R2-Gene -0.165 -0.037 -0.228 -0.066 -0.028 -0.052

PCC-Patch 0.910 0.911 0.908 0.911 0.911 0.911
R2-Patch 0.779 0.806 0.780 0.799 0.809 0.802

Table 2. Quantitative comparison with state-of-the-art methods on

Visium and STNet datasets. The best performance is written in

bold, and the second best result is underlined for each metric.

*: SEPAL architecture with optimal parameters from the other

dataset

Table 2 depicts the performance of local and global state-

of-the-art methods against SEPAL on the Visium and STNet

datasets. Our method consistently outperforms these meth-

ods on all but one evaluation metric. In particular, we at-

tend primarily to the standard error metrics and find that

SEPAL presents significant improvements on the Visium

dataset and performance on par with state-of-the-art for the

STNet dataset. Likewise, the R2 metric calculated on the

genes increases for both datasets when using SEPAL.

Furthermore, we find that calculating the PCC and the

R2 metrics in a gene-wise fashion results in a remarkably

poorer performance compared to the patch-wise evaluation.

This means that predicting the distribution of the expression

of a single gene in a WSI is a significantly more difficult

task than aiming to obtain the expression of all the genes in

one single spot. Nevertheless, despite this different trend for

Method ViT ViT+Δ ViT+Δ+S7 SEPAL

MAE 0.655 0.638 0.648 0.630
MSE 0.760 0.725 0.737 0.708
PCC-Gene 0.282 0.347 0.339 0.383
R2-Gene 0.053 0.086 0.065 0.106
PCC-Patch 0.924 0.927 0.925 0.928
R2-Patch 0.843 0.849 0.847 0.853

Table 3. Control experiments on the Visium validation/test set. Δ:

predicting differences with respect to the mean expression ȳtrain.

S7: input patch is 7 times bigger than the original one.

gene or patch-focused evaluations, our method consistently

achieves the best results.

HisToGene has poorer performance on Visium than on

STNet, and overall it shows the worst results on the Vi-

sium dataset. These differences within the results of His-

ToGene support the observation that data scarcity of small

datasets like Visium leads to deficient results in global

methods. Conversely, we demonstrate that our method is

able to retrieve important information from the input de-

spite the difference in the data acquisition technologies and

number of samples since it achieves high performance on

both datasets.

Finally, Fig.5 shows a histogram of the PCC between the

ground-truth and the predictions of each gene on Visium.

None of the genes has a negative correlation, and the low-

est PCC is 0.052 and goes as far as 0.639. Overall, our

model has a satisfactory performance for the evaluation of

the genes selected. We observe that the PCC has an approx-

imately normal distribution, with no evident outliers.

As a sidenote observation, we also validated our data im-

putation protocol by obtaining the main results for the Vi-

sium dataset when training in noisy data. The metrics show

a consistent drop in performance disregarding the method

(Sec. 4 Supplementary Material), which supports the need

for our denoising approach and sets a best practice for fu-

ture works.

5.2. Control Experiments

Table 3 shows the results for the ablation experiments.

Comparing the results between predicting the absolute ex-

pression (ViT) and predicting the expression variations of

the genes (ViT+Δ), we notice that the latter option has

a better performance in every metric. For instance, when

predicting delta variations, the MSE is 0.035 points below

that of the absolute expression prediction. The PCC-Gene

also increased 0.065 points with our problem formulation.

These results reflect the suitability of the paradigm shift that

we propose by learning the difference between y and ȳtrain

instead of directly predicting y.

We evaluate the benefit of using a larger neighborhood

to determine how raw spatial information affects gene pre-
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Figure 4. Visualization of the two genes with the highest (left) and lowest (right) Pearson Correlation Coefficient. At the top is the Ground-

Truth of the expression and at the bottom is the qualitative prediction of our method with its respective PCC.

Figure 5. Histogram of the Pearson correlation between the

ground-truth and the prediction of each gene. The X-axis displays

the values of the Pearson correlation coefficient, while the Y-axis

shows the number of genes that have that particular correlation.

diction (ViT+Δ against ViT+Δ+S7). Table 3 compares the

behavior of the exact same image encoder while solely al-

tering the scale of the patches (with seven times more visual

context). For all metrics, keeping a scale of 1.0 remains

the best option among the ViT architectures tested. Our

findings suggest that increasing the visual coverage of an

image encoder does not yield significant improvements in

gene prediction.

In addition, the results from SEPAL show an improve-

ment over all metrics, with respect to ViT+Δ+S7. Notably,

both SEPAL and ViT+Δ+S7 have access to the same visual

context in the WSI and are differentiated only by how spa-

tial information is represented. This compelling outcome

underscores the importance of incorporating spatial features

in the description of each patch and constructing graphs to

glean highly relevant information for accurate expression

prediction. The performance of SEPAL shows that predic-

tions from the spatial module do further improve the prelim-

inary predictions obtained during the local learning stage.

Our results validate the efficacy of our novel approach, em-

phasizing the value of spatial interactions in gene expres-

sion prediction.

5.3. Qualitative Results

Figure.4 shows the heatmaps for the real and the pre-

dicted expression distribution of the genes with the best and

worst performances. Focusing on the genes with the highest

PCC, we see that for the second best gene, the expressions

both on the ground-truth and on the prediction are highly

associated with the tissue color. Note that the regions with

darker tissue obtain lower expression predictions, and re-

gions with lighter tissue obtain higher expression predic-

tions. These results suggest that our model might be basing

estimates solely on the color of the patches rather than look-

ing for specific morphology patterns. Nevertheless, for the

best gene, the predicted expressions are not uniformly the

same for all dark or light tissue sections, conveying that our

model does not rely only on the tone of images and is ac-

tually learning from the spatial context of the patches and

tissue morphology.
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The predicted expressions show a lower intensity than

the ground-truth for both genes, indicating that the dynamic

range of SEPAL predictions may not match that of the real

expression levels. Notably, for the two genes with the high-

est PCC, the output of our method appears over-smoothed

compared to the ground-truth. An evident distinction arises

when comparing the real expression, which exhibits adja-

cent spots with drastically different expression levels, to the

predictions, where no regions display sudden changes in ex-

pression tendencies. While our model’s consistent predic-

tions showcase its strength, this attribute may also be con-

sidered a drawback when seeking to detect gene expression

deviations with high spatial resolution.

Regarding the hardest genes, Fig.4 shows that the pre-

dictions tend to correspond to the mean expression value of

each gene and are practically constant throughout the en-

tire WSI. For these cases, SEPAL fails to capture the spatial

dependencies, even though clear patterns are present in the

ground-truths. We hypothesize that these shortcomings are

due to the joint prediction of 256 genes.

6. Conclusions
In this work, we develop a novel framework to ap-

proach the spatial gene expression prediction task by inte-

grating local context and exploiting inductive biases inher-

ent to the biological nature of the problem. Our proposed

SEPAL consistently outperforms state-of-the-art models

and closes the gap between completely global and com-

pletely local analysis. Furthermore, aligning with biological

expectations, it is capable of recognizing patterns in histo-

logical data that go beyond simple color intensities. Conse-

quently, our approach represents a significant step forward

in spatial expression prediction, enhancing the applicability

of deep learning methods in the context of disease analysis

and precision medicine.
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