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Abstract

Women are at higher risk of Alzheimer’s and other neu-
rological diseases after menopause, and yet research con-
necting female brain health to sex hormone fluctuations is
limited. We seek to investigate this connection by develop-
ing tools that quantify 3D shape changes that occur in the
brain during sex hormone fluctuations. Geodesic regres-
sion on the space of 3D discrete surfaces offers a princi-
pled way to characterize the evolution of a brain’s shape.
However, in its current form, this approach is too computa-
tionally expensive for practical use. In this paper, we pro-
pose approximation schemes that accelerate geodesic re-
gression on shape spaces of 3D discrete surfaces. We also
provide rules of thumb for when each approximation can be
used. We test our approach on synthetic data to quantify
the speed-accuracy trade-off of these approximations and
show that practitioners can expect very significant speed-up
while only sacrificing little accuracy. Finally, we apply the
method to real brain shape data and produce the first char-
acterization of how the female hippocampus changes shape
during the menstrual cycle as a function of progesterone: a
characterization made (practically) possible by our approx-
imation schemes. Our work paves the way for comprehen-
sive, practical shape analyses in the fields of bio-medicine
and computer vision. Our implementation is publicly avail-
able on GitHub.

1. Introduction
Women are more likely to experience Alzheimer’s, cog-

nitive decline, and navigational issues after menopause [2,

20]. Yet, topics relevant to female brain health such as men-

struation, pregnancy, menopause, and their associated fe-

male sex hormone fluctuations only account for 0.3% of the

neuroimaging literature between 1995 and 2022 [17]. The

hippocampal formation (a brain structure) is an excellent

diagnostic tool for investigating the connection between fe-

male brain health and sex hormones, as it is the first cor-

tical region to harbor neuropathology in the progression to

Alzheimer’s (causing characteristic shape changes visible

on magnetic resonance images (MRI)) [5, 13], and it is also

very sensitive to sex hormone fluctuations [7]. Sex hormone

fluctuations significantly influence brain anatomy and func-

tion in healthy subjects [18, 16, 15]. Enhancing our un-

derstanding of how hormonal fluctuations affect the healthy

brain is crucial to explaining why females are later more

at risk for neurological conditions after menopause [4].

We seek to close this knowledge gap by starting with one

question: How does the hippocampal formation respond to

monthly fluctuations in ovarian hormones during the men-

strual cycle?
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Figure 1. During the menstrual cycle, the ovaries cyclically re-

lease female sex hormones such as progesterone into the blood.

We propose practical shape analysis tools that quantify 3D shape

changes in the brain that occur during progesterone fluctuations,

with a focus on the hippocampus: a structure involved in memory

and navigation. Visualization created from data by [18, 15].

Recent research has shown that certain substructures of

the hippocampal formation change their volume over the

course of the menstrual cycle in response to progesterone,

but no significant volumetric change was found on the

whole-formation level [18]. Our 3D visualizations (Fig. 1)

show that the hippocampal formation does change its shape
on a whole-formation level, but no team has quantified how

this effect depends on progesterone levels. This is not sur-

prising because quantifying 3D shape changes is techni-

cally challenging, and is in fact is an active research area

in itself in mathematics and computer vision. For example,

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

2542



quantifying surface shape changes as a function of a con-

tinuous variable like progesterone can theoretically be per-

formed through geodesic regression on Riemannian man-

ifolds [6, 19]: an extension of linear regression dedicated

to shape spaces. However, in its current form, geodesic

regression on surface spaces is too slow for practical use.

Here, we bridge the gap between computer vision and clin-

ical neuroimaging by presenting a new practical method, a

hybrid between geodesic and linear regression, that allows

us to quantify how the shape of the hippocampal formation

changes in response to progesterone.

Contributions We offer several contributions that span

the fields of machine learning, differential geometry and

clinical neuroimaging. First, in machine learning, we intro-

duce our hybrid geodesic-linear regression method: a faster

geodesic regression model which uses linear residuals in-

stead of geodesic residuals in its loss function and also uses

a linear regression result to initialize its geodesic regression

optimization. Then, we perform extensive synthetic exper-

iments to offer rules of thumb for deciding between linear,

geodesic, and geodesic-linear regression. In differential ge-

ometry, these results give novel intuition about the curvature

of the nonlinear data space of surface shapes. In clinical

neuroimaging, these rules of thumb provide practitioners

with guidelines to decide on the speed-accuracy trade-off

between the regression types, revealing whether a surface

mesh sequence can be adequately characterized by the con-

siderably faster linear or geodesic-linear regressions with-

out sacrificing accuracy. Finally, we apply our paradigm to

real brain magnetic resonance images (MRIs) of a female

brain through the menstrual cycle. We characterize, for the

first time, shape changes in the female hippocampal forma-

tion as a function of progesterone.

2. Related Works
Consider a series of hippocampal shapes, with the surface

of each shape described as a mesh extracted via segmenta-

tion from a full-brain MRI (Fig. 1). The shapes of these dis-

crete surfaces (meshes) can be described either extrinsically
or intrinsically. The extrinsic approach with the Large De-

formation Diffeomorphic Metric Mapping framework [3]

represents a surface shape in 3D space by the amount of

deformation that one needs to apply on the whole 3D am-

bient grid containing the surface in order to deform a refer-

ence shape into the surface shape of interest. By contrast,

the intrinsic approach only deforms the surface itself [1],

and hence provides us with two advantages: (i) intuitive de-

formations that can be discussed with neuroscientists, (ii)

higher computational efficiency with up to 10x accelera-

tion [1]. We focus here on the intrinsic approach.

Analysis of Parameterized Surfaces In the intrinsic ap-

proach, surfaces can be either parameterized or unparam-
eterized. Each mesh in a dataset of parameterized sur-

faces is constrained to have a consistent structure: the ver-

tices of meshes in the dataset have one-to-one correspon-

dences. By contrast, datasets of unparameterized surfaces

relax this constraint such that statistical analyses can be per-

formed independently of the number and indexation of the

mesh vertices. While theoretically grounded, the compu-

tational complexity of this approach makes it unpractical

for geodesic regression. As an example, statistical analy-

ses within this framework are often limited to population

average computations and machine learning algorithms that

rely only on distances such as multidimensional scaling or

k-means clustering [1, 9, 12].

Therefore, we consider the scenario where each mesh in

the dataset is first parameterized to match a reference pa-

rameterization, and then statistical analysis such as regres-

sion is performed. In this scenario, the first natural choice

is to consider linear regression on the set of 3D coordinates

of the vertices. Linear regression has the advantage of be-

ing conceptually simple while enjoying analytical solutions:

it will be our first baseline. However, it has the drawback

that it does not enjoy parameterization-invariance. In other

words, the distance (or dissimilarity) between two surfaces

may change if we choose another reference parameteriza-

tion, which may change the regression results. In the con-

text of clinical application where the ultimate goal is hu-

man health, it is thought that we cannot afford such incon-

sistency. The alternative is to consider parameterization-

invariant distances between parameterized surfaces. In dif-

ferential geometry, this can be achieved by equipping the

space of parameterized surfaces with a Riemannian metric

that is invariant under reparameterizations [10, 9]. This pro-

cess however, turns the data space into a nonlinear man-

ifold, where linear regression needs to be generalized to

geodesic regression [6, 19]. Geodesic regression does not

enjoy a closed-form estimator and is typically computation-

ally expensive. It will be our second baseline.

Computational Challenges of Geodesic Regression
Geodesic regression [6, 19] for parameterization-invariant

Riemannian metrics presents unique computational chal-

lenges. In the Riemannian framework, calculating a single

geodesic requires a computationally expensive approach.

Geodesic regression solves an optimization problem by

minimizing a mean square error (MSE) loss function. The

MSE requires the computations of n + 1 geodesics at each

iteration: 1 geodesic representing the generative model, and

n geodesics required to compute the residuals in the MSE,

where n is the number of surfaces (meshes) in the dataset.

We observe that works developing the Riemannian frame-

work limit the number of geodesic computations required
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Figure 2. A surface is represented by a function q : M → R
3 that maps parameters (u, v) ∈ M to points in 3D space q(u, v) ∈ R

3 (top

row). Its parameterization can be changed by applying a diffeomorphism φ to the domain M before mapping to R
3 (bottom row).

for their analysis, and do not perform any form of regres-

sion. Kilian et al. [11] focus on geodesic interpolation or

extrapolation of parameterized surfaces and do not study re-

gression. Kurtek et al. [12] limit their experimental analysis

to computing geodesics between pairs of unparameterized

surfaces and performing clustering. Jermyn et al. [10] com-

pute geodesics between pairs of parameterized surfaces and

provide a classification experiment. Hartman et al [9] esti-

mate population averages and perform dimension reduction

with multidimensional scaling (MDS) and tangent PCA for

parameterized and unparameterized surfaces. Bauer et al

[1] compute geodesics and the population averages of unpa-

rameterized surfaces, together with multi-dimensional scal-

ing and k-means clustering. We suspect that the authors did

not perform geodesic regression in these works because of

their computational costs, which we investigate here.

3. Background
This section presents the mathematical background

necessary to formulate our approximation schemes for

geodesic regression on the shape space of (hippocampal)

surfaces. We refer to [9, 8] for additional details.

A. Riemannian Metrics and Geodesics We first in-

troduce concepts in differential geometry necessary for

geodesic regression. A Riemannian metric on a smooth

manifold N is a family (Gp)p∈N of inner products on

each tangent space TpN , such that Gp depends smoothly

on the point p ∈ N . Any Riemannian metric G yields

a notion of distance between points q0, q1 on N . Specif-

ically, if γ : [0, 1] → N is a smooth trajectory on N
with velocity vector at t ∈ [0, 1] denoted as γ̇t ∈ Tγ(t)N ,

its length is defined as Lγ =
∫ 1

0

√
G(γ̇t, γ̇t)γtdt and the

distance between any two points q0, q1 ∈ N is given by

d(q0, q1) = infγ:γ(0)=q0,γ(1)=q1 Lγ .

A geodesic between two points q0, q1 that are “close” in

N is defined as a trajectory γ that locally realizes the short-

est distance between q0 and q1. Intuitively, a geodesic is the

generalization to manifolds of the concept of a straight line

in vector spaces. While some manifolds enjoy analytical ex-

pression for their geodesics, this is not case for the manifold

of (hippocampal) surface shapes that we will consider here.

Thus, geodesics will need to be computed numerically.

To this aim, geodesics are expressed as the solutions

of the geodesic equation, which is an ordinary differential

equation (ODE) which can be written in local coordinates

as:

γ̈k(t) + Γk
ij γ̇

i(t)γ̇j(t) = 0, (1)

for all times t ∈ [0, 1] where Γk
ij are the Christoffel symbols

associated with the Riemannian metric. Solving this ODE

provides numerical solutions for geodesics.

To perform geodesic regression, we will also need two

additional operations, called Exp and Log, which we de-

fine here. The map (q, v) �→ γq,v(1) defined for (q, v) ∈
I ×TqI is called the exponential map (Exp) and essentially

computes the point γq,v(1) after following the geodesic of

initial point q ∈ N and initial velocity v ∈ TqN . The in-

verse of the Exp map on its injectivity domain is called the

logarithm map (Log).

B. Surfaces and Their Parameterizations A continuous
surface can be described by a function q : M → R

3, where

M is a two-dimensional space of parameters (u, v) ∈ M
that parameterize the 3D points q(u, v) ∈ R

3 on the surface.
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Intuitively, the function q deforms the space of parameters

M to give the surface its distinct shape, e.g., the ellipsoid

shown in the top row of Fig. 2. Mathematically, q is required

to be an oriented smooth mapping in C∞(M,R3) that is

also regular in the sense that its differential dq is injective

everywhere on M .

The parameterization of a surface refers to the place-

ment of points on the surface. If we define one surface as

q : M → R
3, then we can describe the same surface with

a different parameterization by q ◦ φ : M → R
3, where

φ is an orientation-preserving diffeomorphism of M . Intu-

itively, φ smoothly deforms the placement of parameters on

the domain M , which in turn smoothly changes the place-

ment of points in the co-domain, as shown with rainbow

colors in the bottom row of Fig. 2. The change of parame-

terization φ does not change the shape of the surface, which

is an ellipsoid in both rows of Fig. 2.

C. Space of Surfaces The space of surfaces is denoted

I ⊂ C∞(M,R3). The space I is an infinite dimensional

manifold immersed in the infinite dimensional vector space

C∞(M,R3). The Riemannian metric we choose to equip

the manifold I with defines the distance between its points

q0, q1 ∈ I and thus the notion of dissimilarity between the

two surfaces q0, q1. We consider the second-order Sobolev

metric [9]:

Gq(h, k) =

∫
M

(
a0〈h, k〉+ a1g

−1
q (dhm, dkm)

+ b1g
−1
q (dh+, dk+) + c1g

−1
q (dh⊥, dk⊥)

+d1g
−1
q (dh0, dk0) + a2 〈Δqh,Δqk〉

)
volq,

(2)

where h, k are tangent vectors at point q ∈ N ; g−1
q

is the pullback metric from R
3 that defines distances

on the surface q itself; Δq is the Laplacian induced by

q; dhm, dh+, dh⊥, dh0 are orthogonal vector-valued one-

forms and volq is the surface area measure of q. The

scalars a0, a1, a2, b1, c1, d1 are weighting parameters that

define distance between two surfaces based on how they are

sheared, scaled, bent, or parameterized with respect to each

other.

The choice of second-order Sobolev metric is motivated

by the following facts. First, the zero-order and first-order

Sobolev metrics yield less stable results in geodesic interpo-

lation between complex 3D shapes [9]. Second, the weight-

ing parameters a0, a1, a2, b1, c1, d1 defining the second-

order Sobolev metric in Eq. (2) can be linked to observable

physical deformations (shearing, bending, etc) which helps

with intuitively comparing physical objects. Last, the met-

ric in Eq. (2) yields a distance that is rotation and reparam-

eterization invariant [9]. In other words, if all the surfaces

in the dataset are rotated and reparameterized in the same

way, i.e., using the same rotation matrix and reparameteri-

zation diffeomorphism φ, then their pairwise distances are

unchanged. We note that this property is practical only if

we first assume that all the surfaces (are oriented and) have

valid point-to-point correspondences.

Surface Space

Shape Space

Distance in:

Figure 3. Distances in surface space vs shape space. q1 and q2 are

two surfaces with different parameterization and different shape.

The distance given by the second-order Sobolev metric 2 measures

both the parameterization and shape differences. The shape space

distance 3 only measures difference in shape.

D. Space of Surface Shapes In the space of surfaces I, if

two surfaces have the same shape but different orientations

or parameterizations, they correspond to different points.

By contrast, we introduce the space of surface shapes where

two surfaces with the same shape correspond to the same

point, regardless of differences in their orientation or pa-

rameterization. Mathematically, the space of surface shapes

is defined as the quotient space: I/(Rot(R3) × Diff(M))
—see [9] for details. For simplicity, we consider the case

of parameterizations with the shape space S = I/Diff(M)
while the case of orientations can be treated similarly.

In the shape space S, the distance between two surface

shapes q1 and q2 is given by:

dS(q1, q2) = infφd(q1, q2 ◦ φ) = d(q1, q
′
2), (3)

where φ represents a choice in parameterization. In Eq. (3),

the parameterization of q2 is varied until the second-order

Sobolev distance d in Eq. (2) between q1 and q2 reaches

an infimum as shown in Fig. 3. This operation matches the

parameterization of q2 to the parameterization of q1 so that

any remaining discrepancy between them is due to differ-

ence in shape, rather than difference in parameterization.

Ideally, we would perform our geodesic regression methods

directly in the shape space S. However, the high computa-

tional cost of this approach leads us to instead compute in

the surface space I after choosing a reference parameteri-

zation that corresponds to the first hippocampal surface of

our dataset.
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Geodesic Regression

w/ Linear Residuals

Figure 4. Overview: Approximation schemes for geodesic regression approximation. δ-test: if the residual magnitudes are small compared

to the curvature of the manifold, we can use geodesic regression with linear residuals (GRLR). Δ-test: if the distance covered by the data

set is small compared to the curvature, we use linear regression (LR). Reducing geodesic regression (GR) to either GRLR or LR provides

up to four orders of magnitude speed-up, while sacrificing little accuracy.

4. Methods
We seek to quantify the anatomical changes in the hip-

pocampal formation that emerge from progesterone varia-

tions during the menstrual cycle. To achieve this, we pro-

pose approximations to geodesic regression on the space of

3D brain shapes that make it computationally fast enough

for practical use. We further propose rules of thumb for

determining when each approximation can be used, as sum-

marized in Fig. 4.

4.1. Linear Regression

Model Linear regression (LR) models the relationship be-

tween an independent variable X ∈ R and the dependent

variable Y taking values in R
D as:

Y = α+Xβ + ε, (4)

where α ∈ R
D is the intercept, β ∈ R

D is the slope, and ε
represents the noise.

Loss Given data (xi, yi) ∈ R× R
D, for i = 1, . . . , n, we

fit the linear regression model through least squares, i.e., we

compute the estimates for the intercept and slope α̂, β̂ as:

(α̂, β̂) = arg min
(α,β)

1

2

n∑
i=1

‖yi − ŷi‖2 for ŷi = α+xiβ, (5)

which minimizes the summed squared magnitude of the

(linear) residuals: yi − α− xiβ, for i = 1, ..., n.

Learning Importantly for computational purposes, this

minimization has an analytical solution given by the normal

equations β̂ =
1
n

∑
xiyi−x̄ȳ

∑
x2
i−x̄2 and α̂ = ȳ − x̄β̂, where x̄ and

ȳ are the sample means of the xi and yi, respectively. We

will use linear regression as our first baseline, where X is

the level of progesterone, and Y is the hippocampal surface

discretized as a mesh, which takes values in R
N×3 where

N is the number of mesh vertices.

4.2. Geodesic Regression

Model Geodesic regression (GR) [6, 19] models the rela-

tionship between an independent variable X ∈ R and the

dependent variable Y , whose values lie on a manifold N ,

as:

Y = Exp(Exp(p,Xv), ε), (6)

where ε is noise in the tangent space at Exp(p,Xv), and

Exp is the operation defined in the previous section. Note

that when the manifold of interest is N = R
D, the exponen-

tial operator simplifies to addition: Exp(p, v) = p+v. Con-

sequently, the geodesic regression generative model simpli-

fies to the linear regression generative model of Eq. (4) with

p = α and v = β. We also note that the exponential oper-

ation appears twice: to model the geodesic itself, and to

model the noise ε. In what follows, we consider geodesic

regression on the manifold N = I equipped with a second-

order Sobolev metric from Eq. (2).

Loss Given data (xi, yi) ∈ R × I, for i = 1, . . . , n, we

seek to learn estimates of the intercept and slope (p, v) ∈
I × TpI. In the manifold setting, the loss function associ-

ated with the geodesic given by (p, v) is minimized as:

(p̂, v̂) = arg min
(p,v)

1

2

n∑
i=1

d (yi, ŷi)
2
, (7)

= argmin
(p,v)

1

2

n∑
i=1

‖Log(ŷi, yi)‖2ŷi
, (8)

for ŷi = Exp (p, xiv) . (9)

We compute estimates for intercept and slope (p̂, v̂) which

minimize the summed squared magnitude of the (geodesic)

residuals Log(Exp (p, xiv) , yi) for i = 1, ..., n. The
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geodesic residuals differ from the linear residuals as they

are calculated with exponentials and logarithms instead of

additions and subtractions.

Learning In contrast to linear regression, the least

squares problem of Eq. (7) above does not have an analyt-

ical solution for general manifolds I. Instead, we need to

compute the estimates of the intercept and slope with gradi-

ent descent, which is typically computationally expensive.

Gradient descent comes in two flavors depending on the

strategy used to compute the gradient, which can be either

a Riemannian gradient as originally proposed in [6] or an

extrinsic gradient. The Riemannian gradient writes [6]:

∇pl = −
N∑
i=1

dp Exp (p, xiv)
†
εi,

∇vl = −
N∑
i=1

xidv Exp (p, xiv)
†
εi,

where l is the loss function, εi = Log (Exp (p, xiv) , yi) are

the residuals, dv and dp are derivatives, and † denotes the

adjoint. In the general case, the expression of these deriva-

tives and their respective adjoint operators are not known

although they can be derived analytically for some mani-

folds as in [19]. However, to the best of our knowledge,

no such formula exists for shape spaces of parameterized

surfaces, so we use a numerical approach.

4.3. Why is Geodesic Regression Slow?

The geodesic regression optimization is slow due to the

Exp and Log maps in Eq. (7). Computation of the exponen-

tial and logarithm maps do not enjoy an analytical expres-

sion for the manifold that we are interested in, and neither

do their differentials. Consequently, we compute them only

numerically, as implemented in Geomstats [14] as follows.

For the exponential map, we consider the geodesic equa-

tion as a coupled system of first-order ODEs:{
v(t) = γ̇(t)
v̇(t) = f(v(t), γ(t), t)

where f is a smooth function given by Eq. (1) and the state

variable is (γ(t), γ̇(t)). Given initial conditions, we use a

first-order forward Euler scheme to integrate this system.

For a given step dt we compute:

v(t+dt) = v(t)+ v̇(t)dt = v(t)+f(v(t), γ(t), t)dt. (10)

Introducing the parameter nsteps, if we integrate this

geodesic equation between t = 0 and t = 1 in nsteps then

we use dt = (nsteps)
−1. Consequently, the parameter nsteps

controls the numerical precision of the computation of the

exponential map. The computation of Exp is slow due to

this numerical integration.

For the logarithm map, we solve the optimization prob-

lem in v:

min d2 (Exp(p, v), q) ,

that represents the fact that Log is the inverse map of Exp.

This minimization is solved by gradient descent (GD) until

a convergence tolerance is reached. It uses scipy for mini-

mization method and computes the gradient of the exponen-

tial map with automatic differentiation. The computation of

Log is slow due to this optimization process.

4.4. Approximations Schemes with Rules of Thumb

Curved spaces are locally linear. Thus, if a data set

falls on a “small” portion the shape space, addition and

subtraction will offer excellent approximations of exponen-

tials and logarithms and avoid costly computations. To

speed up geodesic regression, we propose two approxima-

tion schemes shown in Fig. 4: (i) linear regression, and

(ii) geodesic regression with linear residuals, where (ii)

represents a novel approach for geometric machine learn-

ing—which we describe in the next section.

We also propose rules of thumb to determine when each

of these methods will yield sufficiently accurate approxima-

tions of geodesic regression. For (i), we propose the Δ-Test,

which explores when the magnitude of the geodesic length

of the data set (Δ) is small at the scale of the curvature of

the manifold (Fig. 4 middle). For (ii), we propose the δ-

Test, which explores when the magnitude of the noise (δ)

is small at the scale of the curvature of the manifold (Fig. 4

right). In the experiments section, we explore the curvature

of the space of 3D discrete surfaces to give numerical values

to these guidelines.

4.5. Geodesic Regression with Linear Residuals

Model We propose geodesic regression with linear resid-
uals (GRLR) to model the relationship between an inde-

pendent variable X ∈ R, the noise-free dependent variable

taking values in a manifold, and the (noisy) dependent vari-

able Y taking values in R
D. In other words, we propose the

following generative model:

Y = Exp(p,Xv) + ε, (11)

where Exp(p,Xv) is the noise-free dependent variable and

ε is the noise. The noise-free dependent variable is con-

strained to be a surface in I, and thus Y ’s dependency on

X is modelled using the Exp operation. However, in practi-

cal applications, the data’s noise may push the data off of I.

Thus, in addition to its computational gain, this generative

model acknowledges the fact that there is no reason for the

noise to be constrained on the manifold.

Loss Given data (xi, yi) ∈ R × R
D, for i = 1, . . . , n,

we fit this regression model through least squares, i.e., we
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compute the estimates for the intercept and slope as:

(p̂, v̂) = arg min
(p,v)

1

2

n∑
i=1

‖ŷi − yi‖2 for ŷi = Exp (p, xiv) ,

(12)

where the squared geodesic distance of Eq. 7 has been re-

placed by the squared Euclidean distance, but we keep the

exponential map defining the geodesic.

Learning Like geodesic regression, this least squares

problem still requires gradient descent. The gradient can

be computed as a Riemannian gradient or as an extrinsic

gradient. The Riemannian gradient is given by:

∇pl = −
N∑
i=1

dp Exp (p, xiv)
†
εi,

∇vl = −
N∑
i=1

xidv Exp (p, xiv)
†
εi,

where l is the loss function, εi = yi − Exp (p, xiv) are the

residuals, dv and dp are derivatives, and † is the adjoint.

By avoiding the computation of n logarithms, the learning

process enjoys a significant speed-up. Even within the use

of the extrinsic gradient, the loss function avoids the com-

putations of these logarithms and is thus accelerated. We

note that we still need to compute the Exp by numerical in-

tegrations and their derivatives which we do by automatic

differentiation. Our implementation is publicly available on

GitHub.

5. Experiments
We investigate the curvature of the space of surfaces to

quantify which approximation scheme should be used on

which dataset. Guided by this analysis, we approximate

geodesic regression on 3D hippocampal surfaces, giving

the first characterization of hippocampal formation’s shape

change as a function of progesterone.

5.1. Curvature Estimation with δ− and Δ− Tests

Simulations We perform experiments on synthetic

meshes to provide rules-of-thumb that help the practitioner

decide when linear regression or geodesic regression with

linear residuals can be used with little loss in accuracy on

the space of discrete surfaces.

Specifically, our experiments explore cases when lines

can be used to approximate geodesics. First, we compute

both a line and a geodesic between two meshes qstart and

qend. Then, we compare the meshes along the line in R
N×3

to the meshes along the geodesic in I, where N is the num-

ber of vertices in the 3D meshes. We have either n = 5 or

n = 10 meshes along each sequence. The start mesh qstart

is an ellipsoid whose principal axes have length 2, 2, and 3.

The end mesh is a deformed version qend of the reference

qstart, where the amount of deformation is controlled by a

factor that we vary in {1%, 10%, 50%, 100%}. This defor-

mation factor indicates by how much each vertex in qend has

been moved compared to the vertex’s position in qstart and is

given as a percentage of the diameter of qstart. qend is gen-

erated by adding isotropic Gaussian noise to each vertex in

qstart. In other words, the standard deviation of the Gaus-

sian noise is: σ = deformation×D where D is the diameter

of the mesh.

We determine how much the geodesic and the line be-

tween qstart and qend differ by computing the root mean

square deviation (RMSD) between the geodesic mesh se-

quence and the line mesh sequence, which we then normal-

ize by the diameter D of the mesh:

RMSD =
1

D

√√√√ 1

TN

T∑
t=1

N∑
j=1

‖vline
tj − vgeodesic

tj ‖2, (13)

where N is the number of vertices, T the number of meshes

in the sequence (5 or 10) and D the diameter. We also time

the computation of the geodesic and the line and report their

ratio.
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Figure 5. Accuracy-speed trade-off between a geodesic and its lin-

ear approximation in joining two meshes qstart and qend. The x-axis

(error) shows how their meshes differ by computing distances be-

tween their vertices. The y-axis (speed) shows the ratio of their

computational times. The color represents the deformation factor,

i.e. how deformed the mesh qend is from the reference mesh qstart.

The symbols represent the number of vertices in the meshes. The

number of steps is a parameter controlling the numerical integra-

tion computing the geodesic. The results are similar when nsteps

= 5.
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Figure 6. Linear regression reveals hippocampal deformation associated with an increase in progesterone during the menstrual cycle. The

two rows show two views of each 3D mesh along the sequence. For visualization purposes, a coloring of the mesh is used to represent depth.

While volumetric analyses did not capture a volumetric change, our shape analysis reveals that an increase in progesterone corresponds to

a shear deformation of the hippocampal formation.

δ-Test Fig. 5 shows that deformation factors of 1% yield

errors below 0.05% of the diameter of the shape (below

0.0005 on the figure). This is true across two values of the

number of steps used for the numerical computation of the

exponential map: nsteps = 20, and nsteps = 5 (see Section ).

Consequently, for our δ-Test: when the measurement noise

on the vertices of the meshed shapes is expected to be less

than 1% of the total mesh diameter, we recommend using

linear residuals instead of geodesic residuals. In this case,

we assess that the shape manifold can be approximated as

linear at the scale of residual length: the curvature is low

compared to the magnitude of the noise. By using linear

residuals, we enjoy a considerable speed-up, up to 14M ×
(for a number of steps of 20), as shown in Fig. 5, and up to

1.5M × (for a number of steps of 5) .

As a real-world example, consider qstart as the mesh cor-

responding to a true hippocampal shape at a given level of

progesterone, and qend as the mesh that we observe in prac-

tice after segmenting and extracting the mesh from the MRI

data. In this case, the “measurement noise” is the MRI noise

and the segmentation error. We expect measurement noise

to displace each vertex by around 1% of the total mesh di-

ameter, since MRI images have a good resolution and both

segmentation and meshing algorithms are reasonably accu-

rate. Thus, brain MRIs are in the regime where geodesic re-

gression can enjoy considerable speed-ups by utilizing lin-

ear residuals.

Δ-Test Additionally, Fig. 5 shows that deformation fac-

tors of 10-50% yield an error that is less than 10% of

the diameter (below 0.1 on the figure). Consequently, for

our Δ-Test: if the data set’s largest deformation between

two meshes is 10-50% of the diameter of the mesh, and if

practitioners can tolerate a maximum loss of accuracy of

10% in their results, then using linear regression instead of

geodesic regression allows them to significantly speed up

their pipeline. In this case, we assess that the shape mani-

fold can be approximated as linear on the scale of the data

set: the curvature is low compared to the spread of the data.

Even more strikingly, the error decreases from 10% to only

3% if practitioners consider meshes with hundreds of ver-

tices, as shown in Fig. 5.

5.2. Hippocampal Shape Change Characterization

Data set We use a time-series of 3D brain images

recorded from magnetic resonance imaging (MRI): 11 im-

ages from 11 consecutive days, capturing the progesterone

peak of a single female subject’s natural menstrual cy-

cle [15], as analyzed by volumetric analyses in [18]. We

choose to focus on the progesterone peak (11 days), as op-

posed to the full menstrual cycle (30 days) for simplicity.

The female also measured hormone levels in her blood in

conjunction with each MRI session.

Pre-processing We align the 3D images to correct for

the position and orientation of the subject’s head in the

MRI scanner, and to extract the surface of each substruc-

ture of the hippocampal formation. The results of this pre-

processing are shown in Figure 1 where each sub-structure

surface is color-coded and shown at two different levels of

progesterone (low and high). Here, we can visually observe

the hippocampal formation’s shape evolution, which our

analyses will seek to characterize with the slope and inter-

cept learned from the proposed approximation of geodesic

regression. We then use Eq. (3) to give every hippocampal

mesh the same parameterization.

Characterization Consider qstart, qend the meshes corre-

sponding to hippocampus shapes at the lowest and highest

progesterone levels respectively. Fig. 1 shows that there is a

deformation factor of around 10%: each vertex is displaced

by around 10% of the total mesh diameter between the two

meshes shown. Thus, following Δ-Test, we use linear re-

gression to provide a characterization of 3D shape changes

in the hippocampal formation during the menstrual cycle.

Fig. 6 reveals for the first time that the hippocampal forma-
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tion shears in response to an increase in progesterone. Ad-

ditionally, this computation provides an important educa-

tional tool. Clinical neuroscientists can use the result of our

regression model to query, for a given progesterone level,

what is the associated hippocampal shape.

6. Conclusion
We have proposed a shape analysis technique to re-

veal what volumetric analyses could not: that the over-

all shape of hippocampal formation changes during pro-

gesterone level fluctuation. The implications for women’s

health are profound. Because each structure of the brain is

dedicated to a specific function, and the hippocampal for-

mation is directly related to functions that deteriorate in

women after menopause, characterizing how the hippocam-

pal formation changes in response to sex hormones changes

is critical. Not only does it provide a diagnostic for dis-

ease prediction, but it also offers a method to probe rela-

tionships between hormone level, hippocampal shape, and

brain health.

Here, we provide a practical method to characterize such

changes with slopes and intercepts learned through approx-

imation schemes for geodesic regression on the space of 3D

discrete surfaces. This work aims to open research avenues

for automated, fast, and statistically sound diagnostics of

female brain health.
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