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Abstract

Implicit neural representations (INRs) have gained
prominence as a powerful paradigm in scene reconstruction
and computer graphics, demonstrating remarkable results.
By utilizing neural networks to parameterize data through
implicit continuous functions, INRs offer several benefits.
Recognizing the potential of INRs beyond these domains,
this survey aims to provide a comprehensive overview of
INR models in the field of medical imaging. In medical set-
tings, numerous challenging and ill-posed problems exist,
making INRs an attractive solution. The survey explores the
application of INRs in various medical imaging tasks, such
as image reconstruction, segmentation, registration, novel
view synthesis, and compression. It discusses the advan-
tages and limitations of INRs, highlighting their resolution-
agnostic nature, memory efficiency, ability to avoid locality
biases, and differentiability, enabling adaptation to differ-
ent tasks. Furthermore, the survey addresses the challenges
and considerations specific to medical imaging data, such
as data availability, computational complexity, and dynamic
clinical scene analysis. It also identifies future research di-
rections and opportunities, including integration with multi-
modal imaging, real-time and interactive systems, and do-
main adaptation for clinical decision support. To facilitate
further exploration and implementation of INRs in medical
image analysis, we have provided a compilation of cited
studies along with their available open-source implementa-
tions on GitHub. Finally, we aim to consistently incorporate
the most recent and relevant papers regularly.

1. Introduction

Knowledge representation is one of the fundamental pil-

lars of artificial intelligence (AI). Its importance stems from

its significant impact on the success of machines in learning

many AI-related tasks, such as classification and decision-

making. Humans construct task-specific representations to

facilitate their interaction with the world around them [33].

Consequently, a substantial amount of AI research involves

proposing algorithms and models that mimic this human

cognition process to solve machine learning tasks with a de-

gree of performance that equals, or even surpasses, human

capabilities.

Our visual world can be represented continuously, which

is a fundamental principle in fields such as computer vision.

Data obtained through observation and sensing manifests in

various forms, including images and audio. Conventional

approaches to encoding input signals as representations typ-

ically follow an explicit paradigm, where the input space is

discretized or partitioned into separate elements (e.g., point

clouds, voxel grids, and meshes). However, in recent years,

an alternative approach to representation, known as implicit

representations, has gained popularity due to its efficient

memory usage [19]. Unlike explicit (or discrete) represen-

tations that directly encode the features or signal values, im-

plicit representations are defined as a generator function that

maps input coordinates to their corresponding value within

the input space.

In computer vision, the quality of representing an image

signal holds central importance. Deep neural networks have

emerged as the de facto tools for complex tasks across var-

ious AI domains, particularly in computer vision, owing to

their remarkable representation learning ability [25, 3]. As a

result, there has been an exploration of leveraging their ca-

pacity to function as implicit functions, yielding promising

results [46, 59]. Within this context, a Multi-Layer Percep-

tron (MLP) is trained to parameterize the signal of interest,

such as an image or shape, utilizing coordinates as input.

The objective is to predict the corresponding data values at

those coordinates. Thus, the MLP serves as an Implicit
Neural Representation function that encodes the signal’s

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. The figure illustrates various modifications to alleviate the spectral bias problem in INRs, provides an overview of their underlying

principles, and introduces NeRF as an additional background method, as discussed in section 2.

representation within its weights. For instance, in the case

of image signals, feeding the MLP with pixel coordinates

leads to the generation of its RGB value as the output.

These implicit neural functions find extensive applica-

tion in tasks such as image generation, super-resolution, 3D

object shape reconstruction, and modeling complex signals

[30, 8, 31, 58]. The utilization of MLPs for image and

shape parameterization offers several advantages. Firstly,

they are resolution-agnostic as they operate in the contin-

uous domain. This characteristic enables them to gener-

ate values for coordinates in-between pixel or voxel-wise

grids, thereby facilitating vision tasks. Secondly, the mem-

ory requirements for representing the signal are not limited

by its resolution. Consequently, MLP models exhibit en-

hanced memory efficiency while remaining effective, es-

pecially when compared to the grid or voxel representa-

tions. The memory demand scales according to the com-

plexity of the signal itself. Thirdly, MLPs assist INRs in

mitigating potential locality biases that could hinder perfor-

mance, unlike convolutional neural networks (CNNs). Fi-

nally, MLP models are differentiable, endowing them with

significant adaptability across a wide range of applications.

Their weights can be adjusted using gradient-based tech-

niques, allowing for versatility in handling different tasks

[11, 34, 46, 27, 59, 51, 39, 66].

To address the challenges posed by the high cost of la-

beled data and limited memory resources, INRs have gar-

nered increasing attention from the medical community. In

recent years, their predominant usage has been in enhanc-

ing resolution and synthesizing missing information. They

offer a solution to alleviate the burden of collecting labeled

data in medical domains by eliminating the need for train-

ing data and explicit labels. Instead, they leverage available

measurements or signals without the requirement of labeled

data for each instance, enabling the reconstruction of 3D

anatomical structures or generation of 2D scans [50, 37, 45].

For instance, in MRI, super-resolution techniques can en-

hance the spatial resolution of images, providing clearer vi-

sualization of structural features and diagnostic information

[28, 57, 58]. Moreover, they can be employed in synthesis

and inverse problems, such as reconstructing CT and MRI

data from projection and frequency domains while reducing

radiation exposure [50, 64, 37, 45, 60]. Additionally, INRs

find utility in neural rendering to model complex relation-

ships in scenes, enabling detailed visualizations of anatomi-

cal structures or aiding in robotic surgery by reconstructing

deformable surgical scenes [12, 54].

To present a comprehensive review of these emerging ar-

chitectures, this paper provides an overview of their core

principles and diverse applications, as well as their advan-

tages and limitations. To the best of our knowledge, this is

the first survey paper that covers the application of INR in

medical imaging and sheds light on new directions and re-

search opportunities, serving as a roadmap and systematic

guide for researchers. We also aspire to generate increased

interest within the vision community to delve into the ex-

ploration of implicit neural representations in the medical

domain. Our key contributions are as follows:

• We conduct a systematic and comprehensive review of the

applications of INR in the field of medical imaging. We an-

alyze and compare SOTA approaches for each specific task.

• We provide a detailed and organized taxonomy, as illus-

trated in Figure 3, which allows for a structured understand-

ing of the research progress and limitations in each areas.

• Additionally, we discuss the challenges and open issues

associated with INR in medical imaging. We identify new

trends, raise important questions, and propose future direc-

tions for further exploration.

Search Strategy. To conduct a comprehensive search,

we utilized DBLP, Google Scholar, and Arxiv Sanity

Preserver, employing customized search queries tailored to

retrieve relevant scholarly publications. Our search queries

consisted of keywords such as (INR | implicit
neural representation | medical | Task),
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(INR | medical | Neural rendering), and

(INR | medical | NeRF). Here, Task refers to one

of the applications covered (Figure 3). To ensure the

selection of relevant papers, we conducted a meticulous

evaluation based on factors such as novelty, contribution,

and significance.

2. Background
Implicitly representing signals with neural networks has

gathered pace in recent years. Instead of parametrizing sig-

nals with discrete representations such as grids, voxels, point

clouds, and meshes, a simple MLP can be learned to contin-

uously represent the signal of interest as an implicit function

Ψ : x → Ψ(x), mapping their spatial coordinates x ∈ R
M

fromM dimensional space to their correspondingN dimen-

sional value ψ(x) ∈ R
N (e.g., occupancy, color, etc.). While

INRs have shown promising, they can fail to encode high-

frequency details compared to discrete representations, lead-

ing to a suppressed representation quality. Rahaman et al.
[36] have made significant strides in uncovering limitations

within conventional ReLU-based MLPs and their ability to

represent fine details in underlying signals accurately. These

MLPs have shown a propensity to learn low-frequency de-

tails, leading to a phenomenon known as spectral bias in

piece-wise linear networks. In order to address this issue,

several approaches have been explored to redirect the net-

work’s focus toward capturing high-frequency details and

effectively representing the signal with finer-grained details.

To enhance the representation of the input signal, three av-

enues can be pursued within an MLP framework based on its

structure. Firstly, one can consider changing the input type

by mapping it to a higher-dimensional space to enable the

network to capture more intricate details within the signal.

Secondly, another approach involves replacing the ReLU ac-

tivation function with a new activation function that bet-

ter facilitates the learning of high-frequency components.

Lastly, one can explore altering the output of the MLP to

a higher-dimensional space, where each node is responsi-

ble for reconstructing a specific part of the signal. In this

section, we will provide a background based on the modi-

fications that can be made to mitigate the spectral bias is-

sue. Additionally, we will cover a neural volume rendering

model called NeRF [31] as a pioneering approach to bridge

implicit representations and novel view synthesis. Figure 1

illustrates the overview of our proposed background.

2.1. Input

The conventional approach in INR treats the spatial co-

ordinate of each element in the signal, such as pixels in an

image, as the input to an MLP. However, this approach tends

to learn low-frequency functions, limiting its ability to effec-

tively represent complex signals. To address this limitation,

recent progress suggests using a sinusoidal mapping of the

Cartesian coordinates to a higher dimensional space, which

enables the learning of high-frequency details more effec-

tively [51]:

1. Basic: γ(v) = [cos(2πv), sin(2πv)]T .

2. PE: γ(v) = [..., cos(2πσj/mv), sin(2πσj/mv), ...]T

for j = 0, ...,m− 1. PE denotes Positional Encoding,

and the scale σ is determined for individual tasks and

datasets through a process of hyperparameter sweep.

3. Gaussian: γ(v) = [cos(2πBv), sin(2πBv)]T , where

the variable v represents the signal coordinates, while

B is a random Gaussian matrix, where each entry

is independently sampled from a normal distribution

N (0, σ2). Similarly, the scale σ is selected through a

hyperparameter sweep for each task and dataset.

These encoding processes are known as Fourier features

mapping.

2.2. Activation Function

In general, the intuition behind activation functions is to

apply non-linearity to the neural network. As for implicit

representations, nonlinearities can be either periodic or non-

periodic. However, non-periodic functions, such as ReLU
or tanh, are not conducive to the effective learning of high-

frequency signals. To handle this issue, Sinusoidal Repre-

sentation Networks (SIRENs) [46] utilize sine as the acti-

vation function of the MLP to parametrize complex data:

Ψ(x) = Wn(ψn−1 ◦ ψn−2 ◦ . . . ψ0)(x) + bn,

xi �→ ψi(xi) = sin(Wixi + bi),
(1)

where ψi indicates the ith layer of the neural network, x
is the signal of interest, W and bi represents the weight

matrix and bias, respectively. The use of sine as the activa-

tion boils down to its derivative being a shifted sine (cosine),

which enables the network to efficiently parametrize higher-

order derivatives, such as the image Laplacian or Helmholtz

equation. Furthermore, the sine function helps to effectively

represent signals containing high-frequency details. SIREN

authors suggest a unique initialization technique to prevent

vanishing gradients in traditional activation functions. They

initialize weights of each layer as W ∼ U( −c√
n
, c√

n
), where

W is the weight of the layers, U(.) is a uniform distribution,

c denotes a constant that controls the range of the weight

values and n is the number of inputs neurons.

2.3. Output

Target signals such as images and audio typically exhibit

local structure and dependencies among neighboring ele-

ments, which can be effectively utilized to enhance ReLU

networks during training. Aftab et al. [1] introduce a

multi-head network architecture where the main body learns

global features of the signal, while the output layer consists

of multiple heads. These heads reconstruct separate parts of

the signal and learn its local features. For instance, in the

case of images, they divide the image into equal grid cells.

Each cell is then processed by an MLP in the main body to

capture global features, and the output sparse nodes recon-

struct the details of each cell individually. This approach
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aims to reduce the network’s bias towards low-frequency

components by exploiting the inherent properties of the tar-

get signal. Therefore, changing the output to a higher di-

mensional space can effectively alleviate the issue of spec-

tral bias.

2.4. NeRF

Neural Radiance Fields (NeRFs) [31] unites INRs with

volume rendering by using fully connected MLPs to implic-

itly represent scenes and objects with the goal of novel view

synthesis. The objective of novel view synthesis is to de-

velop a system that can generate novel viewpoints of an ob-

ject from any direction by observing a few images of that

particular object. The process is defined as:

Fθ(x, d) −→ (c, σ), (2)

where x indicates the 3D location (x, y, z), d represents the

2D vector of viewing direction (θ, φ), c denotes the color

values (r, g, b), and σ is the volume intensity. The pri-

mary idea is to overfit an implicit function on the train-

ing data such that, given (x, y, z) as the spatial coordinates

and (θ, φ) as the viewing direction, the network outputs the

color and volume density of the particular location. Unlike

SIREN [46], the NeRF architecture is equipped with ReLU

as its activation function, but similar to Fourier features [51],

adopts a positional encoding approach to map coordinates to

higher dimensions as follows:

γ(p) = (sin(20πp), cos(20πp), . . . ,

sin(2L−1πp), cos(2L−1πp)),
(3)

where p can be each of the coordinate or viewing direction

components. NeRF’s architecture is designed in a two-stage

matter to obtain density and color values as follows:

First Stage : σ, h =MLP (x) (4)

Second Stage : c =MLP (concat[h, d]) (5)

where in the first stage the 3D coordinate x is passed through

the MLP to obtain the density σ and a feature representation

h ∈ R
N (N equals 256 in original implementation), and in

the second stage, h is input to the MLP to output the color

values c (the original implementation [31] adopts identical

MLPs to accomplish this). Finally, volume rendering [22]

is utilized to generate novel views by tracing camera rays

through every pixel of the target synthesized image.

3. Clinical Importance
Thanks to the memory and data efficiency of INRs, they

are widely utilized in numerous medical imaging tasks. One

of the most significant challenges in automated medical

imaging is the collection of ground truth annotated data

from reliable sources, such as clinicians and medical pro-

fessionals [20, 2, 23]. This process is painstaking, expen-

sive, time-consuming, and requires significant effort. Un-

like simple scenes that can be easily recognized and la-

beled (e.g., categorizing an indoor scene), annotating med-

ical images should be performed by medical professionals

Figure 2. Comparison of the aligned Pedunculopontine Nucleus

(PPN) region (blue) and manually segmented PPN region (laven-

der) by radiologists in a Parkinson’s disease patient [26]. The brain

planes (axial, sagittal, and coronal) show the results of affine and

Diffeomorphic (DARTEL) registration, aligning the myelin stain-

ing histological atlas and the enhanced atlas generated through

INR-based super-resolution. Expert radiologists manually seg-

mented the last two columns to validate the INR-based method.

and clinicians. This reliance on experts, coupled with pri-

vacy concerns and the need for patient authorization, cre-

ates a major bottleneck in the annotation process for med-

ical imaging. INRs offer significant advantages in vari-

ous applications without the need for external training an-

notations [50, 35, 37, 45, 56]. For example, in the field

of medical imaging, INRs are particularly beneficial for

tasks like super-resolution. During the medical imaging pro-

cedures like CT scans, PET scans, MRI, and ultrasound,

patient movement can also cause motion artifacts and re-

sult in blurred images or poorly defined structures, espe-

cially in upper abdominal regions such as the chest which

are negatively affected by patient motion. Additionally,

in Cone Beam Computed Tomography (CBCT), which is

commonly used in dental and maxillofacial imaging, slow

imaging speed combined with patient movement can re-

sult in motion artifacts and lead to poorly defined struc-

ture boundaries [47, 14, 66]. Furthermore, obtaining high-

quality MRI scans poses a challenge due to longer scan

times [57, 58]. Conventional approaches are not suitable for

effectively handling these issues through super-resolution

or image reconstruction as they are not resolution-agnostic

and require notable amounts of data. However, INRs can

address super-resolution more effectively by considering

inputs from the continuous coordinate domain and being

resolution-agnostic.

Implicit neural models are also widely used in biomed-

ical applications, particularly in solving inverse imaging

problems [64, 37, 45, 45]. These problems involve learn-

ing the structure of an object (organ of interest in medical

cases) from observations or measurements. Using INRs, it

becomes possible to reconstruct CT or MRI scans directly

from the sensor domain. Moreover, they can even facili-

tate the tracking of tissue progression by incorporating prior

scans from earlier time steps, subsequently reconstructing

the updated scan for the current time.

In practical applications, the reconstruction of images
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from sparsely sampled data plays a crucial role. This need

arises in various domains, including medical imaging, where

it has proven particularly valuable in specific applications

such as reducing radiation dose in CT imaging and ac-

celerating MRI scans [50, 37, 45]. Notably, Single Im-

age Super-Resolution (SISR) techniques have attracted con-

siderable attention due to their potential to restore a high-

resolution (HR) image solely based on a low-resolution (LR)

input [58, 28]. The ability of SISR methods to enhance im-

age details and fidelity has significant implications for im-

proving diagnostic accuracy and aiding medical profession-

als in their decision-making processes. This cannot be ac-

complished using convolution-based techniques as they are

trained exclusively for particular up-scaling tasks. Addition-

ally, the time-consuming process of retraining them for a

new up-scaling task hinders their usefulness in clinical ap-

plications [57].

To underscore the practical applicability of INRs in ad-

dressing real-world challenges, it is crucial to highlight the

validation of these models through human expertise. By cor-

roborating the findings of INRs with the insights of med-

ical professionals, we can establish the reliability and ef-

fectiveness of these novel diagnostic tools. This notion is

exemplified by a compelling study that utilized the exper-

tise of radiologists to validate the outcomes. In the depicted

case study (Figure 2), the aligned Pedunculopontine Nu-

cleus (PPN) and the manually segmented PPN region by

two radiologists are compared for a patient with Parkinson’s

disease [26]. The study focuses on enhancing the visibil-

ity and localization of the PPN, a deep brain structure cru-

cial for Parkinson’s disease treatment, through a combina-

tion of a Quantitative Susceptibility Mapping Atlas (QSM)

and an INR network. The INR-based process significantly

improves the spatial resolution of the atlas, effectively over-

coming limitations and minimizing artifacts and blurring ef-

fects. As a result, it allows for better delineation of the spe-

cific region (PPN) on the atlas, indicating the usability and

effectiveness of this approach in clinical settings.

4. Taxonomy
In this section, we provide a taxonomy with a focus on

the application of INRs in several medical imaging tasks to

acquaint researchers with the notable operation and func-

tionality of these models.

4.1. Reconstruction

Image reconstruction is a critical task in medical analy-

sis, enabling professionals to obtain high-quality images for

clinical applications. Many studies have explored the use

of convolutional neural networks (CNNs) to learn a map-

ping function that transforms raw data into reconstructed

images. However, this approach faces challenges, includ-

ing the need for large-scale training datasets, instability in

the presence of structural modifications, and difficulties in

generalizing to diverse image modalities or anatomical loca-

tions [4]. Overcoming these obstacles is crucial to improve

the reliability and applicability of image reconstruction in

medical settings.

To address the aforementioned challenges, numerous

INR-based reconstruction methods have been developed in

recent years. For instance, NeRP [45] framework pro-

poses to integrate implicit neural networks for reconstruct-

ing sparsely sampled medical images through three stages

without demanding any training data. In the first stage, a

neural network’s weights are encoded with a CT image as

prior knowledge. Next, the implicit network is optimized

on sparsely sampled sinogram measurements to learn re-

construction. Finally, the network is applied to all associ-

ated spatial coordinates to generate the final reconstructed

CT image. The effectiveness of NeRP in reconstructing

tumor structural progression and its versatile applicability

across various imaging modalities have been demonstrated

through experiments conducted on 2D and 3D data, includ-

ing CT clinical scans and brain tumor progression MRI data

images.

Additionally, Reed et al. [37] proposed a method

(DCTR) for reconstructing dynamic, time-varying scenes

using computed tomography (4D-CT). The INR is utilized

to estimate a template reconstruction of the 3D volume’s

linear attenuation coefficients (LACs) in the scene, acting

as a prior model that captures the spatial distribution of

LACs. Here, the template refers to a representation or ap-

proximation of the scene’s properties, specifically the LACs

in the 3D volume. By using the INR, DCTR generates a

template reconstruction of the LACs based on available CT

measurements or sinograms through learning a mapping be-

tween coordinates (x, y, z) and the template reconstruction

of the LACs, which serves as a starting point for the overall

reconstruction process. DCTR then employs a parametric

motion field, a set of parameters describing how the tem-

plate should be warped over time to account for scene mo-

tion. Finally, the warped template reconstruction is used to

synthesize sinograms through a differentiable Radon trans-

form, which is then compared to the actual sinogram to

evaluate the accuracy of the reconstruction. The proposed

method demonstrates robust reconstruction of images with

deformable and periodic motion and is validated on their

synthetic D4DCT [37] dataset and the thoracic CT data [7].

4.2. Segmentation

Medical image segmentation is a critical task in health-

care systems, aiding in disease diagnosis and treatment plan-

ning. Deep learning methods have shown promising results

in achieving accurate segmentation results. However, these

methods often suffer from computational inefficiency and

difficulty in handling complex topologies [52]. Complex

topologies refer to intricate structural relationships and vari-

ations within medical images, such as lesions, tumors, and

intricate vessel structures.

To address these limitations, Barrowclough et al. [5] in-

troduced a novel approach called BS-ISR that combines

convolutional neural networks (CNNs) with INRs. INRs
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Figure 3. The taxonomy subsections delineate six distinct sub-fields in medical imaging: (1) Reconstruction, (2) Segmentation, (3) Regis-

tration, (4) Compression, and (5) Neural Rendering. We use the numbering of the methods in ascending order and provide the reference for

their paper as follows: 1. [57], 2. [45], 3. [37], 4. [58], 5. [50], 6. [55], 7. [56], 8. [49], 9. [5], 10. [65], 11. [18], 12. [26], 13. [63], 14. [62],

15. [12], 16. [54], 17. [14].

were specifically selected for their ability to handle com-

plex, high-dimensional medical imaging data and capture

intricate topologies. Instead of directly generating images,

the model utilizes spline representations to capture geomet-

ric boundaries and structures. The authors also introduced

new loss functions tailored for modeling implicit splines,

utilizing binary inside-outside masks. Evaluation on the

Congenital Heart Disease dataset [61] demonstrated the su-

perior performance of the model compared to other SOTA

methods, as measured by the average volumetric test Dice

score metric. In another research, Gu et al. [18] proposed a

self-distillation-based INR method for segmentation of reti-

nal vessels for ocular disease diagnosis (Retinal INR). They

utilized the Vision Transformer (ViT) [13] to capture global

dependencies in retinal images by treating the image as a

sequence of patches rather than focusing solely on local fea-

tures. The self-distillation method extracted key features for

blood vessel segmentation. The primary benefit of the sug-

gested approach lies in its ability to enhance the resolution

of retinal images and magnify the finer details of capillar-

ies through the use of INR. To ensure accurate results, they

utilized an improved centerline dice (clDice) loss function

to constrain blood vessel topology. The proposed model

was evaluated on the Drive [48] and Chase [15] datasets,

showcasing its superiority over non-INR methods in terms

of segmentation accuracy, detection of detailed structures,

and robustness to variations in image quality and content.

4.3. Registration

Medical image registration is a process that aligns mul-

tiple images, volumes, or surfaces within a common coor-

dinate system to identify common areas. It requires learn-

ing a transformation function that geometrically aligns co-

ordinates between a source and target image. Traditional

methods often require complex, multi-step processes and as-

sumptions about the nature of the transformations. However,

INRs are capable to model the transformation function with-

out external assumptions. This allows them to handle the

variations and warping in the image in a smooth, coherent

manner and at any image resolution, making them ideally

suited for tasks such as image registration.

In this regard, Wolterink et al. [56] proposed IDIR, that

employs INR to model the transformation function with a

SIREN-based design for deformable registration, which at-

tempts spatial alignment of images to account for changes

in the shape, position, or size of anatomical structures, such

as organs, tumors, or other features of interest. The trans-

formation function φ(x) = u(x) + x, which maps each

coordinate x in a fixed image to a coordinate in a moving

image, is represented using the MLP. The MLP takes a con-

tinuous coordinate x from the image domain as input and

predicts a deformation vector u(x). The addition of u(x)
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and x gives the output φ(x) = u(x) + x. This model

was tested on 4D chest CT registration using the DIR-LAB

dataset [7] and surpassed all deep learning-based methods

without folding or training data needed. In another study,

Sun et al. [49] developed mirnf, which can model both dis-

placement vector fields and velocity vector fields, provid-

ing two different approaches for performing image regis-

tration. While displacement vector fields are used for de-

formable registration, velocity vector fields are employed

for diffeomorphic registration, both utilizing INRs to model

the transformations between the target and moving images.

The network in registration based on velocity predicts veloc-

ity vectors [vpx , vpy , vpz ] from 3D coordinates in the target

image. These vectors are integrated over time using a Neu-

ral ODE Solver to generate a deformation field by mapping

each point in the target image to its corresponding deformed

position in the moving image. By applying the deformation

field to the target image, it can be aligned with the mov-

ing image. Alternatively, another approach trains an MLP

to directly predict displacement vectors [φpx
, φpy

, φpz
] for

each coordinate in the source image. These vectors describe

how each point in the source image should be shifted or de-

formed to align with the target image. The target volume is

deformed to match the source volume by applying these dis-

placement vectors, which involves adding the displacement

vector to each point’s position in the target volume. The

authors conducted experiments on two 3D MR brain scan

datasets, Mindboggle101 [24] and OASIS [29], and found

that INR achieves SOTA performance in terms of registra-

tion accuracy, optimization speed, and regularity compared

to traditional methods.

4.4. Compression

With increasing volumes of biomedical data, efficient

compression methods are needed for storage, transmission,

and secure sharing. While compression techniques for natu-

ral image/video data exist, they are not effective for biomed-

ical data due to their unique characteristics. Biomedical

data contains diverse tissue types, complex structures, and

high-resolution details, which pose challenges for conven-

tional compression techniques. In recent years, target-data-

specific approaches like INR have shown promise in effec-

tively compressing diverse visual data.

For instance, Yang et al. [63] presented a mathematical

interpretation and adaptive partitioning for the design of an

INR-based compressor called SCI. SCI partitions the data

into blocks, and each block is compressed separately us-

ing an MLP network. The first layer is allocated a wide

set of neurons to capture a broader range of frequencies,

with a proportional reduction of layer size with increasing

depth. This choice is based on the observation that increas-

ing the depth of the network rather than the width (number

of neurons) is more efficient to represent a larger range of

frequencies or higher-order harmonics. To maintain high re-

construction fidelity, the allocation of parameters to blocks

is done in accordance with the range of frequencies they

cover. After the compression is completed for each block,

the network parameters, including the weights and biases of

the neural network that contains the learned representations

and encoding information for that specific block, are seri-

alized. Using the HiP-CT dataset [53] as a testbed, Yang

et al. found that their method outperformed conventional

techniques (JPEG, H.264, HEVC), data-driven techniques

(DVC, SGA+BB, SSF), and existing INR-based techniques

(SIREN [46], NeRF [31], and NeRV [41]) on a wide variety

of biological and medical data.

In another attempt to improve the compression fidelity

of INR, a Tree-structured Implicit Neural Compression

(TINC) was proposed [62]. TINC uses MLPs to fit seg-

mented local regions, and these MLPs are arranged in a tree

structure to enable parameter sharing based on spatial dis-

tance. The parameter-sharing mechanism ensures a smooth

transition between neighboring regions and eliminates re-

dundancy, whether it exists locally or non-locally. The ex-

periments on the HiP-CT dataset [53] demonstrate the su-

periority of TINC over conventional techniques. However,

its limitations, similar to those of other INR-based methods,

are its slower compression speed, although its decompres-

sion speed is high.

4.5. Neural Rendering

Neural rendering refers to a class of approaches that in-

volve training a neural network to model the complex re-

lationships between scene geometry, lighting, and details,

which allows for the generation of novel views based on ex-

isting scenes. Implicit representations can be applied in the

context of neural rendering of medical images, allowing for

the creation of more detailed and accurate visualizations of

complex anatomical structures and other medical data.

In 3D CT imaging, the long exposure time of patients

to harmful ionizing radiation imposes a noticeable chal-

lenge. Consequently, to alleviate this problem, MedNeRF
[12] proposes to incorporate GRAF [44] (which integrates

NeRF [31] with a CNN) to render CT projections from a

single or multi-view X-rays. The intention behind GRAF

boils down to NeRF struggling to handle complex scenes

with large amounts of geometric complexity. To handle this

limitation, the NeRF is trained to minimize the difference

between the rendered and ground truth images, while the

GAN [17] is trained to distinguish between the generated

image and a ground truth image, and utilized to refine the

NeRF outputs and improve image quality. The conducted

evaluations of MedNeRF on X-ray chest and knee datasets

demonstrate reconstruction improvements in terms of vol-

umetric depth estimation compared to the neural radiance

field methods.

The application of neural rendering for the purpose of re-

constructing surgical scenes in 3D was first introduced by

Wang et al. [54]. The proposed method (Surgical Neu-
ral Rendering) employs Implicit Neural Representations

(INRs) to capture the dynamic and deformable nature of sur-

gical scenes through a canonical radiance field and a time-
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dependent displacement field, represented using an MLP

that maps coordinates and view-in directions to RGB col-

ors and space occupancy. By making the volume render-

ing process differentiable, it becomes possible to backprop-

agate gradients through the rendering operations, allowing

for end-to-end learning of the implicit neural fields, enabling

the optimization of these parameters to reconstruct the sur-

gical scenes. To generate renderings for supervision, the ap-

proach utilizes differentiable volume rendering, where cam-

era rays are shot into the scene, and the color and optical

depth of each ray are evaluated using the volume rendering

integral. Sampled points along the rays provide the neces-

sary inputs to obtain color and space occupancy from the

neural fields. The network parameters of the implicit neu-

ral fields are optimized to reconstruct the shapes, colors,

and deformations of the surgical scene. This optimization is

achieved by jointly supervising the rendered color and opti-

cal depth with ground-truth data.

5. Comparative Overview

To provide comparative results we have prepared our

comparative Table in the Supplementary file. According to

the table, it is evident that image reconstruction has attracted

more interest than tasks like segmentation, compression,

registration, and others. This preference is mainly driven

by their great ability to enhance resolution and reduce noise,

especially in medical scenarios where the imaging device is

prone to uncertainty. We discuss and compare noteworthy

elements in the following:

Defining Parameters: The parameters used as the input to

INR are not always cartesian coordinates and depend on the

task and the signal distribution that the neural network is

defining. For instance, CoiL [50] tried to define the mea-

surement field by using the parameters that characterize a

sensor response including the viewing angle and spatial lo-

cation of the detector. Likewise, NeRD [65] used the posi-

tional distance in cardinal directions to define the pixel-wise

distribution function.

Local Information: It is worth noting that the methods em-

ploying CNNs, such as ArSSR [57], BS-ISR [5], and Med-

NeRF [12], use specifically leverage the power of CNNs to

incorporate local semantic information during the represen-

tation process. By utilizing the convolutional layers, these

methods can capture and encode local features and spa-

tial relationships, enabling more accurate and context-aware

representations for tasks such as noise removal, boundary

modeling, and super-resolution.

Sparse View CT Reconstruction: As aforementioned in

section 3, reducing exposure of patients to radiation dose

plays a significant role in improving health care systems.

As a result, a notable number of works have developed vari-

ous strategies to reconstruct CT images with sparse and lim-

ited measurements and projection data. Both NeRP [45]

and CoiL [50] address the challenge of sparse CT recon-

struction by leveraging prior information or geometric rela-

tionships. DCTR [37] addresses this challenge in the con-

text of dynamic 4D-CT reconstruction, which is suited for

moving structures, such as organs affected by respiration

or cardiac motion. In cone-beam computed tomography

(CBCT), only the area of interest is exposed to radiation,

which reduces radiation exposure to surrounding tissues and

organs. SNAF [14] studied reconstructing scans for this spe-

cial medical imaging technique by utilizing a neural render-

ing method to implicitly learn an attenuation field. However,

due to the use of limited input projections, the resulting out-

puts are blurry and require additional effort. It’s important

to note that sparse view reconstruction is a technique that

trades off radiation dose reduction with the potential loss of

image quality and accuracy, which is why INR gathered a

lot of research attention in this field.

Network type: SIREN-based vs NeRF-based: Most of the

works reviewed are using ReLU MLPs with Fourier map-

ping applied to their input to mitigate spectral bias. Since

neural volume rendering is based on NeRF [31] design for

view synthesis and continuous representation, the activation

function is ReLU with Fourier features as input to model 3D

structure of the scene accurately [12, 54, 14]. Nonetheless,

volume rendering in medical scenarios differs in terms of the

surface boundary, as the entire organ holds valuable diag-

nostic information compared to other domains using NeRF.

The type of network is influenced by the objective of the

task it aims to solve. Higher-order differentiability of peri-

odic activations enables incorporating more advanced reg-

ularization terms into the optimization process of the reg-

istration, such as Jacobian regularizer, hyperelastic regular-

izer [6], and bending energy penalty [38], which is used in

IDIR [56] method.

6. Future Work and Open Challenges

Computational complexity and training time: Learning

a neural representation for each signal separately involves

a considerable amount of memory and computational re-

sources. Furthermore, fitting an INR for applications in-

volving high-dimensional data like 3D volumes can be time-

consuming [39]. This can pose challenges for real-time ap-

plications that require immediate responses. The complexity

arises from factors such as the size of the input data and the

model architecture. Meta-learning and multi-scale represen-

tations help accelerate training time and optimize memory

utilization in several domains [16, 40], which provide path-

ways for representing anatomical and biological structures

with reduced training time and greater practicality.

Scaling to more complex signals: To better represent

higher-resolution signals or complex 3D shapes with fine de-

tail can be challenging. The mapping involved in such rep-

resentations is often highly nonlinear, making it difficult to

scale up without incurring significant computational costs.

Both widening and deepening the MLP can enhance its rep-

resentation capability, but the backpropagation algorithm

used for training deep neural networks becomes more com-

putationally intensive as the depth increases, and the van-

ishing/exploding gradient problem may arise. Researchers
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often need to strike a balance between model complexity

and available computational resources. Various techniques

have been developed [10, 32, 21].

Video-based INR: When it comes to decoding time, video

compression methods employing INR is better compared to

other models [9]. This functionality allows parallel process-

ing in feed-forwarding, enabling the independent computa-

tion of each frame during decoding. As a result, they got the

most attention in robotic-assisted surgery where both speed

and accuracy are critical [43, 42, 54]. However, modeling

semantic relationships between frames in high-frequency

videos (i.e., high frame rate) presents considerable chal-

lenges [67], and ongoing research and development are cru-

cial to fully utilize the potential of INRs in this field.

7. Conclusion

In conclusion, this survey has offered a comprehensive

overview of INRs within the realm of medical imaging.

Through the utilization of neural networks and implicit con-

tinuous functions, INRs have demonstrated substantial po-

tential in tackling complex issues within medical settings.

The survey has emphasized the benefits of employing INRs

and has delved into their application across various medi-

cal imaging tasks. Additionally, it has identified open chal-

lenges and areas of future research, providing valuable in-

sights for researchers in the field.
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[48] Joes Staal, Michael D Abràmoff, Meindert Niemeijer, Max A

Viergever, and Bram Van Ginneken. Ridge-based vessel seg-

mentation in color images of the retina. IEEE transactions
on medical imaging, 23(4):501–509, 2004. 6

[49] Shanlin Sun, Kun Han, Deying Kong, Chenyu You, and Xiao-

hui Xie. Mirnf: Medical image registration via neural fields.

arXiv preprint arXiv:2206.03111, 2022. 6, 7

[50] Yu Sun, Jiaming Liu, Mingyang Xie, Brendt Wohlberg,

and Ulugbek S Kamilov. Coil: Coordinate-based inter-

nal learning for imaging inverse problems. arXiv preprint
arXiv:2102.05181, 2021. 2, 4, 5, 6, 8

[51] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara

Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-

mamoorthi, Jonathan Barron, and Ren Ng. Fourier features

let networks learn high frequency functions in low dimen-

sional domains. Advances in Neural Information Processing
Systems, 33:7537–7547, 2020. 2, 3, 4

[52] Jiapeng Tang, Xiaoguang Han, Junyi Pan, Kui Jia, and Xin

Tong. A skeleton-bridged deep learning approach for gener-

ating meshes of complex topologies from single rgb images.

In Proceedings of the ieee/cvf conference on computer vision
and pattern recognition, pages 4541–4550, 2019. 5

[53] CL Walsh, P Tafforeau, WL Wagner, DJ Jafree, A Bellier, C

Werlein, MP Kühnel, E Boller, S Walker-Samuel, JL Rober-

tus, et al. Imaging intact human organs with local resolu-

tion of cellular structures using hierarchical phase-contrast

tomography. Nature methods, 18(12):1532–1541, 2021. 7

[54] Yuehao Wang, Yonghao Long, Siu Hin Fan, and Qi Dou.

Neural rendering for stereo 3d reconstruction of deformable

tissues in robotic surgery. In International Conference on
Medical Image Computing and Computer-Assisted Interven-
tion, pages 431–441. Springer, 2022. 2, 6, 7, 8, 9

[55] David Wiesner, Julian Suk, Sven Dummer, David Svoboda,

and Jelmer M Wolterink. Implicit neural representations for

generative modeling of living cell shapes. In International
Conference on Medical Image Computing and Computer-
Assisted Intervention, pages 58–67. Springer, 2022. 6

[56] Jelmer M Wolterink, Jesse C Zwienenberg, and Christoph

Brune. Implicit neural representations for deformable image

registration. In International Conference on Medical Imag-
ing with Deep Learning, pages 1349–1359. PMLR, 2022. 4,

6, 8

[57] Qing Wu, Yuwei Li, Yawen Sun, Yan Zhou, Hongjiang Wei,

Jingyi Yu, and Yuyao Zhang. An arbitrary scale super-

resolution approach for 3d mr images via implicit neural rep-

resentation. IEEE Journal of Biomedical and Health Infor-
matics, 27(2):1004–1015, 2022. 2, 4, 5, 6, 8

[58] Qing Wu, Yuwei Li, Lan Xu, Ruiming Feng, Hongjiang Wei,

Qing Yang, Boliang Yu, Xiaozhao Liu, Jingyi Yu, and Yuyao

Zhang. Irem: high-resolution magnetic resonance image

reconstruction via implicit neural representation. In Medi-
cal Image Computing and Computer Assisted Intervention–
MICCAI 2021: 24th International Conference, Strasbourg,

France, September 27–October 1, 2021, Proceedings, Part
VI 24, pages 65–74. Springer, 2021. 2, 4, 5, 6

[59] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany,

Shiqin Yan, Numair Khan, Federico Tombari, James Tomp-

kin, Vincent Sitzmann, and Srinath Sridhar. Neural fields in

visual computing and beyond. In Computer Graphics Forum,

volume 41, pages 641–676. Wiley Online Library, 2022. 1, 2

[60] Junshen Xu, Daniel Moyer, Borjan Gagoski, Juan Eugenio

Iglesias, P Ellen Grant, Polina Golland, and Elfar Adalsteins-

son. Nesvor: Implicit neural representation for slice-to-

volume reconstruction in mri. IEEE Transactions on Medical
Imaging, 2023. 2

[61] Xiaowei Xu, Tianchen Wang, Jian Zhuang, Haiyun Yuan,

Meiping Huang, Jianzheng Cen, Qianjun Jia, Yuhao Dong,

and Yiyu Shi. Imagechd: A 3d computed tomography

image dataset for classification of congenital heart disease.

In International Conference on Medical Image Computing
and Computer-Assisted Intervention, pages 77–87. Springer,

2020. 6

[62] Runzhao Yang. Tinc: Tree-structured implicit neural com-

pression. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 18517–

18526, 2023. 6, 7

[63] Runzhao Yang, Tingxiong Xiao, Yuxiao Cheng, Qianni Cao,

Jinyuan Qu, Jinli Suo, and Qionghai Dai. Sci: A spec-

trum concentrated implicit neural compression for biomed-

ical data. arXiv preprint arXiv:2209.15180, 2022. 6, 7

[64] Guangming Zang, Ramzi Idoughi, Rui Li, Peter Wonka, and

Wolfgang Heidrich. Intratomo: self-supervised learning-

based tomography via sinogram synthesis and prediction. In

Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 1960–1970, 2021. 2, 4

[65] Hang Zhang, Rongguang Wang, Jinwei Zhang, Chao Li,

Gufeng Yang, Pascal Spincemaille, Thanh Nguyen, and Yi

Wang. Nerd: Neural representation of distribution for med-

ical image segmentation. arXiv preprint arXiv:2103.04020,

2021. 6, 8

[66] You Zhang, Hua-Chieh Shao, Tinsu Pan, and Tielige

Mengke. Dynamic cone-beam ct reconstruction using spatial

and temporal implicit neural representation learning (stinr).

Physics in Medicine and Biology, 2023. 2, 4

[67] Qi Zhao, M Salman Asif, and Zhan Ma. Dnerv: Model-

ing inherent dynamics via difference neural representation

for videos. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2031–2040,

2023. 9

2391


