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Abstract

The performance of neural predictors depends on the
size and composition of the training dataset. However, an-
notating data is expensive. Efficient annotation systems
usually feature a neural annotation predictor whose result
can be edited by the expert using classical tools. Existing
systems train the annotation predictor from an initial small
subset of data annotated by classical tools and then freeze it
for the rest of the annotation process. This is suboptimal as
the annotation predictor does not benefit from the new an-
notations as the annotation process progresses. We propose
a framework called Single Active Interactive Model (SAIM),
which integrates the three steps of data selection, annota-
tion and training into a single architecture. This is made
possible by three key properties of SAIM in contrast with
existing work: 1) SAIM uses a deep interactive predictor;
hence the classical tools are not required and the annotation
predictor can be pre-trained with limited data to produce
quality annotations; 2) SAIM uses a single model shared be-
tween the three steps, hence the model is deployable and the
annotation predictor improves as annotation progresses; 3)
SAIM uses active learning to maximise the impact of each
annotation on the predictor performance, making the model
rapidly improve. We evaluated SAIM by emulating annota-
tion scenarios on fully-labelled segmentation datasets. For
a complex female pelvis MRI dataset, pre-training SAIM
on 15% of data and annotating the whole dataset achieves
73.4% IoU with 6.3 hours of annotation time, against 75.8%
IoU for complete manual annotation, requiring 40.0 hours.
We also applied SAIM to a real-world case of very large
MRI dataset (AMOS) segmentation, which cannot be feasi-
bly annotated otherwise.

1. Introduction

Machine learning has gained widespread applicability

in recent years, achieving good performance in various

fields [1]. Still, the performance of supervised machine

learning inherently depends on the size and composition of

the annotated training dataset. However, data annotation is

expensive, which is especially true in the domain of medi-

cal imaging [7]. The research community has made consid-

erable efforts to alleviate the annotation problem and pro-

posed a wide range of approaches. They include but are not

limited to semi-, weakly-, self- and unsupervised learning,

zero- and one-shot learning, transfer and multi-task learn-

ing, and self-training [35, 30, 28, 2], which limit or remove

the need for human annotation. However, their applicability

is limited: they often require more complex algorithms and

fine-tuning, and may result in less accurate and interpretable

models than with supervised learning, which generally of-

fers a simpler way of achieving higher performance when

sufficient annotated data is available [1]. Thus, finding a so-

lution to expedit the annotation process remains pertinent.

The base supervised machine learning paradigm has

three main steps: A - data annotation, B - target predic-

tor training, C - evaluation. The system then may loop back

to step A. In the simplest systems, step A may use clas-

sical tools such as intelligent scissors [25], which require

a lot of effort and time. In more advanced systems, this

may be improved using sample selection by active learn-

ing. However, the state of the art shows that replacing the

classical tools with a suitable neural annotation predictor

boosts annotation performance [33]. The annotation pre-

dictor suggests an annotation that the expert can validate

or correct. This raises the question of training this annota-

tion predictor, which existing systems do once a sufficient

amount of data has been annotated by classical tools. This

is suboptimal, as neither the annotation predictor nor the

classical tools improve as more data is annotated. The main

challenge is thus to exploit the data as they are annotated

towards training the target predictor to improve the anno-

tation mechanism itself, including the annotation predictor,

which is yet an unresolved problem [6].

We propose a general framework called Single Active

Interactive Model (SAIM), which addresses this problem
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Figure 1. Detailed SAIM schematic: a single iteration is shown, only the input changes between iterations.

by integrating the three steps of data selection, annotation

and training into a single architecture. This is made possi-

ble by three key properties of SAIM, which contrast with

existing work. 1) deep interactive predictor - the annota-

tion mechanism is based on an interactive neural predictor;

hence the predictor can be pre-trained with limited data and

still produce quality annotations thanks to the user input.

2) model-sharing - SAIM uses a single model shared be-

tween the three steps (A,B and C); the roles of the target

predictor and the annotation predictor are thus performed

by a single predictor. 3) active data selection - active learn-

ing is used to maximise the impact of each annotation on

the predictor performance, exploiting the current predictor

to optimally select data, making the model rapidly improve.

To realise SAIM, two key components are required: an in-

teractive neural predictor, which suggests annotations and

enables interactive corrections, and a limited quantity of an-

notated data used for pre-training and testing. SAIM works

in three steps. First, the predictor pre-trained on very lim-

ited initial annotations is used for data selection from the

non-annotated data pool via active learning. Second, the ex-

pert uses the predictor to annotate the selected data. Third,

the annotations are added to the training data for predictor

re-training. The system then loops back to the first step and

continues until stopped or all available data are annotated.

As a result, SAIM allows one to efficiently annotate massive

datasets from very limited initial annotations, while keeping

the predictor up-to-date and deployable.

Our main contribution is SAIM, which is the first gen-

eral machine learning framework to integrate data selection,

annotation and training into a single architecture by model-

sharing. Two key proposed ideas required to realise such an

integrated framework are the use of deep interactive anno-

tation with the shared model and the use of active learning

for efficient data selection using the shared model.

We evaluate SAIM and compare it to existing systems

in emulated annotation scenarios in an automated manner

with fully-annotated segmentation datasets, with here three

datasets: a female pelvis MRI dataset and public liver and

pancreas CT datasets [4]. We demonstrate SAIM in a real

annotation scenario of kidney MRI segmentation from the

AMOS dataset [16] with a human user and a 1 to 30 anno-

tated to non-annotated data ratio. We estimate the time gain

as compared to 3D Slicer, where SAIM allowed to double

the total number of AMOS kidney MRI annotations in 2.3

hours against 10.0 hours for 3D Slicer using classical tools.

SAIM jumpstarts efficient interactive annotation from lim-

ited annotated data and minimises the amount of data to an-

notate, while iteratively improving performance.

2. Related Work
There is no established classification of data annotation

approaches in the literature [15, 18, 31, 5]. We propose to

describe these approaches based on how they modify step

A of the base machine learning paradigm. This leads to two

broad groups of approaches we call static and dynamic, de-

pending on whether the data annotation mechanism is kept

fixed or is improved as annotation progresses. Step B is

typically achieved by involving an expert or by continual

learning [13], but the method of training is not in the scope

of our contributions.

The data annotation mechanism may use classical tools,

neural predictors, or a combination of both. The classical

tools are non-neural and non-trainable, hence not specific

to a single task or domain, allowing for a wide applicabil-

ity. They may strongly vary in functionality, complexity

and target domain. In image annotation, we find the intelli-

gent scissors [25], GrabCut [27] and Random Walker [12].

The neural predictors are pre-trained and are generally spe-

cific to a task and a domain. They can be fixed or re-

trained through the data annotation process. This implies

two general statements: 1) an approach which uses exclu-

sively classical tools is necessarily a static approach, and

2) a dynamic approach necessarily uses a neural predic-

tor with re-training. Fixed neural predictors require huge

initial training datasets such as MS COCO [21], as shown

in a survey of over 100 segmentation predictors [24]. Dy-

namic predictors are normally used in self-training [2] in a
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Figure 2. A functional schematic of SAIM with respect to the shared predictor.

semi-supervised manner, where predicted pseudo-labels are

added to the dataset when re-training. They use classical

tools to be trained in a supervised manner.

Most of the existing systems such as Synapse 3D [10],

3D Slicer [17], MITK [11] and Supervise.ly [29] implement

static approaches. They provide access freely or commer-

cially to a large variety of classical tools and fixed neural

predictors. Any approach may be complemented by data

selection via active learning [6, 26]. The idea is to select the

most informative data to annotate. Existing work performs

active learning independently of the annotation mechanism.

For example, [22, 34] are static approaches based on classi-

cal tools. They use active learning as a data selection policy

in reinforcement learning [22] or train a neural classifier to

perform data selection [34]. The two closest works to ours

are the non-medical object detection annotation system [32]

and the MONAI Label toolbox [9]. System [32] is a dy-

namic system. Images selected based on the Euclidean dis-

tance are segmented by a pre-trained neural predictor. An-

notation corrections are then done by classical tools. The

neural predictor is periodically re-trained from the corrected

annotations. The MONAI Label toolbox [9] is a static sys-

tem. It combines classical tools provided by 3D Slicer and

two fixed neural predictors, an automatic one and an inter-

active one. In contrast, SAIM is a dynamic system, which

[9] is not, uses a dynamic interactive neural predictor, which

[32] does not, and uses the predictor to perform data selec-

tion, which neither of [32, 9] do. This unique combination

is the key to enable model-sharing, where the single predic-

tor is used for data selection, interactive data annotation and

undergoes dynamic retraining, which is not featured in any

existing approach and system.

3. Methodology
3.1. System Overview

On a general level, we build SAIM as shown in the row

“Algorithm” of figure 1. As inputs, SAIM requires a mini-

mally pre-trained interactive predictor, a non-annotated data

pool, a set of criteria to perform data selection and the num-

Figure 3. SAIM experimental evaluation results given as mIoU at

each iteration on our female pelvis MRI dataset, where: green -

performance using annotations created in 3D Slicer and MITK,

blue - performance using SAIM-created annotations. Annotation

time is reported excluding pre-training data annotation with clas-

sical tools.

ber N of samples selected for annotation at each iteration,

which is determined as a function of the dataset size and the

annotation capacity. We originally developed SAIM for 3D

image segmentation but the framework is generic and not

restricted to a specific task, domain, modality or predictor

architecture. Indeed, the interactive neural predictor can be

obtained from any trainable machine learning architecture,

as long as at inference time the network architecture takes

both the non-annotated data such as an image and the user

corrections as inputs and outputs an annotation, such as in

[3, 19, 23]. Such architectures are generally reusable for

different tasks. Specifically, we reuse the neural interactive

system [23], which inputs user clicks and outputs a segmen-

tation mask for each class. Neural interactivity is a key fea-

ture of SAIM, which allows it to quickly produce better an-

notations through interactive refinement as opposed to static

approaches. SAIM proceeds iteratively with three inner

steps. At each iteration, SAIM inputs a predictor and out-

puts an updated predictor and new annotated data. Model-

sharing is implemented by having a single predictor shared

between the steps as shown in figure 2. First, we perform

data selection from the non-annotated pool based on the se-
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lection criteria and the predictor. Second, we perform in-

teractive annotation of the selected data using the predictor

within the interactive neural annotation mechanism. Third,

we update the predictor by re-training with the complete

annotated data pool. Iteration n + 1 therefore improves on

iteration n by two factors: the quantity of annotated data in-

creases owing to data selection and data annotation done in

iteration n; the predictor at iteration n+ 1 is thus improved

by benefiting from re-training from the increased quantity

of data compared to iteration n. The iterations continue

until SAIM is stopped or all available data are annotated.

Thus, at each iteration SAIM uses a shared predictor to se-

lect data, annotate the data interactively and use the data in

addition to the current annotated training set for re-training

the predictor.

3.2. Data Selection

SAIM starts with an interactive predictor pre-trained on

a generally small quantity of annotated data and is imme-

diately ready to produce new annotations. However, during

the first iterations, extra user interactions may be required

to correct the output of such a predictor, resulting in pro-

longed annotation time. It is thus crucial to speed up the

annotation process and to ensure the performance of the pre-

dictor is improved rapidly going forward. We address this

point by maximising the impact of each individual annota-

tion. Specifically, we perform data selection as the first step

in the SAIM framework. This is done via active learning,

which involves selecting the most informative data from a

pool of non-annotated data and then requesting annotations

for this data from a human expert. By doing so, the predic-

tor can achieve high accuracy with fewer annotated exam-

ples required for training.

Data selection in active learning is often performed

based on informativeness. Informativeness refers to the de-

gree of usefulness of the selected data in improving the per-

formance and generalisation of a predictor if added to the

training set. Data informativeness is evaluated by informa-

tiveness criteria, which can all be exploited by SAIM. The

informativeness criteria may be external or internal. Ex-

ternal criteria involve additional information such as image

meta-data reflexive of clinical characteristics. Internal crite-

ria are based on the image data itself and may or may not in-

volve the predictor. Internal criteria involving the predictor

are generally based on uncertainty or representativeness [6].

We implemented SAIM with a classical entropy infor-

mativeness criterion, which is internal, being dependent on

the predictor output, allowing us to directly select the im-

ages benefiting predictor improvement for subsequent an-

notation. For the image segmentation case, the entropy is

calculated for each pixel from the predicted class probabil-

ity distribution and then averaged over all pixels. A higher

entropy is thus obtained for images with target classes hav-

Figure 4. SAIM experimental evaluation results given as mIoU at

each iteration on Liver CT dataset, where: green - performance us-

ing annotation produced using classical tools, blue - performance

using SAIM-created annotations. Annotation time is estimated ex-

cluding pre-training data annotation with classical tools.

ing closer probabilities pixel-wise. Simply put, images with

ambiguous predictions overall are considered more infor-

mative and are selected for subsequent annotation [6, 26].

We perform this selection in three steps: (1) the predic-

tor outputs probability maps for all samples in the non-

annotated data pool via inference; (2) the entropy of each

sample is evaluated, resulting in a score; (3) the top N scor-

ing samples are selected for annotation, while the rest of the

data remains in the non-annotated pool. The schematic of

the data selection step is shown in figure 1.

3.3. Data Annotation

Once data selection is performed, the selected samples

are passed to the human user for annotation using the shared

interactive predictor. Indeed, SAIM requires an interactive

predictor, which suggests an annotation to the user, and is

capable of accepting the subsequent user corrections. Along

with data selection, interactivity is a key property of the

SAIM architecture, which ensures that annotations of suf-

ficient quality are produced even if the interactive predictor

is initially pre-trained on a limited amount of data, and that

the annotation mechanism fully benefits from the on-going

annotation process. The interaction allows the predictor to

achieve a far better annotation quality than that of an equiv-

alent automatic system.

SAIM does not depend on a specific architecture of the

interactive predictor, which can be any trainable machine

learning architecture, as long as it accepts user corrections

and outputs the annotation. To demonstrate SAIM, we use

the interactive system [23], which focuses solely on inter-

active image segmentation. This system consists of an em-

bedded network, a user interaction loop and an interaction

memory. It inputs an image, user interaction masks and

optionally a segmentation mask, if available from previous

steps, for each class. It outputs the segmentation proba-

bility maps. User interaction masks contain user clicks in-

dicating foreground and background for each class. This
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system comes with a specific training approach, where the

user corrections at training time are automatically gener-

ated on-the-fly from the annotated dataset by means of a

virtual user simulating interactions. At test time, this sys-

tem is used by the human user via a general-purpose GUI

as in classical tools. In our experiments, we use the system

with a human user to evaluate its impact in a real annotation

scenario. We also reintroduce the virtual user at test time to

conduct an extensive statistical evaluation in emulated an-

notation scenarios where the complete dataset annotation is

already available.

3.4. Predictor Update

Once the data is annotated, it is used to extend the current

training set, after which the predictor is updated, as shown

in figure 1. The update can be a full re-training or sim-

ple fine-tuning, which can be done by means of continual

learning or by an expert engineer. While re-training may

be slower in comparison to other predictor update meth-

ods, such as fine-tuning, it allows for a clearer comparison

between iterations, characterised by using different quan-

tities of data. Specifically, fine-tuning involves modifying

the weights of an existing model to fit a new dataset or

task. This modification can result in some already learned

information being lost or changed, but it is often difficult to

pinpoint exactly what information has been affected. This

becomes especially important when considering what is

learned by the model after a large number of consecutive

fine-tunings, as it could be in case of SAIM. We thus use re-

training, which considers the complete annotated dataset at

each iteration. This allows us to directly estimate the effect

of each new annotation set on the predictor performance.

4. Experimental Results
4.1. Instantiation of SAIM and General Setup

We instantiate our system with an interactive predictor

using ResNet34 [14] encoder pre-trained on ImageNet [8]

as in [23]. To counter dataset imbalance, we use the fo-

cal loss [20] with per-class weights, which are re-calculated

prior to re-training at each iteration. We preprocess all

data via normalisation, standardisation, and perform ran-

dom data augmentation: vertical and horizontal flipping,

intensity shifting, gamma correction, blurring and unsharp

masking.

4.2. Emulated Annotation Scenarios

General considerations. We perform a systematic eval-

uation of SAIM’s performance in three emulated annota-

tion scenarios: in female pelvis MRI segmentation on our

dataset, in Liver and in Pancreas CT segmentation on de-

cathlon datasets [4]. Two factors make these scenarios em-

ulated: first, these datasets were fully annotated with high

Figure 5. SAIM experimental evaluation results given as mIoU

at each iteration on Pancreas CT dataset, where: green - perfor-

mance using annotation produced using classical tools, blue - per-

formance using SAIM-created annotations. Annotation time is es-

timated excluding pre-training data annotation with classical tools.

reliability using classical tools; second, human user involve-

ment is not feasible due to the high number of series to an-

notate, and we thus use a virtual user to operate the interac-

tive predictor by simulating user interactions from existing

annotations, as during training, as in [23]. The simulated in-

teractions are clicks, fixed to 3 per class and per image. For

each task we proceeded as follows: first, we took a small

subset of the annotated data and split it into three parts - the

initial training set to pre-train the predictor, the validation

and test sets, which remain fixed; second, we alternated be-

tween virtual data annotation and predictor update until all

data was annotated, while reporting mIoU on the test set at

each iteration. We also compared these results to those of

a predictor trained with the same quantity of data annotated

classically at the first, middle and last SAIM iterations. A

key factor in these experiments is the initial training set size,

which is task and data dependent. Since the interactive pre-

dictor should produce at least partial annotations, it makes

sense to establish the initial training set size as a function

of the predictor performance, which is measurable on the

test set. For each dataset we pre-trained multiple predic-

tors and selected the one which satisfies two criteria: (1)

the IoU score is above 50% for all classes or, if impossi-

ble, the mIoU is above 50%, and (2) the quantity of data

used for pre-training is as low as possible. In a real anno-

tation scenario this additionally depends on the availability

and performance of the expert. Therefore, we made the data

selection size N as reasonably close to the size of the initial

training set as possible, while keeping the overall number of

iterations such that a meaningful performance change could

be observed in-between. For all datasets we reported mIoU

on the test set at each iteration and compared these results to

those of classical system. We also estimated the annotation

time using SAIM against 3D Slicer for all datasets.

Female pelvis MRI. We use a female pelvis MRI segmen-

tation dataset collected in our hospital. It consists of 97 MRI
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series with 3066 slices in total, manually annotated in 3D

Slicer and in MITK by expert radiologists. It involves five

classes: uterus, bladder, uterine cavity, tumours
and background. The segmentation of anatomical struc-

tures of the female pelvis is particularly challenging due

to a large variance in their representation. The dataset is

strongly imbalanced due to the anatomical differences be-

tween the classes. The original dataset split between the

training, validation and test sets is respectively: 77 series

(2449 slices), 10 series (308 slices) and 10 series (309

slices). We pre-train the interactive predictor on 15% (12

out of 77 series) of the training set, which achieves 54.6%

IoU on a fixed test set. We use this predictor to annotate the

remaining 85% (65 series) in 6 iterations, adding 12 series

at each of the first 5 iterations and 5 at the last iteration.

The performance steadily increases with each iteration.

The largest change of 8.5pp IoU is observed between it-

erations 1 and 2 with 57.5% IoU and 66.1% IoU respec-

tively. At 62% of the dataset annotated, SAIM achieves

69.2% IoU against 72.3% IoU for a classical system, which

becomes 73.4% IoU against 75.8% IoU at 100% of data.

In both cases SAIM slightly underperforms, which is ex-

pected since annotation with classical tools is expected to

have a naturally higher precision. The metrics are reported

in figure 3. While the performance of a classical annotation

system is slightly higher in terms of accuracy, the above

results show that with only 47% of data being annotated,

SAIM achieves 87% of performance of this classical system

trained with all 100% of the data. Crucially however, the

annotation time for the whole dataset is decreased by 65%:

with SAIM it takes 11.0 hours, including the time spent with

3D Slicer to annotate the initial training set, against 32.0

hours when 3D Slicer is used for the complete dataset. This

shows the high impact of using SAIM in this context.

The segmentation results are shown in figure 7 and visu-

ally demonstrate the performance of the interactive predic-

tor at the first and final SAIM iterations on samples from

6 different series. We use a fixed evaluation set to com-

pare: (b) an interactive predictor trained only on annota-

tions produced by classical tools (12 series - 15% of the

complete training set); (c) the same interactive predictor us-

ing the complete training set (77 series) with all remain-

ing annotations produced by the self-same predictor during

SAIM iterations. Since in this dataset each class in a single

image may be represented by multiple completely discon-

nected regions, user input is limited to 1 click per region to

clearly demonstrate SAIM performance with minimal user

input. We observe that in most of the cases additional data

annotated using SAIM allowed to substantially improve ac-

curacy, as supported by the metrics in figure 3. However,

deterioration of accuracy can be observed in a limited num-

ber of cases, which we attribute to a shift in the training set

between its partial and complete versions.

Figure 6. SAIM experimental evaluation results given as mIoU

at each iteration on AMOS dataset, where annotations are done

by human user via a specifically-developed GUI: green - perfor-

mance using annotation produced using classical tools, blue - per-

formance using SAIM-created annotations. Annotation time is re-

ported excluding pre-training data annotation with classical tools.

Pancreas and liver CT. We further evaluate SAIM on

the tasks of Pancreas and Liver CT segmentation. The

test set ground truth is not available. We thus randomly

split the training sets for both liver and pancreas, using

70%/15%/15% for training, validation and test respectively,

resulting in 91/20/20 series for the liver and 198/42/42 se-

ries for the pancreas. Liver CT targets are liver and

cancer, and pancreas CT targets are pancreas and

mass (cyst or tumour). These datasets where annotated

manually using classical tools, but the exact software and

elapsed time are not specified [4]. We thus record the

elapsed time from re-annotating randomly selected series

in 3D Slicer, which is extrapolated to obtain the estimates.

Pancreas CT. We pre-train the interactive predictor on 15%

of the training dataset (33 out of 225 series), which achieves

57.2% IoU. We use this predictor to annotate the remaining

85% (192 series) in 5 iterations, adding 38 series at each of

the first 4 iterations and 40 at the last iteration. The perfor-

mance increases with each iteration with the largest change

of 4.9pp IoU between iterations 1 and 2 with 60.7% IoU

and 65.6% IoU respectively. At 48% annotated data, SAIM

marginally underperforms compared to a classical system

with 65.6% IoU against 66.3% IoU, which is more notable

at 100% of data with 71.5% IoU against 75.5% IoU. The

metrics are reported in figure 5.

While SAIM shows a lesser performance growth be-

tween iterations on Pancreas CT compared to the female

pelvis MRI dataset, the case still demonstrates that it is pos-

sible to annotate the whole Pancreas CT dataset using a pre-

dictor initially pre-trained on only 33 series. We attribute

the uneven performance growth to the difficulty of distinc-

tion between the pancreas and the mass: at 48% annotated

data they are at 71.9% and 59.2% against 71.1% and 61.7%

IoU for SAIM and a classical system respectively. Still, it
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(a) (b) (c)

Figure 7. SAIM segmentation results in a emulated annotation sce-

nario for female pelvis MRI segmentation dataset, where uterus
- green, bladder - yellow, tumours - red, uterine cavity
- pink, and user clicks are in cyan: (a) ground truth; (b) inter-

active predictor pre-trained on 15% (12 out of 77 series) of the

complete training set (c) the same interactive predictor using the

complete training set (77 series), but with the remaining 85% (65

out of 77 series) annotated as a part of SAIM. Performance-wise:

rows in green (1-5) - improvement, row in red (6) - considered a

degradation despite overall higher IoU due to the false positive for

uterus. IoU is given in the bottom right corner.

is observed that data selection allows SAIM to achieve 87%

of the performance of a classical system with 48% of data

used, which demonstrated the feasibility of using SAIM for

the case.

Liver CT. Applying SAIM to the Liver CT dataset allows us

to start the annotation from pre-training on only 5% of the

dataset (5 out of 105 series) with the initial performance at

69.7% IoU. We use this predictor to annotate the remaining

95% (100 series) in 7 iterations, adding 5 series at each of

the first 2 iterations and 18 at each of the remaining itera-

tions. The metrics are reported in figure 4. The performance

grows significantly between that of the pre-trained model

and iterations 1 and 2, which is an added 8.8pp and 7.1pp

IoU respectively. Notably, it is enough to annotate 14% of

data for SAIM to achieve 98% of the classical system’s per-

formance with all data. However, performance at iterations

3-7 fluctuates between 84.1% and 85.9%, stopping at the

latter and slightly underperforming against 87.0% for a clas-

sical system. We attribute these fluctuations to SAIM being

already very close to the best achievable performance.

4.3. Real Annotation Scenario

We demonstrate SAIM in a real annotation scenario for

kidney MRI segmentation on the AMOS dataset, which in-

volves three classes: left kidney, right kidney
and background. It differs from the emulated scenar-

ios: first, in AMOS only 100 series out of 1200 are anno-

tated, owing to the unfeasible expert effort required; sec-

ond, a human user operates the interactive predictor for

the data annotation step via a developed GUI, for which

the interaction number is not limited, but the elapsed time

is reported. The AMOS dataset contains both annotated

and non-annotated data, with 100 and 1200 MRI series re-

spectively, collected from multi-center, multi-vendor, multi-

modality, multi-phase, multi-disease patients. To the best of

our knowledge the 1200 MRI series were never annotated

previously, owing to the unfeasible expert effort it would

require. The annotated data is originally split in 40/20/40

series for the training, validation and test sets respectively.

Test annotations are unavailable. We thus leave the training

set unchanged and split the validation set, with the new split

being 40/10/10 series respectively.

To demonstrate SAIM we pre-trained the interactive pre-

dictor on the available 40 series annotated using classi-

cal tools and then proceeded using SAIM to double the

dataset size. A total of four iterations was performed, each

adding 10 series annotated by the human user. The per-

formance steadily increases with each iteration, with the

largest improvement being 4.2pp IoU between iterations 2

and 3. Overall, with 40 new annotated series the perfor-

mance on the evaluation set increased by 10.1pp IoU, show-

ing SAIM’s efficiency when interactively annotating data

from a large and varied non-annotated pool with the help of

data selection. SAIM improved the performance of the in-

teractive predictor by 10.1pp IoU from 78.9% IoU to 89.0%

IoU. This is further reinforced by the time gain. Specifi-

2438



(a) (b) (c)

Figure 8. SAIM segmentation results in a real annotation sce-

nario for kidney MRI segmentation on the AMOS dataset, where

right kidney and left kidney are orange and yellow re-

spectively with user clicks in cyan: (a) ground truth; (b) interactive

predictor pre-trained on original AMOS training set (40 series) (c)
the same interactive predictor after doubling the training set as a

part of SAIM (80 series). Performance-wise: rows in green (1-4) -

improvement, rows in red (5-6) - degradation. IoU is given in the

bottom right corner.

cally, it takes 2.3 hours for SAIM and 10.0 hours estimated

for classical annotation tools in 3D Slicer to double the size

of the AMOS training set from 40 to 80 series. With SAIM,

a single series took 3’43” against 15’ on average, signifi-

cantly decreasing the annotation time, all the while itera-

tively contributing to SAIM’s predictor improvement. The

metrics are reported in figure 6.

The segmentation results are shown in figure 8. We use a

fixed evaluation set to compare: (b) an interactive predictor

trained only on annotations produced by classical tools (40

series - original AMOS training set); (c) the same interac-

tive predictor after doubling the training set with all new an-

notations produced by the self-same predictor during SAIM

iterations (80 series: 40 series - original AMOS training set

and 40 series - newly annotated data). The user interac-

tions as clicks were limited to 3 per image. We observe that

in most of the cases additional data annotated using SAIM

allowed to improve accuracy, as supported by metrics in fig-

ure 6. As in section 4.2, we attribute the limited number of

degradation cases to the training set shift.

5. Conclusion
We have proposed a general concurrent neural predictor

training and data annotation framework called Single Ac-

tive Interactive Model (SAIM). The strength of SAIM is

its unique ability to exploit the newly annotated data as the

annotation task progresses in order to improve the annota-

tion mechanism. This is achieved by involving the predictor

being trained in the steps of data selection and of interac-

tive annotation. The neural model is thus always up-to-date

and coherently shared by all the system components, con-

tributing to optimal choices and quick improvements of the

predictor performance as annotation proceeds. As a conse-

quence, SAIM allows one to annotate massive datasets fast

from very limited initial annotations.

We have evaluated SAIM by emulating annotation sce-

narios on fully-labelled segmentation datasets. Specifically,

we have demonstrated the framework in female pelvis MRI

segmentation, using a new dataset, and successfully applied

it to the tasks of liver and pancreas CT segmentation from

the medical segmentation decathlon challenge. We also ap-

plied SAIM to AMOS kidney MRI segmentation - a real-

world case of very large dataset annotation, which cannot be

feasibly annotated otherwise. This shows that SAIM jump-

starts efficient interactive annotation from limited annotated

data and minimises the amount of data to annotate, while

improving predictor performance. This makes it a power-

ful two-in-one annotation and training solution to drag-and-

drop in a large dataset annotation task without the need for

an efficient neural predictor to be prepared first. We plan

to further improve the SAIM framework towards its clinical

usage. First, by considering a more efficient method of pre-

dictor update, such as fine-tuning, with re-training being a

potential bottleneck of the system due to the training time

required. Second, by considering a more advanced data se-

lection approach targeting to minimise the bias introduced

by the predictor. Third, through application to other tasks

and expansion of the user study.
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